
76 Concepts of Physics 

QUESTIONS F O R SHORT ANSWER 

1. Does a gas have just two specific heat capacities or more 
than two ? Is the number of specific heat capacities of a 
gas countable ? 

2. Can we define specific heat capacity at constant 
temperature ? 

3. Can we define specific heat capacity for an adiabatic 
process ? 

4. Does a solid also have two kinds of molar heat capacities 
Cp and Cv ? If yes, do we have C„ > C„ ? Cp - Cv - R ? 

5. In a real gas the internal energy depends on 
temperature and also on volume. The energy increases 
when the gas expands isothermally. Looking into the 

derivation of Cp- Cv~ R, find whether Cp - Cu will be 
more than R, less than R or equal to R for a real gas. 

6. Can a process on an ideal gas be both adiabatic and 
isothermal ? 

7. Show that the slope of p-V diagram is greater for an 
adiabatic process as compared to an isothermal process. 

8. Is a slow process always isothermal ? Is a quick process 
always adiabatic ? 

9. Can two states of an ideal gas be connected by an 
isothermal process as well as an adiabatic process ? 

10. The ratio Cp/Cv for a gas is 1"29. What is the degree of 
freedom of the molecules of this gas ? 

OBJECTIVE I 

1. Work done by a sample of an ideal gas in a process A 
is double the work done in another process B. The 
temperature rises through the same amount in the two 
processes. If CA and CB be the molar heat capacities for 
the two processes, 
(a) CA = CB (b) CA < CB 

(c) CA > Cu (d) CA and CB cannot be defined. 
2. For a solid with a small expansion coefficient, 

(a) Cp- Cu = R (b) Cp - Cv 

(c) Cp is slightly greater than Cu 

(d) Cp is slightly less than C„. 
3. The value of Cp - Cv is l'OO R for a gas sample in state 

A and is 1"08 R in state B. Let pA, pB denote the 
pressures and TA and TB denote the temperatures of the 
states A and B respectively. Most likely 
(a) pA < pB and TA > TB (b) pA > pB and TA < TB 

(c) pA = pB and TA < TB (d) pA > pB and TA = TB. 

4. Let Cu and Cp denote the molar heat capacities of an 
ideal gas at constant volume and constant pressure 
respectively. Which of the following is a universal 
constant ? 

(b) Cfi, (c) Cp - C„ (d) Cp • c„. 

5. 70 calories of heat is required to raise the temperature 
of 2 mole of an ideal gas at constant pressure from 30°C 
to 35°C. The amount of heat required to raise the 
temperature of the same gas through the same range at 
constant volume is 
(a) 30 calories (b) 50 calories 
(c) 70 calories (d) 90 calories. 

6. Figure (27-Ql) shows a process on a gas in which 
pressure and volume both change. The molar heat 
capacity for this process is C. 
(a) C •= 0 (b) C = Cv ( c ) C > Cu (d) C < Cu. 

7. The molar heat capacity for the process shown in figure 
(27-Q2) is 
(a) C = Cp (b) C = Cv (c) C > Cu (d) C = 0. 

p= 

Figure 27-Q2 

Figure 32-E13 Figure 32-E18 

8. In an isothermal process on an ideal gas, the pressure 
increases by 0'5%. The volume decreases by about 
(a) 0-25% fa) 0-5% (c) 0-7% (d) 1%. 

9. In an adiabatic process on a gas with y - 1"4, the 
pressure is increased by 0"5%. The volume decreases by 
about 
(a) 0-36% fa) 0-5% (c) 0'7% (d) 1%. 

10. Two samples A and B are initially kept in the same 
state. The sample A is expanded through an adiabatic 
process and the sample B through an isothermal process. 
The final volumes of the samples are the same. The final 
pressures in A and B are pA and pa respectively. 
(a) PA > PA- fa) PA " PB• (c) PA < PB• 
(d) The relation between pA and p8 cannot be deduced. 

11. Let Ta and Tb be the final temperatures of the samples 
A and B respectively in the previous question. 
(a) Ta < Tb. fa) Ta - Tb. (c) Ta > Tb. 
(d) The relation between Ta and Tb cannot be deduced. 

12. Let AWA and A ^ be the work done by the systems A 
and B respectively in the previous question. 
(a) AWA > AWB . fa) AWA - AWB . (c) AWA < AWB . 
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(d) The relation between AWa and AWb cannot be 
deduced. 

13. The molar heat capacity of oxygen gas at STP is nearly 
2'5 R. As the temperature is increased, it gradually 
increases and approaches 3'5 R. The most appropriate 
reason for this behaviour is that at high temperatures 

(a) oxygen does not behave as an ideal gas 
(b) oxygen molecules dissociate in atoms 
(c) the molecules collide more frequently 
(d) molecular vibrations gradually become effective. 

OBJECTIVE II 

1. A gas kept in a container of finite conductivity is 
suddenly compressed. The process 
(a) must be very nearly adiabatic 
(b) must be very nearly isothermal 
(c) may be very nearly adiabatic 
(d) may be very nearly isothermal. 

