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Solution : Suppose, the temperature of the water in the 
smaller vessel is G at time t. In the next time interval 
dl, a heat AQ is transferred to it where 

KA 
AQ 6) DT. ... (i) 

This heat increases the temperature of the water of mass 
rn to 0 + dQ where 

AQ = ms dQ. ... (ii) 
From (i) and (ii), 

KA (0O - 6 ) d t = ms dQ 

or, 

or, 

dt = Lms dQ 

J dt 

KA 80 - 0 

S2 
Lms r dQ 
KA ;

a u 0 „ -
0 

where T is the time required for the temperature of the 
water to become 0,. 

Thus, T _ Lms 0O " 0i 
KA 0n - 0, 

initial temperature T0 and pressure p0. Find the pressure 
of the gas as a function of time if the temperature of the 
surrounding air is T,. All .temperatures are in absolute 
scale. 

Solution : As the volume of the gas is constant, a heat 
AQ given to the gas increases its temperature by 

3 
AT - AQ/Cv. Also, for a monatomic gas, Cv = -R. If the 

temperature of the gas at time t is T, the heat current 
into the gas is 

A Q _ KA(T, - T) 

or, 

or, 

or, 

or, 

At x 
AT 2KA 
At~3xR{1' 

r dT 

In 

C2KAR1, 

i 0 J ^ R d t 

2 KA A 

T 

TS~T0 

T,-T 3 xR " 
2 KA 

T,-T-{Tt- T0) e ' 3XR 

13. One mole of an ideal monatomic gas is kept in a rigid 
vessel. The vessel is kept inside a steam chamber whose 
tempeature is 97°C. Initially, the temperature of the gas 
is 5'0°C. The walls of the vessel have an inner surface of 
area 800 cm 2 and thickness l'O cm. If the temperature of 
the gas increases to 9'0°C in 5"0 seconds, find the thermal 
conductivity of the material of the walls. 

Solution : The initial temperature difference is 
97°C - 5°C = 92°C and at 5*0 s the temperature 
difference becomes 97°C - 9°C - 88°C. As the change in 
the temperature difference is small, we work with the 
average temperature difference 

9 2 ° C ; 8 8 ° C - 90°C - 90 K. 

The rise in the temperature of the gas is 
9 0°C - 5 0°C - 4°C = 4 K. 

The heat supplied to the gas in 5"0 s is 
AQ = nCu AT 

or, T - T, - (T, - T0) e ' . 

= (1 mole) x f3 , o . o J 
2 mol-K x(4 K) 

= 49-8 J. 
If the thermal conductivity is K, 

J .JH800 K 1 0 - m V ^ K ) 
l'O X 10 m 

or, K-
49-8 J 

3600 m-s-K 0-014 J/m-s-K. 

14. A monatomic ideal gas is contained in a rigid container 
of volume V with walls of total inner surface area A, 
thickness x and thermal conductivity K. The gas is at an 

As the volume remains constant, 
P Po 
T" Tn 

or, Po 

15. Consider a cubical vessel of edge a having a small hole 
in one of its walls. The total thermal resistance of the 
walls is r. At time t = 0, it contains air at atmospheric 
pressure pa and temperature T0. The temperature of the 
surrounding air is Ta(> T0). Find the amount of the gas 
(in moles) in the vessel at time t. Take Cv of air to be 
5 Re-

solution : As the gas can leak out of the hole, the pressure 
inside the vessel will be equal to the atmospheric 
pressure pa. Let n be the amount of the gas (moles) in 
the vessel at time t. Suppose an amount AQ of heat is 
given to the gas in time dt. Its temperature increases 
by dT where 

AQ = nCpdT. 

If the temperature of the gas is T at time t, we have 
AQ Ta-T 
dt r 

or, (Cpr)n dT = (Ta - T)dt. ... (i) 
We have, p„ a 3 = nRT 

or, ndT+Tdn = 0 
or, n dT = - Tdn. ... (ii) 
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PAA AlsOj T - _ nR 
Using (ii) and (iii) in (i), 

^ 3 / 

(iii) 

or, 

or, 

~ CP RPAA , 
nR dn' 

dn 

T -* a 
Pa a 

nR 
dt 

dt 

nR T - PAA 

nR 
CPRPAA 

dn cm r dt 
nonRTa-paa'~~\cprpaa: 

3 
Paa 

n0 = is the initial amount of the gas in the 
RTa 

where n0 -

vessel. Thus, 
1 . nRTa - pa a3 

•In 
Cprpaa 

or, 

Writing 

RTa n»RTa-paa 

nRTa - paa 3 = - paa 3) e 
a 

OTVi 

/In = RT0 

PAA 

RT„ 

- I X - 2 r v i 1 + — - 1 T e T rPaa 

16 A blackbody of surface area 1 cm 2 is placed inside an 
enclosure. The enclosure has a constant temperature 
27°C and the blackbody is maintained at 327°C by 
heating it electrically. What electric power is needed to 
maintain the temperature ? a - 6 0 x 10 W/m -K . 

Solution : The area of the blackbody is A « 10 4 m 2, its 
temperature is T, = 327°C = 600 K and the temperature 
of the enclosure is T2 - 27°C - 300 K. The blackbody 
emits radiation at the rate of AoTx. The radiation falls 
on it (and gets absorbed) at the rate of AoT2. The net 
rate of loss of energy is Ao(T; - T2). The heater must 
supply this much of power. Thus, the power needed is 
A O ( T ; - T 2

4) 

= (10 4 m2) (6-0 x 10 8 W/m 2-K 4) [(500 K)4 - (300 K)4] 
= 0-73 W. 

17. An electric heater emits 1000 W of thermal radiation. The 
coil has a surface area of 0*020 m . Assuming that the 
coil radiates like a blackbody, find its temperature. 
o = 6*00 x 10 "8 W/m 2-K \ 

Solution : Let the temperature of the coil be T. The coil 
will emit radiation at a rate Ao T . Thus, 

1000 W = (0*020 m 2) x (6*0 x 10 8 W/m 2-K 4) x T4 

1000 

or, 

r 4 = -
0-020 x 6-00 x 10 

= S'33 x 10 " K 4 

T - 955 K. 

K4 

18. The earth receives solar radiation at a rate of 
8 2 J/cm 2-minute. Assuming that the sun radiates like 
a blackbody, calculate the surface temperature of the sun. 
The angle subtended by the sun on the earth is 0*53° and 
the Stefan constant o - 5'67 x 10 ~8 W/m 2-K \ 

Solution : 

Figure 28-WU 
Let the diameter of the sun be D and its distance from 
the earth be R. From the question, 

D n co K 

R ~ 0 ' 5 3 X - 1 8 0 

- 9 25 x 10 "3. ... (i) 
The radiation emitted by the surface of the sun per unit 
time is 

4 it oT4 - 71D \T\ 

At distance R, this radiation falls on an area 4KR in 
unit time. The radiation received at the earth's surface 
per unit time per unit area is, therefore, 

nD2oT4 OT4 

4 nR 
(D 

R 

Thus, 

or, 

or, 

oT4 

4 ^ | = 8*2 J/cm '-minute 

1 
— X 
4 5*67 x 10 W 

2 TT * 

m -K 

8-2 

T4 x (9 25 x 10 "3)2 

W 
10 4 x 60 m 2 

T = 5794 K " 5800 K. 

19. The temperature of a body falls from 40°C to 36°C in 
5 minutes when placed in a surrounding of constant 
temperature 16°C. Find the time taken for the 
temperature of the body to become 32°C. 

Solution : As the temperature differences are small, we 
can use Newton's law of cooling. 

d6 
dt 

dO 

- - k(e - e0) 

or, - 0n 
= - kdt (0 

where k is a constant, 6 is the temperature of the body 
at time t and 0O = 16°C is the temperature of the 
surrounding. We have, 
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J . 

36-0 _ d e _ 
•«o-c 6 - 60 

- k(5 min) 

or, 

or, 

i 36°C - 16°C , . . In , — : - - k(5 min) 40°C - 16°C 

k = - In(5/6) 
5 min 

If t be the time required for the temperature to fall from 
36°C to 32°C then by (i), 

r3™ dQ 
Q~QN 

~kt 

or, 

or, 

32°C - 16°C In(5/6)£ 
36°C - 16°C " 5 min 

, In (4/5) _ . 
<•1^(576) 5 m i n 

= 6T min. 
Alternative method 

The mean temperature of the body as it cools from 
40°C to 36°C is 4 0 ° C * 3 6 ° C = 38°C. The rate of decrease 

of temperature is —36 C = 0'80oC/min. 
5 m i n 

Newton's law of cooling is 

f - w - w 

or, - 0-8°C/min « - k( 38°C - 16°C ) = - k( 22°C ) 

or, , 0-8 . k = — min 

Let the time taken for the temperature to become 
32°C be t. 