2. Let Q and W denote the amount of heat given to an 
ideal gas and the work done by it in an isothermal 
process. 
(a) Q = 0. (b) W = 0. ( o ) Q * W. (d) Q = W. 

3. Let Q and W denote the amount of heat given to an 
ideal gas and the work done by it in an adiabatic process, 
(a) Q « 0. (b) W - 0. (c)Q- W. (d) Q*W. 

4. Consider the processes A and B shown in figure (27-Q3). 
It is possible that 

(a) both the processes are isothermal 
(b) both the processes are adiabatic 
(c) A is isothermal and B is adiabatic 
(d) A is adiabatic and B is isothermal. 

5. Three identical adiabatic containers A, B and C contain 
helium, neon and oxygen respectively at equal pressure. 
The gases are pushed to half their original volumes. 
(a) The final temperatures in the three containers will 
be the same. 
(b) The final pressures in the three containers will be 
the same. 
(c) The pressures of helium and neon will be the same 
but that of oxygen will be different. 
(d) The temperatures of helium and neon will be the 
same but that of oxygen will be different. 

6. A rigid container of negligible heat capacity contains one 
mole of an ideal gas. The temperature of the gas 
increases by 1°C if 3"0 cal of heat is added to it. The 
gas may be 
(a) helium (b) argon (c) oxygen (d) carbon dioxide. 

7. Four cylinders contain equal number of moles of argon, 
hydrogen, nitrogen and carbon dioxide at the same 
temperature. The energy is minimum in 
(a) argon (b) hydrogen (c) nitrogen (d) carbon dioxide. 

1. A vessel containing one mole of a monatomic ideal gas 
(molecular weight = 20 g/mol) is moving on a floor at a 
speed of 50 m/s. The vessel is stopped suddenly. 
Assuming that the mechanical energy lost has gone into 
the internal energy of the gas, find the rise in its 
temperature. 

2. 5 g of a gas is contained in a rigid container and is 
heated from 15°C to 25°C. Specific heat capacity of the 
gas at constant volume is 0'172 caVg-°C and the 
mechanical equivalent of heat is 4'2 J/cal. Calculate the 
change in the internal energy of the gas. 

3. Figure (27-E1) shows a cylindrical container containing 
oxygen (y - 1'4) and closed by a 50 kg frictionless piston. 
The area of cross-section is 100 cm atmospheric 
pressure is 100 kPa and g is 10 rrVs The cylinder is 
slowly heated for some time. Find the amount of heat 
supplied to the gas if the piston moves out through a 
distance of 20 cm. 

t t t 
Heat 

Figure 27-E1 
4. The specific heat capacities of hydrogen at constant 

volume and at constant pressure are 2"4 cal/g-°C and 
3-4cp!/g-°C respectively. The molecular weight of 
hydrogen is 2 g/mol and the gas constant R = 8"3 x 10 ' 
erg/mol-°C. Calculate the value of J. 

5. The ratio of the molar heat capacities of an ideal gas is 
C ;,/C„ = 7/6. Calculate the change in internal energy of 
l'O mole of the gas when its temperature is raised by 
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50 K (a) keeping the pressure constant, (b) keeping the 
volume constant and (c) adiabatically. 

6. A sample of air weighing 1'18 g occupies I/O * 10 J cm 3 

when kept at 300 K and l'O * 10 5 Pa. When 2'0 cal of 
heat is added to it at constant volume, its temperature 
increases by 1°C. Calculate the amount of heat needed 
to increase the temperature of air by 1°C at constant 
pressure if the mechanical equivalent of heat is 
4*2 x 10 ' erg/cal. Assume that air behaves as an ideal 
gas. 

7. An ideal gas expands from 100 cm 1 to 200 cm at a 
constant pressure of 2-0 x 10 5 Pa when 50 J of heat is 
supplied to it. Calculate (a) the change in internal energy 
of the gas, (b) the number of moles in the gas if the 
initial temperature is 300 K, (c) the molar heat capacity 
Cp at constant pressure and (d) the molar heat capacity 
Cu at constant volume. 

8. An amount Q of heat is added to a monatomic ideal gas 
in a process in which the gas performs a work Q/2 on 
its surrounding. Find the molar heat capacity for the 
process. 

9. An ideal gas is taken through a process in which the 
pressure and the volume are changed according to the 
equation p = kV. Show that the molar heat capacity of 
the gas for the process is given by C = Cu + — • 

10. An ideal gas (Cp/Cu - y) is taken through a process in 
which the pressure and the volume vary as p = aVb . 
Find the value of b for which the specific heat capacity 
in the process is zero. 

11. Two ideal gases have the same value of Cp/Cv - y. What 
will be the value of this ratio for a mixture of the two 
gases in the ratio 1 : 2 ? 

12. A mixture contains 1 mole of helium (Cp = 2*5 R, 
Cv - 15 R) and 1 mole of hydrogen (Cp = 3'5 R, 
Cv = 2"5 R). Calculate the values of Cp, Cu and y for the 
mixture. 

13. Half mole of an ideal gas (y = 5 /3) is taken through the 
cycle abcda as shown in figure (27-E2). Take 
R = ̂  J/mol-K (a) Find the temperature of the gas in 
the states a, b, c and d. fa) Find the amount of heat 
supplied in the processes ab and be. (c) Find the amount 
of heat liberated in the processes cd and da. 

supplied in the path ab and in the path be and (d) the 
change in the internal energy of the gas in the process. 

200 kPa 

100 kPa 

5000 cm3 

Figure 27-E2 

10000 cm3 

14. An ideal gas (y - 1G7) is taken through the process abc 
shown in figure (27-E3). The temperature at the point 
a is 300 K. Calculate (a) the temperatures at b and e, 
fa) the work done in the process, (c) the amount of heat 

150 c m 3 

100 c m 3 

100 kPa 200 kPa 

Figure 27-E3 
15. In Joly's differential steam calorimeter, 3 g of an ideal 

gas is contained in a rigid closed sphere at 20°C. The 
sphere is heated by steam at 100°C and it is found that 
an extra 0 095 g of steam has condensed into water as 
the temperature of the gas becomes constant. Calculate 
the specific heat capacity of the gas in J/g-K. The latent 
heat of vaporization of water = 540 cal/g. 

16. The volume of an ideal gas (y = 1"5) is changed 
adiabatically from 4'00 litres to 3'00 litres. Find the ratio 
of (a) the final pressure to the initial pressure and 
fa) the final temperature to the initial temperature. 

17. An ideal gas at pressure 2'5 x 10 0 Pa and temperature 
300 K occupies 100 cc. It is adiabatically compressed to 
half its original volume. Calculate (a) the final pressure, 
fa) the final temperature and (c). the work done by the 
gas in the process. Take y = 1*5. 

18. Air (y - 1*4) is pumped at 2 atm pressure in a motor tyre 
at 20°C. If the tyre suddenly bursts, what would be the 
temperature of the air coming out of the tyre. Neglect 
any mixing with the atmospheric air. 

19. A gas is enclosed in a cylindrical can fitted with a piston. 
The walls of the can and the piston are adiabatic. The 
initial pressure, volume and temperature of the gas are 
100 kPa, 400 cm 3 and 300 K respectively. The ratio of 
the specific heat capacities of the gas is Cp/Cv = l -5. 
Find the pressure and the temperature of the gas if it 
is (a) suddenly compressed fa) slowly compressed to 
100 cm 3. 

20. The initial pressure and volume of a given mass of a 
gas (Cp/Cv - y) are p0 and V0. The gas can exchange heat 
with the surrounding, (a) It is slowly compressed to a 
volume V 0 /2 and then suddenly compressed to V0/4. 
Find the final pressure, fa) If the gas is suddenly 
compressed from the volume V0 to V 0 /2 and then slowly 
compressed to Y0 /4, what will be the final pressure ? 

21. Consider a given sample of an ideal gas (Cp/Cu = y) 
having initial pressure p0 and volume V0. (a) The gas is 
isothermal ly taken to a pressure p 0 / 2 and from there 
adiabatically to a pressure p 0 / 4 . Find the final volume, 
fa) The gas is brought back to its initial state. It is 
adiabatically taken to a pressure p 0 / 2 and from there 
isothermally to a pressure p 0 / 4 . Find the final volume. 

22. A sample of an ideal gas (y=l"5) is compressed 
adiabatically from a volume of 150 cm 3 to 50 cm 3. The 
initial pressure and the initial temperature are 150 kPa 
and 300 K. Find (a) the number of moles of the gas in 
the sample, fa) the molar heat capacity at constant 
volume, (c) the final pressure and temperature, (d) the 
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work done by the gas in the process and (e) the change 
in internal energy of the gas. 

23. Three samples A, B and C of the same gas (y - 1'5) have 
equal volumes and temperatures. The volume of each 
sample is doubled, the process being isothermal for A, 
adiabatic for B and isobaric for C. If the final pressures 
are equal for the three samples, find the ratio of the 
initial pressures. 

24. Two samples A and B of the same gas have equal 
volumes and pressures. The gas in sample A is expanded 
isothermally to double its volume and the gas in B is 
expanded adiabatically to double its volume. If the work 
done by the gas is the same for the two cases, show that 
y satisfies the equation 1 - 2 l_T = (y - 1) ln2 . 

25. 1 litre of an ideal gas (y = 1*5) at 300 K is suddenly 
compressed to half its original volume, (a) Find the ratio 
of the final pressure to the initial pressure. fa) If the 
original pressure is 100 kPa, find the work done by the 
gas in the process, (c) What is the change in internal 
energy ? (d) What is the final temperature ? (e) The gas 
is now cooled to 300 K keeping its pressure constant. 
Calculate the work done during the process. (0 The gas 
is now expanded isothermally to achieve its original 
volume of 1 litre. Calculate the work done by the gas. 
(g) Calculate the total work done in the cycle. 

26. Figure (27-E4) shows a cylindrical tube with adiabatic 
walls and fitted with an adiabatic separator. The 
separator can be slid into the tube by an external 
mechanism. An ideal gas (y = 1*5) is injected in the two 
sides at equal pressures and temperatures. The 
separator remains in equilibrium at the middle. It is 
now slid to a position where it divides the tube in the 
ratio 1 : 3. Find the ratio of the temperatures in the two 
parts of the vessel. 