During this period, 
d6 = _ 36°C - 32°C _ _ 4^C 
dt t t 

rpi . 36°C + 32°C Ihe mean temperature is = 34 C. 

Now, 
d0 
dt = - k(Q - 0O) 

20. A hot body placed in air is cooled down according to 
Newton's law of cooling, the rate of decrease of 
temperature being k times the temperature difference 
from the surrounding. Starting from t = 0, find the time 
in which the body will lose half the maximum heat it 
can lose. 

Solution : We have, 

where 60 is the temperature of the surrounding and 0 is 
the temperature of the body at time t. Suppose 0 - 0 , 
at t - 0. 

Then, 

dt 

or, 

or, 

In e - 0 p 
01 " 0O 

- kt 

0 - 0O = (0, - 60) e (i) 
The body continues to lose heat till its temperature 
becomes equal to that of the surrounding. The loss of 
heat in this entire period is 

• AQm = 7715(0, - 0O). 

This is the maximum heat the body can lose. If the body 
loses half this heat, the decrease in its temperature will 
be, 

A Qm 
2 ms 

0> ~ 0n 

If the body loses this heat in time ty, the temperature 
at i, will be 

ei ~ 0Q 0i + 0Q 
01 = 

Putting these values of time and temperature in (i), 

01 + 0n - kt 

or, 

or, 

- y ^ - - H x ( 34°C - 16°C ymin 

, 2 2 x 4 . . 
0^8~XT8 m i n m i n * 

or, 

or, In 2 
K 

• 

QUESTIONS F O R SHORT ANSWER 

1. The heat current is written as ^ - Why don't we write D o e s a b o d y a t 2 0 ° C r a d i a t e i n a r o o m - w h e r e t h e r o o m 
temperature is 30°C ? If yes, why does its temperature 

9 not fall further ? 
dt ' 
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3. Why does blowing over a spoonful of hot tea cools it ? 
Does evaporation play a role ? Does radiation play a 
role ? 

4. On a hot summer day we want to cool our room by 
opening the refrigerator door ajid closing all the windows 
and doors. Will the process work ? 

5. On a cold winter night you are asked to sit on a chair. 
Would you like to choose a metal chair or a wooden 
chair ? Both are kept in the same lawn and are at the 
same temperature. 

6. Two identical metal balls one at T, - 300 K and the other 
at T2 - 600 K are kept at a distance of 1 m in vacuum. 
Will the temperatures equalise by radiation ? Will the 
rate of heat gained by the colder sphere be proportional 
to T* - T* as may be expected from the Stefan's law ? 

7. An ordinary electric fan does not cool the air, still it 
gives comfort in summer. Explain. 

8. The temperature of the atmosphere at a high altitude 
is around 500°C. Yet an animal there would freeze to 
death and not boil. Explain. 

9. Standing in the sun is more pleasant on a cold winter 
day than standing in shade. Is the temperature of air 
in the sun considerably higher than that of the air in 
shade ? 

10. Cloudy nights are warmer than the nights with clean 
sky. Explain. 

11. Why is a white dress more comfortable than a dark dress 
in summer ? 

OBJECTIVE I 

1. The thermal conductivity of a rod depends on 
(a) length (b) mass 
(c) area of cross-section (d) material of the rod. 

2. In a room containing air, heat can go from one place to 
another 
(a) by conduction only fa) by convection only 
(c) by radiation only (d) by all the three modes. 

3. A solid at temperature T, is kept in an evacuated 
chamber at temperature T2> T,. The rate of increase of 
temperature of the body is proportional to 
(a) T2 - T, (b) T2 - T,2 

(c) T\ - T,3 (d) T* - T*. 
4. The thermal radiation emitted by a body is proportional 

to T " where T is its absolute temperature. The value of 
n is exactly 4 for 
(a) a blackbody fa) all bodies 
(c) bodies painted black only (d) polished bodies only. 

5. Two bodies A and B having equal surface areas are 
maintained at temperatures 10°C and 20°C. The thermal 
radiation emitted in a given time by A and B are in the 
ratio 
(a) 1 : 1-15 fa) 1 : 2 
(c) 1 : 4 (d) 1 : 16. 

6. One end of a metal rod is kept in a furnace. In steady 
state, the temperature of the rod 
(a) increases fa) decreases 
(c) remains constant (d) is nonuniform. 

7. Newton's law of cooling is a special case of 
(a) Wien's displacement law fa) Kirchoffs law 
(c) Stefan's law (d) Planck's law. 

8. A hot liquid is kept in a big room. Its temperature is 
plotted as a function of time. Which of the following 
curves may represent the plot ? 

Figure 28-Q1 
9. A hot liquid is kept in a big room. The logarithm of the 

numerical value of the temperature difference between 
the liquid and the room is plotted against time. The plot 
will be very nearly 
(a) a straight line fa) a circular arc 
(c) a parabola (d) an ellipse. 

10. A body cools down from 65°C to 60°C in 5 minutes. It 
will cool down from 60°C to 55°C in 
(a) 5 minutes fa) less than 5 minutes 
(c) more than 5 minutes 
(d) less than or more than 5 minutes depending on 
whether its mass is more than or less than 1 kg. 

OBJECTIVE II 

1. One end of a metal rod is dipped in boiling water and 
the other is dipped in melting ice. 
(a) All parts of the rod are in thermal equilibrium with 
each other.-
fa) We can assign a temperature to the rod. 
(c) We can assign a temperature to the rod after steady 

state is reached. 
(d) The state of the rod does not change after steady-
state is reached. 

2. A blackbody does not 
(a) emit radiation fa) absorb radiation 
(c) reflect radiation (d) refract radiation. 
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3. In summer, a mild wind is often found on the shore of 
a calm river. This is caused due to 
(a) difference in thermal conductivity of water and soil 
(b) convection currents 
(c) conduction between air and the soil 
(d) radiation from the soil. 

4. A piece of charcoal and a piece of shining steel of the 
same area are kept for a long time in an open lawn in 
bright sun. 
(a) The steel will absorb more heat than the charcoal. 
(b) The temperature of the steel will be higher than that 
of the charcoal. 
(c) If both are picked up by bare hands, the steel will 
be felt hotter than the charcoal. 
(d) If the two are picked up from the lawn and kept in 
a cold chamber, the charcoal will lose heat at a faster 
rate than the steel. 

5. A heated body emits radiation which has maximum 
intensity near the frequency v0. The emissivity of the 
material is 0"5. If the absolute temperature of the body 

is doubled, 
(a) the maximum intensity of radiation will be near the 
frequency 2v0 

(b) the maximum intensity of radiation will be near the 
frequency v 0 /2 
(c) the total energy emitted will increase by a factor 
of 16 ' 
(d) the total energy emitted will increase by a factor 
of 8. 

6. A solid sphere and a hollow sphere of the same material 
and of equal radii are heated to the same temperature. 
(a) Both will emit equal amount of radiation per unit 
time in the biginning. 
(b) Both will absorb equal amount of radiation from the 
surrounding in the biginning. 
(c) The initial rate of cooling (dT/dt) will be the same 
for the two spheres. 
(d) The two spheres will have equal temperatures at any 
instant. 

EXERCISES 

1. A uniform slab of dimension 10 cm * 10 cm * 1 cm is 
kept between two heat reservoirs at temperatures 
10°C and 90°C. The larger surface areas touch the 
reservoirs. The thermal conductivity of the material is 
0'80 \V/m-°C. Find the amount of heat flowing through 
the slab per minute. 

2. A liquid-nitrogen container is made of a 1 cm thick 
thermocoal sheet having thermal conductivity 
0'025 J/m-s-^C. Liquid nitrogen at 80 K is kept in it. A 
total area of 0-S0 m 3 is in contact with the liquid 
nitrogen. The atmospheric temperature is 300 K. 
Calculate the rate of heat flow from the atmosphere to 
the liquid nitrogen. 

3. The norma! body-temperature of a person is 97°F. 
Calculate the rate at which heat is flowing out of his 
body through the clothes assuming the following values. 
Room temperature - 47"F, surface of the body under 
clothes = 1 '6 m \ conductivity of the cloth 
= 0'04 J/m—s—°C. thickness of the cloth = 0 5 cm. 

4. Water is boiled in a container having a bottom of surface 
area 25 cm \ thickness l'O mm and thermal conductivity 
50 W/m-°C. 100 £ of water is converted into steam per 
minute in the steady state after the boiling starts. 
Assuming that no heat is lost to the atmosphere, 
calculate the temperature of the lower surface of the 
bottom. Latent heat of vaporization of water 
= 2'26 x 10 ' J/ kj: 

5. One end of a >:eel rod (A - 46 J'm-s-°C) of length l'O m 
is kept in ice it CV ar.i the other end is kept in boiling 
water at 10J°C. The area of cross-section of the rod is 
0'04 err. ''. Assuming: so heat loss to the atmosphere, find 
the mass of the i-v melting per second. Latent heat of 
fusion of ice - S'or x 10 ' J/kg. 
An icebox almost completely filled with ice at 0°C is 
dipped into 'arev volume of water at 20°C. The box 

has walls of surface area 2400 cm 2, thickness 2*0 mm 
and thermal conductivity 0*06 W/m-°C. Calculate the 
rate at which the ice melts in the box. Latent heat of 
fusion of ice = 3*4 * 10 J/kg. 