1 
Figure 27-E4 

27. Figure (27-E5) shows two rigid vessels A and B, each of 
volume 200 cm3 containing an ideal gas (C„ = 12*5 
J/mol-K). The vessels are connected to a manometer tube 
containing mercury. The pressure in both the vessels is 
75 cm of mercury and the temperature is 300 K. (a) Find 
the number of moles of the gas in each vessel, (b) 5 0 J 
of heat is supplied to the gas in the vessel .4 and 10 J to 
the gas in the vessel B. Assuming no appreciable transfer 
of heat from A to B calculate the difference in the heights 
of mercury in the two sides of the manometer. Gas 
constant R = 8'3 J/mol-K. 

Figure 27-E5 

28. Figure (27-E6) shows two vessels with adiabatic walls, 
one containing 0'1 g of helium (y = 1*67, M - 4 g/mol) and 
the other containing some amount of hydrogen (y = 1*4, 
M - 2 g/mol). Initially, the temperatures of the two 
gases are equal. The gases are electrically heated for 
some time during which equal amounts of heat are given 
to the two gases. It is found that the temperatures rise 
through the same amount in the two vessels. Calculate 
the mass of hydrogen. 

Figure 27-E6 
29. Two vessels A and B of equal volume V0 are connected 

by a narrow tube which can be closed by a valve. The 
vessels are fitted with pistons which can be moved to 
change the volumes. Initially, the valve is open and the 
vessels contain an ideal gas (Cp/C„ = y) at atmospheric 
pressure p0 and atmospheric temperature T0 . The walls 
of the vessel A are diathermic and those of B are 
adiabatic. The valve is now closed and the pistcns are 
slowly pulled out to increase the volumes of the vessels 
to double the original value, (a) Find the temperatures 
and pressures in the two vessels, fa) The valve is now 
opened for sufficient time so that the gases acquire a 
common temperature and pressure. Find the new values 
of the temperature and the pressure. 

30. Figure (27-E7) shows an adiabatic cylindrical tube of 
volume V0 divided in two parts by a frictionless adiabatic 
separator. Initially, the separator is kept in the middle, 
an ideal gas at pressure p, and temperature T, is 
injected into the left part and another ideal gas at 
pressure p2 and temperature T2 is injected into the right 
part. Cp/Cv = y is the same for both the gases. The 
separator is slid slowly and is released at a position 
where it can stay in equilibrium. Find (a) the volumes 
of the two parts, fa) the heat given to the gas in the left 
part and (c) the final common pressure of the gases. 

Figure 27-E7 
31. An adiabatic cylindrical tube of cross-sectional area 

1 cm 2 is closed at one end and fitted with a piston at 
the other end. The tube contains 0'03 g of an ideal gas. 
At 1 atm pressure and at the temperature of the 
surrounding, the length of the gas column is 40 cm. The 
piston is suddenly pulled out to double the length of the 
column. The pressure of the gas falls to 0"355 atm. Find 
the speed of sound in the gas at atmospheric 
temperature. 
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32. The speed of sound in hydrogen at 0°C is 1280 in/s. The 
density of hydrogen at STP is 0*089 kg/m 3. Calculate the 
molar heat capacities CP and CV of hydrogen. 

33. 4'0 g of helium occupies 22400 cm J at STP. The specific 
heat capacity of helium at constant pressure is 
5'0 caVmol-K. Calculate the speed of sound in helium 
at STP. 

34. An ideal gas having density 1*7 * 10" g/cmJ at a 
pressure 1-5 x 10° Pa is filled in a Kundt's tube. When 

the gas is resonated at a frequency of 3 0 kHz, nodes are 
formed at a separation of 6'0 cm. Calculate the molar 
heat capacities CP and C„ of the gas. 

35. Standing waves of frequency 5'0 kHz are produced in a 
tube filled with oxygen at 300 K. The separation 
between the consecutive nodes is 3*3 cm. Calculate the 
specific heat capacities CP and C,, of the gas. 

• 

ANSWERS 

OBJECTIVE I 

1. (c) 2. (c) 3. (a) 4. (c) 5. (b) 
7. (d) 8. (b) 9. (a) 10. (c) 11. (a) 

13. (d) 

1. (c), (d) 
4. (c) 
7. (a) 

OBJECTIVE II 

2. (d) 
5. (c), (d) 

EXERCISES 

6. (c) 
12. (c) 

3. (a, (d) 
6. (a), (b) 

1. 2-0 K 
2. 36 J 
3. 1050 J 
4. 4-15 x 10 7 erg/cal 
5. 2490 J in all cases 
6. 2 08 cal 
7. (a) 30 J (b) 0-008 

(c) 20-8 J/mol-K (d) 12*5 J/mol-K 
8. 3 R 

10. - y 
11. y 

12. 3 R.2R, 1-5 
13. (a) 120 K, 240 K, 480 K, 240 K 

(b) 1250 J. 1500 J (c) 2500 J, 750 J 
14. (a) 600 K, 900 K (b) 10 J 

(c) 14-9 J, 24-9 J (d) 29-8 J 
15. 0-90 J/g-K 

(b) 2 R = 16-6 J/mol-K 
(d) - 33 J (e) 33 J 

16. (a) 1-54 (b) 1-15 

17. (a) 7-1 * 10 5 Pa (b) 424 K 
18. 240 K 
19. 800 kPa, 600 K in'both cases 
20. 2Y *1 p0 cases 