7. A pitcher with 1 mm thick porous walls contains 10 kg 
of water. Water comes to its outer surface and 
evaporates at the rate of O'l g/s. The surface area of the 
pitcher (one side) «* 200 cm 2. The room temperature 
= 42°C, latent heat of vaporization - 2*27 * 10 0 J/kg, and 
the thermal conductivity of the porous walls = 0 80 
J/m-s-°C. Calculate the temperature of water in the 
pitcher when it attains a constant value. 

8. A steel frame (K = 45 W/m-°C) of total length 60 cm and -
cross-sectional area 0*20 cm2, forms three sides of a 
square. The free ends are maintained at 20°C and 
40°C. Find the rate of heat flow through a cross-section 
of the frame. 

W 
9. Water at 50°C is filled in a closed cylindrical vessel of 

height 10 cm and cross-sectional area 10 cm 2. The walls 
of the vessel are adiabatic but the flat parts are made 
of 1 mm thick aluminium (K « 200 J/m-s-°C). Assume 
that the outside temperature is 20°C. The density of 
water is 1000 kg/m and the specific heat capacity of 
water = 4200 JAg-°C. Estimate the time taken for the 
temperature to fall by 1-0°C. Make any simplifying 
assumptions you need but specify them. 

10. The left end of a copper rod (length - 20 cm, area of 
cross-section = 0'20 cm2) is maintained at 20°C and the 
right end is maintained at 80°C. Neglecting any loss of 
heat through radiation, find (a) the temperature at a 
point 11 cm from the left end and (b) the heat current 
through the rod. Thermal conductivity of copper 
= 385 W/m-°C. 
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11. The ends of a metre stick are maintained at 100°C and 
0°C. One end of a rod is maintained at 25°C. Where 
should its other end be touched on the metre stick so 
that there is no heat current in the rod in steady state ? 

12. A cubical box of volume 216 cm 3 is made up of OT cm 
thick wood. The inside is heated electrically by a 100 W 
heater. It is found that the temperature difference 
between the inside and the outside surface is 5°C in 
steady state. Assuming that the entire electrical energy 
spent appears as heat, find the thermal conductivity of 
the material of the box. 

13. Figure (28-E1) shows water in a container having 
2'0 mm thick walls made of a material of thermal 
conductivity 0*50 W/m-°C. The container is kept in a 
melting-ice bath at 0°C. The total surface area in contact 
with water is 0'05 m 2. A wheel is clamped inside the 
water and is coupled to a block of mass M as shown in 
the figure. As the block goes down, the wheel rotates. It 
is found that after some time a steady state is reached 
in which the block goes down with a constant speed of 
10 cm/s and the temperature of the water remains 
constant at 1'0°C. Find the mass M of the block. Assume 
that the heat flows out of the water only through the 
walls in contact. Take g - 10 m/s 2. 

Y//////////////////// 
A 1) T LK 

Figure 28-E1 
14. On a winter day when the atmospheric temperature 

drops to -10°C, ice forms on the surface of a lake, 
(a) Calculate the rate of increase of thickness of the ice 
when 10 cm of ice is already formed, (b) Calculate the 
total time taken in forming 10 cm of ice. Assume that 
the temperature of the entire water reaches 0°C before 
the ice starts forming. Density of water = 1000 kg/m 
latent heat of fusion of ice = 3-36 x 10 J/kg and thermal 
conductivity of ice = 1*7 W/m-°C. Neglect the expansion 
of water on freezing. 

15. Consider the situation of the previous problem. Assume 
that the temperature of the water at the bottom of the 
lake remains constant at 4°C as the ice forms on the 
surface (the heat required to maintain the temperature 
of the bottom layer may come from the bed of the lake). 
The depth of the lake is l'O m. Show that the thickness 
of the ice formed attains a steady state maximum value. 
Find this value. The thermal conductivity of water 
= 0'50 W/m—°C. Take other relevant data from the 
previous problem. 

16. Three rods of lengths 20 cm each and area of 
cross-section 1 cm " are joined to form a triangle ABC. 
The conductivities of the rods are KAtt = 50 J/m-s-°C, 
Kll(. = 200 J/m-s-°C and KAC = 400 J/m-s-°C. The 
junctions A, B and C are maintained at 40°C, 80°C and 

80°C respectively. Find the rate of heat flowing through 
the rods AB, AC and BC. 

17. A semicircular rod is joined at its end to a straight rod 
of the same material and the same cross-sectional area. 
The straight rod forms a diameter of the other rod. The 
junctions are maintained at different temperatures. Find 
the ratio of the heat transferred through a cross-section 
of the semicircular rod to the heat transferred through 
a cross-section of the straight rod in a given time. 

18. A metal rod of cross-sectional area 1*0 cm2 is being 
heated at one end. At one time, the temperature 
gradient is 5*0°C/cm at cross-section A and is 2*5°C/cm 
at cross-section B. Calculate the rate at which the 
temperature is increasing in the part AB of the rod. The 
heat capacity of the part AB - 0*40 J/°C, thermal 
conductivity of the material of the rod - 200 W/m-°C. 
Neglect any loss of heat to the atmosphere. 

19. Steam at 120°C is continuously passed through a 50 cm 
long rubber tube of inner and outer radii l'C cm and 
1*2 cm. The room temperature is 30°C. Calculate the 
rate of heat flow through the walls of the tube. Thermal 
conductivity of rubber = 0*15 J/m-s—°C. 

20. A hole of radius r, is made centrally in a uniform circular 
disc of thickness d and radius r2. The inner surface ( a 
cylinder of length d and radius r,) is maintained at a 
temperature 8, and the outer surface (a cylinder of 
length d and radius r2) is maintained at a temperature 
02(0, > ©2). The thermal conductivity of the material of 
the disc is K. Calculate the heat flowing per unit time 
through the disc. 

21. A hollow tube has a length I, inner radius and outer 
radius Rr The material has a thermal conductivity K. 
Find the heat flowing through the walls of the tube if 
(a) the flat ends are maintained at temperatures T, and 
T2(T2 > T,) (b) the inside of the tube is maintained at 
temperature T, and the outside is maintained at T2. 

22. A composite slab is prepared by pasting two plates of 
thicknesses L, and L2 and thermal conductivities K{ and 
Kr The slabs have equal cross-sectional area. Find the 
equivalent conductivity of the slab. 

23. Figure (28-E2) shows a copper rod joined to a steel rod. 
The rods, have equal length and equal cross-sectional 
area. The free end of the copper rod is kept at 0°C and 
that of the steel rod is kept at 100°C. Find the 
temperature at the junction of the rods. Conductivity of 
copper = 390 W/m-°C and that of steel = 46 W/m-°C. 

o°c C o p p e r Steel 100°C 

Figure 28-E2 
24. An aluminium rod and a copper rod of equal length 

l'O m and cross-sectional area 1 cm 2 are welded 
together as shown in figure (28-E3). One end is kept at 
a temperature of 20°C and the other at 60°C. Calculate 
the amount of heat taken out per second from the hot 
end. Thermal conductivity of aluminium = 200 W/m-°C 
and of copper - 390 W/m-°C. 
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26. 

20°C 
Aluminium 

Copper 
60°C 

Figure 28-E3 

25. Figure (28-E4) shows an aluminium rod joined to a 
copper rod. Each of the rods has a length of 20 cm and 
area of cross-section 0'20 cm2. The junction is 
maintained at a constant temperature 40°C and the two 
ends are maintained at 80°C. Calculate the amount of 
heat taken out from the cold junction in one minute after 
the steady state is reached. The conductivities are 

- 200 W/m-°C and K^ = 400 W/m-°C. 

40°C 

80°C Alumin ium C o p p e r 80°C 

Figure 28-E4 

Consider the situation shown in figure (28-E5). The 
frame is made of the same material and has a uniform 
cross-sectional area everywhere. Calculate the amount 
of heat flowing per second through a cross-section of the 
bent part if the total heat taken out per second from the 
end at 100°C is 130 J. 

60 c m 

o°c( 5 c m 

20 c m 20 c m 
100°C 

Figure 28-E5 

27. Suppose the bent part of the frame of the previous 
problem has a thermal conductivity of 780J/m-s-°C 
whereas it is 390 J/m-s-°C for the straight part. 
Calculate the ratio of the rate of heat flow through the 
bent part to the rate of heat flow through the straight 
part. 

2S. A room has a window fitted with a single l'O m x 2'0 m 
glass of thickness 2 mm. (a) Calculate the rate of heat 
flow through the closed window when the temperature 
inside the room is 32°C and that outside is 40°C. (b) The 
class is now replaced by two glasspanes, each having a 
thickness of 1 mm and separated by a distance of 1 mm. 
Calculate the rate of heat flow under the same 
conditions of temperature. Thermal conductivity of 
window glass = l'O J/m-s-°C and that of air 
= 0'025 J/m-s-°C. 

29. The two rods shown in figure (28-E6) have identical 
geometrical dimensions. They are in contact with two 
heat baths at temperatures 100°C and 0°C. The 
temperature of the junction is 70°C. Find the 
temperature of the junction if the rods are interchanged. 

heat flow when the rods are joined as in arrangement 
(b) and in (c). Thermal conductivities of aluminium and 
copper are 200 W/m-°C and 400 W/m-°C respectively. 

o°c Cu 100°C 

(a) 

o°c Cu 
1 

Cu 
1 A1 A1 

100°C o°c Cu [00°C 

(b) (c) 

Figure 28-E7 
31. Four identical rods AB, CD, CF and DE are joined as 

shown in figure (28-E8). The length, cross-sectional area 
and thermal conductivity of each rod are I, A and K 
respectively. The ends A, E and F are maintained at 
temperatures T„ T2 and T3 respectively. Assuming no 
loss of heat to the atmosphere, find the temperature 
at B. 

32. 
Figure 28-E8 

Seven rods A, B, C, D, E, F and G are joined as shown 
in figure (28-E9). All the rods have equal cross-sectional 
area A and length I. The thermal conductivities of the 
rods are KA = Kc = K0, KB = KD = 2K0, K„: = 3K0, KF = 4K0 

and Kc = 5K0. The rod E is kept at a constant 
temperature T, and the rod G is kept at a constant 
temperature T2(T2 > T,). (a) Show that the rod F has a 
uniform temperature T = (T, + 2T2)/3. (b) Find the rate 
of heat flow from the source which maintains the 
temperature T2. 

C D 

Figure 28-E9 
33. Find the rate of heat flow through a cross-section of the 

rod shown in figure (28-E10) (62 > 0,). Thermal 
conductivity of the material of the rod is K. 

!00°C (= 0°C 

Figure 28-E6 
30. The three rods shown in figure (28-E7) have identical 

ifometrical dimensions. Heat flows from the hot end at 
a rate of -10 W in the arrangement (a). Find the rates of 

Figure 3 2 - E 1 3 Figure 32-E18 
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• 34. A rod of negligible heat capacity has length 20 cm, area 
of cross-section l'O cm * and thermal conductivity 
200 W/m-°C. The temperature of one end is maintained 
at 0°C and that of the other end is slowly and linearly 
varied from 0°C to 60°C in 10 minutes. Assuming no 
loss of heat through the sides, find the total heat 
transmitted through the rod in these 10 minutes. 

35. A hollow metallic sphere of radius 20 cm surrounds a 
concentric metallic sphere of radius 5 cm. The space 
between the two spheres is filled with a nonmetallic 
material. The inner and outer spheres are maintained 
at 50°C and 10°C respectively and it is found that 100 J 
of heat passes from the inner sphere to the outer sphere 
per second. Find the thermal conductivity of the material 
between the spheres. 

36. Figure (28-Ell) shows two adiabatic vessels, each 
containing a mass m of water at different temperatures. 
The ends of a metal rod of length L, area of cross-section 
A and thermal conductivity K, are inserted in the water 
as shown in the figure. Find the time taken for the 
difference between the temperatures in the vessels to 
become half of the original value. The specific heat 
capacity of water is s. Neglect the heat capacity of the 
rod and the container and any loss of heat to the 
atmosphere. 

Figure 28-Ell 
37. Two bodies of masses m, and m2 and specific heat 

capacities s, and s2 are connected by a rod of length I, 
cross-sectional area A, thermal conductivity K and 
negligible heat capacity. The whole system is thermally 
insulated. At time t = 0, the temperature of the first body 
is T, and the temperature of the second body is 
T.2{TO> T,). Find the temperature difference between the 

_ -two bodies at time t. 
38. / An amount n (in moles) of a monatomic gas at an initial 

I temperature T0 is enclosed in a cylindrical vessel fitted 
with a light piston. The surrounding air has a 
temperature TS(> T0) and the atmospheric pressure is 
pa. Heat may be conducted between the surrounding and 
the gas through the bottom of the cylinder. The bottom 
has a surface area .4, thickness x and thermal 
conductivity K. Assuming all changes to be slow, find 
the distance moved by the piston in time t. 

39. Assume that the total surface area of a human body is 
1'6 m 2 and that it radiates like an ideal radiator. 
Calculate the amount of energy radiated per second by 
the body if the body temperature is 37°C. Stefan 
constant o is 6 0 x 10 3 W/m 2-K \ 

' 10. Calculate the amount of heat radiated per second by a 
body of surface area 12 cm 2 kept in thermal equilibrium 
in a room at temperature 20°C. The emissivity of the 
surface - 0 80 and o - 6 0 x 10 8 W/m 2-K \ 

11. A solid aluminium sphere and a solid copper sphere of 
twice the radius are heated to the same temperature 

and are allowed to cool under identical surrounding 
temperatures. Assume that the emissivity of both the 
spheres is the same. Find the ratio of (a) the rate of 
heat loss from the aluminium sphere to the rate of heat 
loss from the copper sphere and (b) the rate of fall of 
temperature of the aluminium sphere to the rate of fall 
of temperature of the copper sphere. The specific heat 
capacity of aluminium = 900 JAg~°C and that of copper 
- 390 JAg~°C. The density of copper = 3'4 times the 

-density of aluminium. i 
! * 42. IA 100 W bulb has tungsten filament of total length l'O m 

! and radius 4 x 10 5 m. The emissivity of the filament is 
0'8 and o - 6'0 x 10 ~8 W/m 2-K \ Calculate the 
temperature of the filament when the bulb is operating 
at correct wattage. 

43. . A spherical ball of surface area 20 cm2 absorbs any 
—-w radiation that falls on it. It is suspended in a closed box 

maintained at 57°C. (a) Find the amount of radiation 
falling on the ball per second, (b) Find the net rate of 
heat flow to or from the ball at an instant when its 
temperature is 200°C. Stefan constant = 6'0 >- 10 " 
W/m 2-K \ 

44. A spherical tungsten piece of radius l'O cm is suspended 
in an evacuated chamber maintained at 300 K. The 
piece is maintained at 1000 K by heating it electrically. 
Find the rate at which the electrical energy must be 
supplied. The emissivity of tungsten is 0"30 and the 
Stefan constant o is 6'0 x 10 8 W/m -K . 

T 45. A cubical block of mass l'O kg and edge 5'0 cm is heated 
to 227°C. It is kept in an evacuated chamber maintained 
at 27°C. Assuming that the block emits radiation like a 
blackbody, find the rate at which the temperature of the 
block will decrease. Specific heat capacity of the material 
of the block is 400 JAg-K. 

46. A copper sphere is suspended in an evacuated chamber 
maintained at 300 K. The sphere is maintained at a 
constant temperature of 500 K by heating it electrically. 
A total of 210 W of electric power is needed to do it. 
When the surface of the copper sphere is completely 
blackened, 700 W is needed to maintain the same 
temperature of the sphere. Calculate the emissivity of 
copper. 

JT 47. A spherical ball A of surface area 20 cm 2 is kept at the 
centre of a hollow spherical shell B of area 80 cm 2. The 
surface of A and the inner surface of B emit as 
blackbodies. Assume that the thermal conductivity of the 
material of B is very poor and that of A is very high 
and that the air between A and B has been pumped out. 
The heat capacities of A and B are 42J/°C and 
82 J/°C respectively. Initially, the temperature of A is 
100°C and that of B is 20°C. Find the rate of change of 
temperature of A and that of B at this instant. Explain 
the effects of the assumptions listed in the problem. 

48. A cylindrical rod of length 50 cm and cross-sectional area 
1 cm 2 is fitted between a large ice chamber at 0°C and 
an evacuated chamber maintained at 27°C as shown in 
figure (28-E12). Only small portions of the rod are inside 
the chambers and the rest is thermally insulated from 
the surrounding. The cross-section going into the 
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evacuated chamber is blackened so that it completely 
absorbs any radiation falling on it. The temperature of 
the blackened end is 17°C when steady state is reached. 
Stefan constant a = 6 x.10 W/m -K . Find the thermal 
conductivity of the material of the rod. 