21. 2 <Y+I1/Y V0 in each case 

22. (a) 0-009 
(c) 780 kPa, 520 K 

23. 2 : 2 / 2 " : l 
25. (a) 2/2" (b) - 82 J 

(c) 82 J (d) 424 K 
(e) - 41*4 J (0 103 J 
(g) -23-4 J 

26. /S": 1 
27. (a) 0-008 (b) 12'5 cm 

28. 0-03 g 

29. (a) T0, ^ in vessel A and T0/2r"', 

(b) T0, p 0 / 2 

(c) - 21 J 

i / r , 
30. (a) PI 

A A 

(c) (A / 2) Y where A = PLWY 

31. 447 m/s 

32. 18-0 J/mol-K, 26"3 J/mol-K 

33. 960 rr/s 

34. 26 J/mol-K, 17-7 J/mol-K 

35. 29-0 J/mol-K, 20"7 J/mol-K 

(b) zero 
L/T 

P-I 

p„ /2 Y in vessel B 

•t: 

I 

I 

I 
W 

% 
• 4 
x 
9 

I 

• 



27.1

CHAPTER – 27
SPECIFIC HEAT CAPACITIES OF GASES

1. N = 1 mole, W = 20 g/mol, V = 50 m/s

K.E. of the vessel = Internal energy of the gas

= (1/2) mv2 = (1/2) × 20 × 10–3 × 50 × 50 = 25 J

25 = n
2

3
r(T)  25 = 1 × 

2

3
× 8.31 × T  T= 

3.83

50


≈ 2 k.

2. m = 5 g, t = 25 – 15 = 10°C

CV = 0.172 cal/g-°CJ = 4.2 J/Cal.

dQ = du + dw

Now, V = 0 (for a rigid body)

So, dw = 0.

So dQ = du.

Q = msdt = 5 × 0.172 × 10 = 8.6 cal = 8.6 × 4.2 = 36.12 Joule.

3.  = 1.4, w or piston = 50 kg., A of piston = 100 cm2

Po = 100 kpa, g = 10 m/s2,  x = 20 cm.

dw = pdv = AdxPo
A

mg






  = 245

4
10201010010

10100

1050 








 




= 1.5 × 105 × 20 × 10–4 = 300 J.

nRdt = 300  dT = 
nR

300

dQ = nCpdT = nCp × 
nR

300
= 

nR)1(

300Rn




= 
4.0

4.1300 
= 1050 J.

4. CVH2 = 2.4 Cal/g°C, CPH2 = 3.4 Cal/g°C

M = 2 g/ Mol, R = 8.3 × 107 erg/mol-°C

We know, CP – CV = 1 Cal/g°C

So, difference of molar specific heats 

= CP × M – CV × M = 1 × 2 = 2 Cal/g°C

Now, 2 × J = R  2 × J = 8.3 × 107 erg/mol-°C  J = 4.15 × 107 erg/cal.

5.
V

P

C

C
= 7.6, n = 1 mole, T = 50K

(a) Keeping the pressure constant, dQ = du + dw,

T = 50 K,  = 7/6, m = 1 mole, 

dQ = du + dw  nCVdT = du + RdT  du = nCpdT – RdT

= RdTdT
1

R
1 




 = RdTdT
1

6

7
6

7
R






= DT – RdT = 7RdT – RdT = 6 RdT = 6 × 8.3 × 50 = 2490 J.
(b) Kipping Volume constant, dv = nCVdT

= dt
1

R
1 


 = 50

1
6

7
3.81






= 8.3 × 50 × 6 = 2490 J

(c) Adiabetically dQ = 0, du = – dw

=  












21 TT
1

Rn
=  12 TT

1
6

7
3.81





= 8.3 × 50 × 6 = 2490 J
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6. m = 1.18 g, V = 1 × 103 cm3 = 1 L T = 300 k, P = 105 Pa

PV = nRT or n = 
RT

PV
= 105 = atm.

N = 
RT

PV
= 

22 103102.8

1

 
= 

32.8

1


= 

6.24

1

Now, Cv =
dt

Q

n

1
 = 24.6 × 2 = 49.2

Cp = R + Cv = 1.987 + 49.2 = 51.187

Q = nCpdT = 1187.51
6.24

1
 = 2.08 Cal.

7. V1 = 100 cm3, V2 = 200 cm3 P = 2 × 105 Pa, Q = 50J

(a) Q = du + dw  50 = du + 20× 105(200 – 100 × 10–6)  50 = du + 20  du = 30 J

(b) 30 = n × 
2

3
× 8.3 × 300 [ U = 

2

3
nRT for monoatomic]

 n = 
833

2


= 

249

2
= 0.008

(c) du = nCvdT  Cv = 
dndTu

= 
300008.0

30


= 12.5

Cp = Cv + R = 12.5 + 8.3 = 20.3

(d) Cv = 12.5 (Proved above)

8. Q = Amt of heat given

Work done = 
2

Q
, Q = W +  U

for monoatomic gas  U = Q –
2

Q
= 

2

Q

V = n
2

3
RT = 

2

Q
= nT× 

2

3
R = 3R × nT

Again Q = n CpdT Where CP > Molar heat capacity at const. pressure.