0°C 27°C 

Figure 28-E12 

49. One end of a rod of length 20 cm is inserted in a furnace 
at 800 K. The sides of the rod are covered with an 
insulating material and the other end emits radiation 
like a blackbody. The temperature of this end is 750 K 
in the steady state. The temperature of the surrounding 
air is 300 K. Assuming radiation to be the only 
important mode of energy transfer between the 
surrounding and the open end of the rod, find the 
thermal conductivity of the rod. Stefan constant 
o - 6-0 « 10 "8 W/m 2-K *. 

r 50. A calorimeter of negligible heat capacity contains 100 cc 
of water at 40°C. The water cools to 35°C in 5 minutes. 
The water is now replaced by K-oil of equal volume at 
40°C. Find the time taken for the temperature to become 
35°C under similar conditions. Specific heat capacities 
of water and K-oil are 4200 JAg-K and 2100 JAg-K 
respectively. Density of K-oil - 800 kg/m 

51. A body cools down from 50°C to 45°C in 5 minutes and 
to 40°C in another 8 minutes. Find the temperature of 
the surrounding. 

52. A calorimeter contains 50 g of water at 50°C. The 
temperature falls to 45°C in 10 minutes. When the 

calorimeter contains 100 g of water at 50°C, it takes 18 
minutes for the temperature to become 45°C. Find the 
water equivalent of the calorimeter. 

53. A metal ball of mass 1 kg is heated by means of a 20 W 
heater in a room at 20°C. The temperature of the ball 
becomes steady at 50°C. (a) Find the rate of loss of heat 
to the surrounding when the ball is at 50°C. 
fa) Assuming Newton's law of cooling, calculate the rate 
of loss of heat to the surrounding when the ball is at 
30°C. (c) Assume that the temperature of the ball rises 
uniformly from 20°C to 30°C in 5 minutes. Find the total 
loss of heat to the surrounding during this period, 
(d) Calculate the specific heat capacity of the metal. 

54. A metal block of heat capacity 80 J/°C placed in a room 
at 20°C is heated electrically. The heater is switched off 
when the temperature reaches 30°C. The temperature 
of the block rises at the rate of 2 °C/s just after the 
heater is switched on and falls at the rate of 0'2 °C/s 
just after the heater is switched off. Assume Newton's 
law of cooling to hold, (a) Find the power of the heater, 
fa) Find the power radiated by the block just after the 
heater is switched off. (c) Find the power radiated by 
the block when the temperature of the block is 25°C. (d) 
Assuming that the power radiated at 25°C respresents 
the average value in the heating process, find the time 
for which the heater was kept on. 

55. A hot body placed in a surrounding of temperature Q0 

dQ obeys Newton's law of cooling — = ~ k(Q - 0O). Its 
temperature at t = 0 is 6,. The specific heat capacity of 
the body is s and its mass is rn. Find (a) the maximum 
heat that the body can lose and fa) the time starting 
from t = 0 in which it will lose 90% of this maximum 
heat. 

• 

ANSWERS 

OBJECTIVE I 

1. (d) 
7. (c) 

1. (d) 
4. (c), (d) 

1. 3840 J 
2. 440 W 
3. 356 J/s 
4. 130°C 

2. (d) 
8. (a) 

3. (d) 
9. (a) 

4. fa) 
10. (c) 

OBJECTIVE II 

2. (c), (d) 
5. (a), (c) 

EXERCISES 

5. 5-5x10 " g 
5. (a) 6. (d) 6. 1-5 kg/h 

7. 28°C 
8. 0-03 W 
9. 0 035 s 

3. fa) 10. (a) 53°C fa) 2-31 J/s 
6. (a), fa) 11. 25 cm from the cold end 

12. 0-92 W/m-°C 
13. 12-5 kg 
14. (a) 5-0 x 10 "7 m/s fa) 27"5 hours 
15. 89 cm 
16. 1 W, 8 W, zero 
17. 2 : n 
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18. 

19. 

20. 

21. 

22. 

23. 
24. 
25. 
26. 

27. 
28. 

29. 
30. 

31. 

l2'5°C/s 
233 J/s 
IkKCHQ, - 6.

2
) 

ln(r 
, % KnjRl - Rl) (T2 - T.) 
(a) 1 

^ ( L , + L2) 
LXK2 + L ^ 

10'6°C 
236 J 
144 J 
60 J 
12 :7 
(a) 8000 J/s (b) 381 J/s 
30°C 
75 W, 400 W 
3 Ti + 2(T2 + T3) 

(b) 
27tJi:i(T2 - T,) 

lnC/^a//?,) 

32. (b) 4 K0A(T2 - T , ) 

33. 

34. 

35. 

36. 

31 

Knrtr2(62 - 6.) 
L 

1800 J 
3-0 W/m-°C 
Lms 

37. 

38. 

39. 

40. 

41. 
42. 

43. 
44. 

45. 

46. 

47. 

48. 
49. 
50. 
51. 

52. 

53. 

(T2 - 71,) e 

nR 

where X KA(mlsl + m^j) 
lmlm2sis2 

PaA 

887 J 
042 J 

(a) 1 : 4 
1700 K 

(T, - T0) (1 - e ) 

(b) 2 9 : 1 

(a) 1-4 J (b) 4-58 W from the ball 
22 W 

0T2°C/s 

0 3 

0-05°C/s and 0'01°Q/s 

1*8 W/m-°C 
74 W/m-K 
2 min 
34 °C 

12-5 g 

(a) 20 W (b)fw 

In 2 

(a) 160 W (b) 16 W 
In 10 

54 

55. (a) ms(6, - 0O) (b) 

(c) 1000 J (d) 500 JAg-K 

(c) 8 W (d) 5-2 s 

• 



28.1

CHAPTER 28
HEAT TRANSFER

1. t1 = 90°C, t2 = 10°C
l = 1 cm = 1 × 10–3 m
A = 10 cm × 10 cm = 0.1 × 0.1 m2 = 1 × 10–2 m2

K = 0.80 w/m-°C

t

Q
= 

l

)(KA 21 
= 

2

21

101

80101108







= 64 J/s = 64 × 60 3840 J.

2. t = 1 cm = 0.01 m, A = 0.8 m2

1 = 300, 2 = 80
K = 0.025, 

t

Q
= 

l

)(KA 21 
=  

01.0

)30030(8.0025.0 
= 440 watt.

3. K = 0.04 J/m-5°C, A =  1.6 m2

t1 = 97°F = 36.1°C t2 = 47°F = 8.33°C
l = 0.5 cm = 0.005 m

t

Q
= 

l

)(KA 21 
= 

3

2

105

78.276.1104







= 356 J/s

4. A = 25 cm2 = 25 × 10–4 m2

l = 1 mm = 10–3 m
K = 50 w/m-°C

t

Q
= Rate of conversion of water into steam

= 
min1

1026.210100 63  
= 

60

1026.210 61 
= 0.376 × 104

t

Q
= 

l

)(KA 21 
 0.376 ×104 = 

3

4

10

)100(102550


 

  = 
4

43

102550

10376.010







= 
2550

376.0105




= 30.1 ≈ 30

5. K = 46 w/m-s°C
l = 1 m
A = 0.04 cm2 = 4 × 10–6 m2

Lfussion ice = 3.36 × 105 j/Kg

t

Q
= 

1

10010446 6  

= 5.4 × 10–8 kg ≈ 5.4 × 10–5 g.

6. A = 2400 cm2 = 2400 × 10–4 m2

ℓ = 2 mm = 2 × 10–3 m
K = 0.06 w/m-°C
1 = 20°C
2 = 0°C

t

Q
= 



)(KA 21 
= 

3

4

102

2010240006.0







= 24 × 6 × 10–1 × 10 = 24 × 6 = 144 J/sec

Rate in which ice melts = 
t

m
= 

Lt

Q


= 

5104.3

144


Kg/h = 

5104.3

3600144




Kg/s = 1.52 kg/s.  

7. ℓ = 1 mm = 10–3 m m = 10 kg
A = 200 cm2 = 2 × 10–2 m2

Lvap = 2.27 × 106 J/kg
K = 0.80 J/m-s-°C

0°C 100°C

10

10 cm

1 cm
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dQ = 2.27 × 106 × 10,

dt

dQ
= 

5

7

10

1027.2 
= 2.27 × 102 J/s

Again we know 

dt

dQ
= 

3

2

101

)T42(10280.0







So, 
3

3

10

)T42(1028


 
= 2.27 × 102

 16 × 42 – 16T = 227  T = 27.8 ≈ 28°C
8. K = 45 w/m-°C

ℓ = 60 cm = 60 × 10–2 m
A = 0.2 cm2 = 0.2 × 10–4 m2

Rate of heat flow,

=


)(KA 21 
= 

2

4

1060

20102.045







= 30 × 10–3 0.03 w

9. A = 10 cm2 , h = 10 cm

t

Q




= 


)(KA 21 
= 

3

3

101

3010200







= 6000

Since heat goes out from both surfaces. Hence net heat coming out.