3RnT = ndTCP  CP = 3R

9. P = KV 
V

nRT
= KV   RT = KV2   R T = 2KV U 

KV2

TR
= dv

dQ = du + dw  mcdT = CVdT + pdv  msdT = CV dT+ 
KV2

PRdF

 ms = CV + 
KV2

RKV
 CP + 

2

R

10.
V

P

C

C
= , CP – CV = R, CV = 

1

r


, CP = 

1

R




Pdv =  Rdt
1b

1



 0 = CVdT +  Rdt
1b

1




1b

1


= 

R

CV

 b + 1 = 
VC

R
= 

 
V

VP

C

CC 
= – +1  b = –

11. Considering two gases, in Gas(1) we have,

, Cp1 (Sp. Heat at const. ‘P’), Cv1 (Sp. Heat at const. ‘V’), n1 (No. of moles)

1

1

Cv

Cp
 & Cp1 – Cv1 = R 
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 Cv1 – Cv1 = R  Cv1 ( – 1) = R 

 Cv1 = 
1

R


& Cp1 =

1

R




In Gas(2) we have, , Cp2 (Sp. Heat at const. ‘P’), Cv2 (Sp. Heat at const. ‘V’), n2 (No. of moles)

2

2

Cv

Cp
 & Cp2 – Cv2 = R  Cv2 – Cv2 = R  Cv2 ( – 1) = R  Cv2 = 

1

R


& Cp2 =

1

R




Given n1 : n2 = 1 :2

dU1 = nCv1 dT & dU2 = 2nCv2 dT = 3nCvdT

 CV = 
3

Cv2Cv 21  = 
3

1

R2

1

R





= 

)1(3

R3


= 

1

R


…(1)

&Cp = Cv = 
1

r




…(2)

So, 
Cv

Cp
=  [from (1) & (2)]

12. Cp = 2.5 RCp = 3.5 R

Cv = 1.5 R Cv = 2.5 R

n1 = n2 = 1 mol (n1 + n2)CVdT = n1 CvdT + n2 CvdT

 CV = 
21

21

nn

vCnvCn




= 
2

R5.2R5.1 
2R

CP = CV + R = 2R + R = 3R

 = 
V

p

C

C
= 

R2

R3
= 1.5

13. n = 
2

1
  mole, R =

3

25
J/mol-k,  = 

3

5

(a) Temp at A = Ta, PaVa = nRTa

 Ta = 
nR

VP aa = 

3

25

2

1
10100105000 36



 

= 120 k.

Similarly temperatures at point b = 240 k at C it is 480 k and at D it is 240 k.

(b) For ab process,

dQ = nCpdT [since ab is isobaric]

=  ab TT
1

R

2

1





 = )120240(
1

3

5
3

5

3

35

2

1





 = 120

2

3

9

125

2

1
 = 1250 J

For bc, dQ = du + dw [dq = 0, Isochorie process]

 dQ = du = nCvdT =  ac TT
1

nR



= )240(

1
3

5
3

25

2

1







 

 = 240
2

3

3

25

2

1
 = 1500 J

(c) Heat liberated in cd = – nCpdT

=  cd TT
1

nR

2

1






= 240

2

3

3

125

2

1



= 2500 J

Heat liberated in da = – nCvdT

=  da TT
1

R

2

1






= )240120(

2

25

2

1



= 750 J 

100 KPa

5000 cm3

a b

cd

Ta Tb

TcTd

10000 cm3

200 KPa
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14. (a) For a, b ’V’ is constant

So, 
2

2

1

1

T

P

T

P
 

300

100
= 

2T

200
 T2 = 

100

300200 
= 600 k

For b,c ‘P’ is constant

So, 
2

2

1

1

T

V

T

V
 

600

100
= 

2T

150
 T2 = 

100

150600 
= 900 k

(b) Work done = Area enclosed under the graph 50 cc × 200 kpa = 50 × 10–6 × 200 × 103 J = 10 J

(c) ‘Q’ Supplied = nCvdT

Now, n = 
RT

PV
considering at pt. ‘b’

Cv = dT
1

R


= 300 a, b.

Qbc = dT
1

R

RT

PV


 = 300

67.0600

1010010200 63




 

= 14.925 ( = 1.67)

Q supplied to be nCpdT [Cp= 
1

R




]

= dT
1

R

RT

PV




 = 300
67.0

3.867.1

9003.8

1015010200 63







 

= 24.925

(d) Q = U + w

Now, U = Q – w = Heat supplied – Work done = (24.925 + 14.925) – 1 = 29.850 
15. In Joly’s differential steam calorimeter

Cv = 
)(m

Lm

121

2



m2 = Mass of steam condensed = 0.095 g, L = 540 Cal/g = 540 × 4.2 J/g

m1 = Mass of gas present = 3 g, 1 = 20°C, 2 = 100°C

 Cv = 
)20100(3

2.4540095.0




= 0.89 ≈ 0.9 J/g-K

16.  = 1.5

Since it is an adiabatic process, So PV = const.