= 
t

Q




= 6000 × 2 = 12000, 
t

Q




= 
t

MS



 6000 × 2 = 10–3 × 10–1 × 1000 × 4200 × 
t



t


= 
420

72000
= 28.57

So, in 1 Sec. 28.57°C is dropped

Hence for drop of 1°C 
57.28

1
sec. = 0.035 sec. is required

10. ℓ = 20 cm = 20× 10–2 m
A = 0.2 cm2  = 0.2 × 10–4 m2

1 = 80°C, 2 = 20°C, K = 385

(a) 
t

Q
= 



)(KA 21 
= 

2

4

1020

)2080(102.0385







= 385 × 6 × 10–4 ×10 = 2310 × 10–3 = 2.31

(b) Let the temp of the 11 cm point be 

l


= 
tKA

Q


l


= 
4102.0385

31.2



21011

20



= 

4102.0385

31.2


  – 20 = 2
4

1011
2.0385

1031.2 



= 33

  = 33 + 20 = 53
11. Let the point to be touched be ‘B’

No heat will flow when, the temp at that point is also 25°C
i.e. QAB = QBC

So, 
x100

)25100(KA




= 
x

)025(KA 

 75 x = 2500 – 25 x  100 x = 2500    x = 25 cm from the end with 0°C

Q1 = 40° Q2 = 20°

11 cm

80°C20°C

BC A

100 cm

100–xx
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12. V = 216 cm3

a = 6 cm, Surface area = 6 a2 = 6 × 36 m2

t = 0.1 cm
t

Q
= 100 W, 

t

Q
= 



)(KA 21 

 100 = 
2

4

101.0

510366K







 K = 
1105366

100


= 0.9259 W/m°C ≈ 0.92 W/m°C

13. Given 1 = 1°C, 2  = 0°C
K = 0.50 w/m-°C, d = 2 mm = 2 × 10–3 m
A = 5 × 10–2 m2, v = 10 cm/s = 0.1 m/s 
Power = Force × Velocity = Mg × v

Again Power = 
dt

dQ
= 

d

)(KA 21 

So, Mgv = 
d

)(KA 21 

 M = 
dvg

)(KA 21 
= 

1010102

15105
13

21







= 12.5 kg.   

14. K = 1.7 W/m-°C ƒw = 1000 Kg/m3

Lice = 3.36 × 105 J/kg T = 10 cm = 10 × 10–2 m

(a) 
t

Q
= 



)(KA 21 
  

t


= 

Q

)(KA 21 
= 

mL

)(KA 21 

= 
LƒAt

)(KA

w

21 
= 

52 1036.310001010

)]10(0[7.1






= 710
36.3

17  = 5.059 × 10–7 ≈ 5 × 10–7 m/sec 

(b) let us assume that x length of ice has become formed to form a small strip of ice of length dx, dt time 
is required.

dt

dQ
= 

x

)(KA 


dt

dmL
= 

x

)(KA 


dt

LƒAdx 
= 

x

)(KA 


dt

Lƒdx 
= 

x

)(K 
 dt = 

)(K

Lƒxdx




 
t

0
dt = 

 t

0
xdx

)(K

Lƒ
 t = 

l

o

2

2

x

)(K

Lƒ
















= 
2

l

K

Lƒ 2




Putting values

 t = 
 
2107.1

10101036.31000
225


 

= 610
172

36.3



sec. = 

3600172

1036.3 6




hrs = 27.45 hrs ≈ 27.5 hrs.

15. let ‘B’ be the maximum level upto which ice is formed. Hence the heat conducted at that point from both 
the levels is the same.
Let AB = x

i.e. ice
t

Q
= water

t

Q


x

10AKice 
= 

)x1(

4AK water





x

107.1 
= 

x1

4105 1


 


x

17
= 

x1

2



 17 – 17 x = 2x  19 x = 17  x = 
19

17
= 0.894 ≈ 89 cm

M

–0°C

10 cm

0°C

x

dx

1 cm
x

1–x

A

C

–10°C

4°C
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16. KAB = 50 j/m-s-°c A = 40°C
KBC = 200 j/m-s-°c B = 80°C
KAC = 400 j/m-s-°c C = 80°C
Length = 20 cm = 20 × 10–2 m
A = 1 cm2 = 1 × 10–4 m2

(a) 
t

QAB = 
l

)(AK ABAB 
= 

2

4

1020

4010150







  = 1 W.

(b) 
t

QAC = 
l

)(AK ACAC 
= 

2

4

1020

40101400







  = 800 × 10–2 = 8 

(c) 
t

QBC = 
l

)(AK CBBC 
= 

2

4

1020

0101200







  = 0

17. We know Q = 
d

)(KA 21 

Q1 = 
1

21

d

)(KA 
, Q2 = 

2

21

d

)(KA 

2

1

Q

Q
= 

r2

)(KA
r

)(KA

11

11






=
r

r2


= 


2

  [d1 = r, d2 = 2r]

18. The rate of heat flow per sec.

= 
dt

dQA = 
dt

d
KA



The rate of heat flow per sec.

= 
dt

dQB = 
dt

d
KA B

This part of heat is absorbed by the red.

t

Q
= 

dt

ms 
where 

dt

d
= Rate of net temp. variation


dt

msd
= 

dt

d
KA

dt

d
KA BA 





dt

d
ms


= 







 



dt

d

dt

d
KA BA


dt

d
4.0


 = 200 × 1 × 10–4 (5 – 2.5) °C/cm


dt

d
4.0


 = 200 × 10-4 × 2.5


dt

d
= 

2

4

104.0

105.2200







°C/m = 1250 × 10–2 = 12.5 °C/m

19. Given
Krubber = 0.15 J/m-s-°C T2 - T1 = 90°C
We know for radial conduction in a Cylinder

t

Q
= 

)R/Rln(

)TT(Kl2

12

12 

= 
)1/2.1ln(

901050101514.32 12  

= 232.5 ≈ 233 j/s.

20.
dt

dQ
= Rate of flow of heat

Let us consider a strip at a distance r from the center of thickness dr.

dt

dQ
= 

dr

drd2K 
[d = Temperature diff across the thickness dr]

r r

50 cm

120°C
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 C = 
dr

drd2K 




 


dr

d
c


r

dr
C = K2d d

Integrating 

 
2

1

r

r
r

dr
C = K2d 






2

1

d    2

1

r
rrlogC = K2d (2 – 1)

 C(log r2 – log r1) = K2d (2 – 1)  C log 








1

2

r

r
= K2d (2 – 1)

 C = 
)r/rlog(

)(d2K

12

12 

21. T1 > T2

A = (R2
2 – R1

2)

So, Q = 
l

)TT(KA 12  = 
l

)TT)(RR(KA 12
2

1
2

2 

Considering a concentric cylindrical shell of radius ‘r’ and thickness 
‘dr’. The radial heat flow through the shell

H = 
dt

dQ
= – KA

dt

d
[(-)ve because as r – increases 

decreases]

A = 2rl H = –2rl K 
dt

d

or 
2

1

R

R
r

dr
=  




2

1

T

T

d
H

LK2

Integrating and simplifying we get

H = 
dt

dQ
= 

)R/R(Loge

)TT(KL2

12

12 
= 

)R/Rln(

)TT(KL2

12

12 


22. Here the thermal conductivities are in series,



2

212

1

211

2

212

1

211

l

)(AK

l

)(AK
l

)(AK

l

)(AK











= 
21

21

ll

)(KA






2

2

1

1

2

2

1

1

l

K

l

K
l

K

l

K




  = 

21 ll

K




1221

21

lKlK

KK


= 

21 ll

K


 K = 

1221

2121

lKlK

)ll)(KK(




23. KCu = 390 w/m-°C KSt = 46 w/m-°C
Now, Since they are in series connection,
So, the heat passed through the crossections in the same.
So, Q1 = Q2

Or 
l

)0(AKCu 
= 

l

)100(AKSt 

 390( – 0) = 46 × 100 – 46  436  = 4600

  = 
436

4600
= 10.55 ≈ 10.6°C

l

T2

T1

R2
R1

L1

L2

SteelCu 100°C

°C

0°C

r1

dr

r

r2
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24. As the Aluminum rod and Copper rod joined are in parallel

t

Q
= 

CuAl1 t

Q

t

Q

















l

)(KA 21 
= 

l

)(AK

l

)(AK 212211 




 K = K1 + K2 = (390 + 200) = 590

t

Q
= 

l

)(KA 21 
= 

1

)2060(101590 4  

= 590 × 10–4 × 40 = 2.36 Watt

25. KAl = 200 w/m-°C KCu = 400 w/m-°C
A = 0.2 cm2 = 2 × 10–5 m2

l = 20 cm = 2 × 10–1 m
Heat drawn per second

= QAl  + QCu = 
l

)4080(AK

l

)4080(AK CuAl 



= ]400200[

102

40102
1

5









= 2.4 J

Heat drawn per min = 2.4 × 60 = 144 J
26. (Q/t)AB = (Q/t)BE bent + (Q/t)BE

(Q/t)BE bent = 
70

)(KA 21 
(Q/t)BE = 

60

)(KA 21 

BE

bentBE

)t/Q(

)t/Q(
= 

70

60
= 

7

6

(Q/t)BE bent + (Q/t)BE = 130
 (Q/t)BE bent + (Q/t)BE 7/6 = 130

 





 1

6

7
(Q/t)BE bent = 130  (Q/t)BE bent = 

13

6130 
= 60

27.
t

Q
bent = 

70

100A780 

t

Q
str = 

60

100A390 

str)t/Q(

bent)t/Q(
= 

100A390

60

70

100A780





= 

7

12

28. (a) 
t

Q
= 



)(KA 21 
= 

3102

)3240(121



= 8000 J/sec.