(a) P1V1
 = P2V2

 Given V1 = 4 L, V2 = 3 L, 
1

2

P

P
= ?


1

2

P

P
= 












2

1

V

V
= 

5.1

3

4








= 1.5396 ≈ 1.54

(b) TV–1 = Const.

T1V1
–1 = T2V2

–1 
1

2

T

T
= 

1

2

1

V

V










= 

5.0

3

4








= 1.154 

17. P1 = 2.5 × 105 Pa, V1 = 100 cc, T1 = 300 k

(a) P1V1
 = P2V2



 2.5 × 105 × V1.5 = 2

5.1

P
2

V









 P2 = 21.5 × 2.5 × 105 = 7.07 × 105 ≈ 7.1 × 105

(b) T1V1
–1 = T2V2

–1  300 × (100)1.5 – 1 = T2 × (50)1.5 – 1

 T2 = 
07.7

3000
= 424.32 k ≈ 424 k 

a

100 KPa 200 KPa

150 cm3

100 cm3 b

c
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(c) Work done by the gas in the process

W =  12 TT
1

mR



=  12

11 TT
)1(T

VP




= ]300424[
)15,1(300

10100105.2 65



 

= 124
5.0300

105.2





= 20.72 ≈ 21 J 

18.  = 1.4, T1 = 20°C = 293 k, P1  = 2 atm, p2  = 1 atm

We know for adiabatic process,

P1
1– × T1

 = P2
1– × T2

or (2)1–1.4 × (293)1.4 = (1)1–1.4 × T2
1.4

 (2)0.4 × (293)1.4 = T2
1.4  2153.78 = T2

1.4  T2  = (2153.78)1/1.4 = 240.3 K

19. P1 = 100 KPa = 105 Pa, V1 = 400 cm3 = 400 × 10–6 m3, T1  = 300 k, 

 = 
V

P

C

C
= 1.5

(a) Suddenly compressed to V2 = 100 cm3

P1V1
 = P2V2

  105 (400)1.5 = P2 × (100)1.5

 P2 = 105 × (4)1.5 = 800 KPa

T1V1
–1 = T2V2

–1   300 × (400)1.5–1 = T2 × (100)1.5-1  T2 = 
10

20300 
= 600 K

(b) Even if the container is slowly compressed the walls are adiabatic so heat transferred is 0.

Thus the values remain, P2 = 800 KPa, T2 = 600 K.

20. Given 
V

P

C

C
=  P0 (Initial Pressure), V0 (Initial Volume)

(a) (i) Isothermal compression, P1V1 = P2V2  or, P0V0 = 
2

VP 02  P2  = 2P0

(ii) Adiabatic Compression P1V1
 = P2V2

 or 2P0











2

V0
= P1











4

V0

 P = 









0

0
o

V

4
P2

2

V
= 2 × 2 P0  P02

+1

(b) (i) Adiabatic compression P1V1
 = P2V2

 or P0V0
 = 











2

V
P 0  P = P02



(ii) Isothermal compression P1V1 = P2V2   or 2 P0 × 
2

V0 = P2 × 
4

V0  P2 = P02
+1  

21. Initial pressure = P0

Initial Volume = V0

 =
V

P

C

C

(a) Isothermally to pressure 
2

P0

P0V0 = 1
0 V

2

P
 V1 = 2 V0

Adiabetically to pressure = 
4

P0

 1
0 V

2

P
=  2

0 V
4

P
 )V2(

2

P
0

0 = )V(
4

P
2

0

 2+1 V0
 = V2

  V2 = 2(+1)/ V0

 Final Volume = 2(+1)/ V0
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(b) Adiabetically to pressure 
2

P0 to P0

P0 × (2+1 V0
 ) =  )V(

2

P0

Isothermal to pressure 
4

P0

0
/10 V2

2

P  = V
4

P0   V = 2(+1)/ V0 

 Final Volume = 2(+1)/ V0

22. PV = nRT

Given P = 150 KPa = 150 × 103 Pa, V = 150 cm3 = 150 × 10–6 m3, T = 300 k

(a) n = 
RT

PV
= 

3003.8

1015010150 63


 

= 9.036 × 10–3 = 0.009 moles.

(b) 
V

P

C

C
=  

VC)1(

R




=  











1

R
CP

 CV = 
1

R


= 

15.1

3.8


= 

5.0

3.8
= 2R = 16.6 J/mole

(c) Given P1 = 150 KPa = 150 × 103 Pa, P2 =?