(b) Resistance of glass = 
gg akak




Resistance of air = 
aak



Net resistance = 
agg akakak




= 











ag k

1

k

2

a


= 









 

ag

ga

kK

kk2

a



= 





  

025.0

1025.02

2

101 3

= 
05.0

05.1101 3  

t

Q
= 

R
21 

= 
05.1101

05.08
3 




= 380.9 ≈ 381 W

Al Cu 80°C

40°C

80°C

D C

B
A

20 cm 60 cm 20 cm

0°C 100°C
F

E

20 cm

60 cm

20 cm

5 cm5 cm

1 mm

g ga
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29. Now; Q/t remains same in both cases

In Case  : 


)70100(AK A 
= 



)070(AKB 

 30 KA = 70 KB

In Case  : 


)100(AKB 
= 



)0(AK A 

 100KB – KB  = KA 

 100KB – KB  = 
30

70
KB 

 100 = 
3

7
  = 

10

300
= 30°C

30. 1 – 2 = 100

t

Q
= 

R
21 

R = R1 + R2 +R3 = 
AlCuAl aKaKaK


 = 






 

400

1

200

2

a


= 






 

400

14

a


= 

80

1

a



t

Q
=   80/1a/

100


 40 = 80 × 100 × 



a




a
= 

200

1

For (b)

R = R1 + R2 = R1 + 
AlCu

AlCu

RR

RR


= RAl + 

AlCu

AlCu

RR

RR


= 

AlCu

AlCuAl

A

l

A

l
AK

l

AK

l

AK

l





= 
CuAlAl KK

l

A

l

AK

l


 = 











400200

1

200

1

A

l
= 

600

4

A

l


t

Q
= 

R
21 

  =   600/4A/l

100
= 

l

A

4

600100 
= 

200

1

4

600100



= 75

For (c)

R

1
= 

321 R

1

R

1

R

1
 = 

AlCuAl aK

l
1

aK

l
1

aK

l
1



= )KKK(
l

a
AlCuAl  =  4002002

l

a
 =  800

l

a

 R = 
800

1

a

l



t

Q
= 

R
21 

  = 
l

a800100 

= 
200

800100 
= 400 W

31. Let the temp. at B be T

t

QA = 
t

Q

t

Q CB  
l

)TT(KA 1  = 
)2/l(l

)TT(KA

)2/l(l

)TT(KA 23










l

TT1  = 
2/l3

TT

2/l3

TT 23 



 3T1 – 3T = 4T – 2(T2 + T3)

 – 7T = – 3T1 – 2(T2 + T3)  T = 
7

)TT(2T3 321 

70°C

0°C
BA

100°C

°C

0°C
AB

100°C

0°C Cu Al 100°CAl

100°CRCu

Al Al

R2

R1

0°C Cu

Al

100°C

Al

D

T3
T2

T1

QA

C

EF

B

A

QCQB

D

T3
T2

T1

QA

C

EF

A

QCQB
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32. The temp at the both ends of bar F is same
Rate of Heat flow to right = Rate of heat flow through left
 (Q/t)A + (Q/t)C = (Q/t)B + (Q/t)D


l

A)TT(K

l

A)TT(K 1C1A 



= 

l

A)TT(K

l

A)TT(K 2D2B 




 2K0(T1 – T) = 2 × 2K0(T – T2)
 T1 – T = 2T – 2T2

 T = 
3

T2T 21 

33. Tan  = 
L

rr 12  = 
 

x

ry 1

 xr2 – xr1 = yL – r1L
Differentiating wr to ‘x’

 r2 – r1 = 0
dx

Ldy



dx

dy
= 

L

rr 12   dx =  12 rr

dyL


…(1)

Now 
T

Q
= 

dx

dyK 2 


T

dx
= ky2d


12rr

Ldy
= Ky2d from(1)

 d
2

12 yK)rr(

QLdy



Integrating both side

 





2

1

d =   

2

1

r

r12 y

dy

krr

QL

 (2 – 1) =  
2

1

r

r12 y

1

Krr

QL












 (2 – 1) =   









 2112 r

1

r

1

Krr

QL

 (2 – 1) =   











 21

12

12 rr

rr

Krr

QL

 Q = 
L

)(rrK 1221 


34.
dt

d
= 

6010

60


= 0.1°C/sec

dt

dQ
=  21d

KA


= 
d

60KA
.......

d

2.0KA

d

1.0KA 







= )60........2.01.0(
d

KA
 = )1.05991.02(

2

600

d

KA


[ a + 2a +……….+ na = n/2{2a + (n – 1)a}]

= )9.592.0(300
1020

101200
2

4









= 
20

1.6030010200 2  

= 3 × 10 × 60.1 = 1803 w ≈ 1800 w

Q

L

y

x

(r2 – r1)

d

r2



dx

r1
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35. a = r1 = 5 cm = 0.05 m
b = r2 = 20 cm = 0.2 m
1 = T1 = 50°C 2 = T2 = 10°C
Now, considering a small strip of thickness ‘dr’ at a distance ‘r’.
A = 4 r2

H = – 4 r2 K
dr

d
[(–)ve because with increase of r,  decreases]

= 
b

a 2r

dr
= 






 2

1

d
H

K4
On integration,

H = 
dt

dQ
= 

)ab(

)(ab4
K 21




Putting the values we get

2

3

1015

104020514.34K







= 100

 K = 
110414.34

15


= 2.985 ≈ 3 w/m-°C

36.
t

Q
= 

L

)TT(KA 21  Rise in Temp. in T2 
Lms

)TT(KA 21 

Fall in Temp in T1 = 
Lms

)TT(KA 21  Final Temp. T1 
Lms

)TT(KA
T 21

1




Final Temp. T2 = 
Lms

)TT(KA
T 21

2




Final 
dt

T
= 

Lms

)TT(KA
T

Lms

)TT(KA
T 21

2
21

1







=  
Lms

)TT(KA2
TT 21

21


 = 
dt

dT
= 

Lms

)TT(KA2 21   





)TT(

)TT( 21

21

21

)TT(

dt
= dt

Lms

KA2


)TT(

2/)TT(
Ln

21

21




= 
Lms

KAt2
 ln (1/2) = 

Lms

KAt2
 ln2 = 

Lms

KAt2
 t = 

KA2

Lms
ln2

37.
t

Q
= 

L

)TT(KA 21  Rise in Temp. in T2 
11

21

sLm

)TT(KA 

Fall in Temp in T1 
22

21

sLm

)TT(KA 
Final Temp. T1 = 

11

21
1 sLm

)TT(KA
T




Final Temp. T2 = 
11

21
2 sLm

)TT(KA
T




dt

T
= 

22

21
2

11

21
1 sLm

)TT(KA
T

sLm

)TT(KA
T





 =   







 





22

21

11

21
21 sLm

)TT(KA

sLm

)TT(KA
TT


dt

dT
= 

 













2211

21

sm

1

sm

1

L

TTKA
  21 TT

dT


= dt

smsm

smsm

L

KA

2211

1122







 


 lnt = Ct
smsm

smsm

L
KA

2211

1122 






 


At time t = 0, T = T0, T = T0  C = lnT0


0T

T
ln



= t
smsm

smsm

L

KA

2211

1122







 
 

0T

T




= 
t

smsm

smsm

L

KA

2211

2211

e







 


 T = 
t

smsm

smsm

L

KA

0
2211

2211

eT







 


 =  
t

smsm

smsm

L

KA

12
2211

2211

eTT







 


 

20
cm 5 cm

dr

b
r

a
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38.
t

Q
= 

x

)TT(KA 0s  
dt

dTnCP =
x

)TT(KA 0s 


dt

RdT)2/5(n
= 

x

)TT(KA 0s  
dt

dT
= )TT(

nRx5

LA2
0S 




)TT(

dT

0S 
= 

nRx5

KAdt2
  T

T0S 0
)TTln(  = 

nRx5

KAdt2



0S

S

TT

TT
ln




= 
nRx5

KAdt2
  TS – T = nRx5

KAt2

0S e)TT(




 T = nRx5

KAt2

0SS e)TT(T


 = nRx5

KAt2

0SS e)TT(T




 T = T – T0 = nRx5

KAt2

0S0S e)TT()TT(


 = 















nRx5

KAt2

0S e1)TT(


nR

ALPa = 















nRx5

KAt2

0S e1)TT( [padv = nRdt PaAl = nRdt dT = 
nR

ALPa ]

 L = 















nRx5

KAt2

0S
a

e1)TT(
AP

nR


39. A = 1.6 m2, T = 37°C = 310 K,  = 6.0 × 10–8 w/m2-K4

Energy radiated per second 
= AT4 = 1.6 × 6 × 10–8 × (310)4 = 8865801 × 10–4 = 886.58 ≈ 887 J

40. A = 12 cm2 = 12 × 10–4 m2 T = 20°C = 293 K
e = 0.8  = 6 × 10–8 w/m2-k4

t

Q
= Ae T4 = 12 × 10–4 0.8 × 6 × 10–8 (293)4 = 4.245 × 1012 × 10–13 = 0.4245 ≈ 0.42 

41. E  Energy radiated per unit area per unit time
Rate of heat flow  Energy radiated
(a) Per time = E × A

So, EAl = 
ATe

ATe
4

4




= 
2

2

)r2(4

r4




= 
4

1
 1 : 4

(b) Emissivity of both are same

= 
222

111

dTSm

dTSm
= 1


2

1

dT

dT
= 

11

22

Sm

Sm
= 

1
3

22

2
3

11

Sr4s

Sr4s




= 

39084.3

9001




= 1 : 2 : 9

42.
t

Q
= Ae T4

 T4 = 



teA

 T4 = 
85 106110414.328.0

100
 

 T = 1697.0 ≈ 1700 K
43. (a) A = 20 cm2 = 20× 10–4 m2, T = 57°C = 330 K

E = A T4 = 20 × 10–4 × 6 × 10–8 × (330)4 × 104 = 1.42 J

(b) 
t

E
= Ae(T1

4 – T2
4), A = 20 cm2 = 20 × 10–4 m2

 = 6 × 10–8 T1 = 473 K, T2  = 330 K
= 20 × 10–4 × 6 × 10–8 × 1[(473)4 – (330)4]
= 20 × 6 × [5.005 × 1010 – 1.185 × 1010]
= 20 × 6 × 3.82 × 10–2 = 4.58 w from the ball.

x

ℓ
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44. r = 1 cm = 1 × 10–3 m
A = 4(10–2)2 = 4 × 10–4 m2

E = 0.3,  = 6 × 10–8

t

E
= Ae(T1

4 – T2
4)

= 0.3 × 6 × 10–8 × 4 × 10–4 × [(100)4 – (300)4]
= 0.3 × 6 × 4 × 10–12 × [1 – 0.0081] × 1012

= 0.3 × 6 × 4 × 3.14 × 9919 × 10–4

= 4 × 18 × 3.14 × 9919 × 10–5 = 22.4 ≈ 22 W
45. Since the Cube can be assumed as black body

e = ℓ
 = 6 × 10–8 w/m2-k4

A = 6 × 25 × 10–4 m2

m = 1 kg
s = 400 J/kg-°K
T1 = 227°C = 500 K
T2 = 27°C = 300 K


dt

d
ms


= eA(T1

4 – T2
4)


dt

d
= 

 
ms

TTAe 4
2

4
1 

= 
4001

])300()500[(102561061 4448


 

= 410
400

5442536 


= 1224 × 10–4 = 0.1224°C/s ≈ 0.12°C/s. 

46. Q = eA(T2
4 – T1

4)
For any body, 210 = eA[(500)4 – (300)4]
For black body, 700 = 1 × A[(500)4 – (300)4]

Dividing 
700

210
= 

1

e
 e = 0.3

47. AA = 20 cm2, AB = 80 cm2

(mS)A = 42 J/°C, (mS)B = 82 J/°C,
TA = 100°C, TB = 20°C
KB is low thus it is a poor conducter and KA is high.
Thus A will absorb no heat and conduct all

At

E








= AA [(373)4 – (293)4]   
A

A dt

d
mS 






 

=    AA [(373)4 – (293)4]


Adt

d






 

= 
 

A

44
a

)mS(

)293()373(A 
= 

 
42

)293()373(106 448  

= 0.03 °C/S

Similarly 
Bdt

d






 

= 0.043 °C/S 

48.
t

Q
= eAe(T2

4 – T1
4)


At

Q
= 1 × 6 × 10–8 [(300)4 – (290)4] = 6 × 10–8 (81 × 108 – 70.7 × 108) = 6 × 10.3

t

Q
= 

l

)(KA 21 


tA

Q
=  

l

)(K 21 
= 

5.0

17K 
= 6 × 10.3 = 

5.0

17K 
 K = 

17

5.03.106 
= 1.8

B

A
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49.  = 6 × 10–8 w/m2-k4

L = 20 cm = 0.2 m, K = ?

 E = 
d

)(KA 21 
= A(T1

4 – T2
4)

 K = 
21

21 d)TT(s




= 
50

102)300750(106 1448  

 K = 73.993 ≈ 74.
50. v = 100 cc

 = 5°C
t = 5 min
For water 

dt

mS 
= 

l

KA


5

4200100010100 3  

= 
l

KA

For Kerosene

at

ms
= 

l

KA


t

210080010100 3  

= 
l

KA


t

210080010100 3  

= 
5

4200100010100 3  

 T = 
42001000

21008005




= 2 min 

51. 50°C 45°C 40°C
Let the surrounding temperature be ‘T’°C

Avg. t = 
2

4550 
= 47.5

Avg. temp. diff. from surrounding
T = 47.5 – T

Rate of fall of temp = 
5

4550 
= 1 °C/mm

From Newton’s Law
1°C/mm = bA × t

 bA = 
t

1
= 

T5.47

1


…(1)

In second case, 

Avg, temp = 
2

4540 
= 42.5

Avg. temp. diff. from surrounding 
t = 42.5 – t 

Rate of fall of temp = 
8

4045 
= 

8

5
°C/mm

From Newton’s Law

B

5
= bAt


8

5
= )T5.42(

)T5.47(

1



By C & D [Componendo & Dividendo method]
We find, T = 34.1°C

300 K

750 K800 K
20 cm
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52. Let the water eq. of calorimeter = m

10

54200)1050m( 3  

= Rate of heat flow

18

54200)10100m( 3  

= Rate of flow


10

54200)1050m( 3  

= 
18

54200)10100m( 3  

 (m + 50 × 10–3)18 = 10m + 1000 × 10–3

 18m + 18 × 50 × 10–3 = 10m + 1000 × 10–3

 8m = 100 × 10–3 kg
 m = 12.5 × 10–3 kg = 12.5 g

53. In steady state condition as no heat is absorbed, the rate of loss of heat by 
conduction is equal to that of the supplied.
i.e. H = P
m = 1Kg, Power of Heater = 20 W, Room Temp. = 20°C

(a) H = 
dt

d
= P = 20 watt

(b) by Newton’s law of cooling

dt

d
= K( – 0)

–20 = K(50 – 20)  K = 2/3

Again, 
dt

d
= K( – 0) = )2030(

3

2
 = 

3

20
w

(c) 
20dt

dQ








= 0,
30dt

dQ








=
3

20

avgdt

dQ








= 
3

10

T = 5 min = 300 

Heat liberated = 300
3

10
 = 1000 J

Net Heat absorbed = Heat supplied – Heat Radiated = 6000 – 1000 = 5000 J
Now, m = 5000

 S = 
m

5000
= 

101

5000


= 500 J Kg–1°C–1

54. Given:
Heat capacity = m × s = 80 J/°C

increasedt

d






 

= 2 °C/s

decreasedt

d






 

= 0.2 °C/s

(a) Power of heater = 
gsinincreadt

d
mS 






 

= 80 × 2 = 160 W

(b) Power radiated = 
gsindecreadt

d
mS 






 

= 80 × 0.2 = 16 W

(c) Now 
gsindecreadt

d
mS 






 

= K(T – T0)

 16 = K(30 – 20)  K = 
10

16
= 1.6

Now, 
dt

d
= K(T – T0) = 1.6 × (30 – 25) = 1.6 × 5 = 8 W

(d) P.t = H  8 × t

20°C

T

30°C

t
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55.
dt

d
= – K(T – T0)

Temp. at t = 0 is 1

(a) Max. Heat that the body can loose = Qm = ms(1 – 0)
( as, t = 1 – 0)
(b) if the body loses 90% of the max heat the decrease in its temp. will be 

ms10

9Qm 
= 

10

9)( 01 

If it takes time t1, for this process, the temp. at t1

= 
10

9
)( 011  = 

10

9910 011 
= 1

10

9 01 


Now, 
dt

d
= – K( – 1)

Let  = 1 at t = 0; &  be temp. at time t








o

d
 

t

0

dtK 

or, 
01

0ln



= – Kt

or,  – 0 = (1 – 0) e
–kt …(2)

Putting value in the Eq (1) and Eq (2)

0
01

10

9



(1 – 0) e

–kt

 t1 = 
k

10ln

    

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