V1 = 150 cm3 = 150× 10–6 m3,  = 1.5

V2 = 50 cm3 = 50 × 10–6 m3, T1 = 300 k, T2 = ?
Since the process is adiabatic Hence – P1V1

 = P2V2


 150× 103 (150 × 10–6) = P2 × (50 × 10–6)

 P2 = 150 × 103 × 

5.1

6

6

1050

10150

















= 150000 × 31.5 = 779.422 × 103 Pa ≈ 780 KPa

(d) Q = W + U or W = –U [U = 0, in adiabatic]

= – nCVdT = – 0.009 × 16.6 × (520 – 300) = – 0.009 × 16.6 × 220 = – 32.8 J ≈ – 33 J

(e) U = nCVdT = 0.009 × 16.6 × 220 ≈ 33 J

23. VA = VB = VC

For A, the process is isothermal

PAVA = PAVA  PA = 
A

A
A

V

V
P = 

2

1
PA 

For B, the process is adiabatic,

PA(VB) = PA(VB)  = PB = 


















B

B
B

V

V
P = PB × 

5.1

2

1








= 
5.1

B

2

P

For, C, the process is isobaric

C

C

T

V
 



C

C

T

V


C

C

T

V
 



C

C

T

V2
TC = 

CT

2


Final pressures are equal.

= 
2

pA = 
5.1

B

2

P
= PC  PA : PB : PC = 2 : 21.5 : 1 = 2 : 2 2 : 1

24. P1 = Initial Pressure V1  = Initial Volume P2 = Final Pressure  V2 = Final Volume

Given, V2 = 2V1, Isothermal workdone = nRT1 Ln 








1

2

V

V
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Adiabatic workdone = 
1

VPVP 2211




Given that workdone in both cases is same.

Hence nRT1 Ln 








1

2

V

V
=  

1

VPVP 2211




 ( – 1) ln 








1

2

V

V
= 

1

2211

nRT

VPVP 

 ( – 1)ln 








1

2

V

V
= 

1

21

nRT

nRTnRT 
 ( – 1) ln 2 = 

1

11

T

TT 
…(i) [ V2 = 2V1 ]

We know TV–1 = const. in adiabatic Process.

T1V1
–1 = T2 V2

–1, or T1 (V2)
–1 = T2  × (2)–1 × (V1)

–1

Or, T1 = 2–1 × T2  or T2  = T1
1- …(ii)

From (i) & (ii)

( – 1) ln 2 = 
1

1
11

T

2TT 
 ( – 1) ln2 = 1 – 2 1– 

25.  = 1.5, T = 300 k, V = 1Lv = 
2

1
l

(a) The process is adiabatic as it is sudden,

P1 V1
 = P2 V2

  P1 (V0)
 = P2 











2

V0  P2 = P1

5.1

2/1

1








= P1 (2)1.5 
1

2

P

P
= 21.5 = 22

(b) P1 = 100 KPa = 105 Pa W = ]TT[
1

nR
21 

T1 V1
–1 = P2 V2

–1  300 × (1)1.5–1 = T2 (0.5)1.5–1  300 × 1 = T2  5.0

T2 = 300 × 
5.0

1
= 300 2 K

P1 V1 =nRT1   n = 
1

11

RT

VP
= 

300R

1010 35


 

= 
R3

1
(V in m3)

w = ]TT[
1

nR
21 

=  2300300
)15.1(R3

R1



=  21

5.03

300



= –82.8 J ≈ – 82 J.

(c) Internal Energy,

dQ = 0,  du = – dw = –(–82.8)J = 82.8 J ≈ 82 J.

(d) Final Temp = 300 2 = 300 × 1.414 × 100 = 424.2 k ≈ 424 k.

(e) The pressure is kept constant.  The process is isobaric.

Work done = nRdT = 
R3

1
× R × (300 – 300 2 ) Final Temp = 300 K

= –
3

1
× 300 (0.414) = – 41.4 J. Initial Temp = 300 2

(f) Initial volume 
1

1

T

V
= 



1

1

T

V
= V1 =  1

1

1 T
T

V
= 300

23002

1



= 

22

1
L.

Final volume = 1L

Work done in isothermal = nRTln
1

2

V

V

= 









22/1

1
ln300R

R3
1

= 100 × ln  22 = 100 × 1.039 ≈ 103

(g) Net work done = WA + WB + WC = – 82 – 41.4 + 103 = – 20.4 J.
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26. Given  = 1.5

We know fro adiabatic process TV–1 = Const.

So, T1 V1
–1 = T2 V2

–1 …(eq)

As, it is an adiabatic process and all the other conditions are same. Hence the 
above equation can be applied.

So, T1 ×
15.1

4

V3










= T2 × 
15.1

4

V








  T1 × 

5.0

4

V3








= T2 × 
5.0

4

V









2

1

T

T
= 

5.05.0

V3

4

4

V















= 
3

1
So, T1 :T2 = 1 : 3

27. V = 200 cm3, C = 12.5 J/mol-k, T = 300 k, P = 75 cm

(a) No. of moles of gas in each vessel,

RT

PV
= 

300103.8

2009806.1375
7 


= 0.008

(b) Heat is supplied to the gas but dv = 0

dQ = du  5 = nCVdT  5 = 0.008 × 12.5 × dT  dT =
5.12008.0

5


for (A)

For (B) dT = 
5.12008.0

10

 A

A

T

P

T

P
 [For container A]


300

75
= 

5

5.12008.0PA 
 PA = 

5.12008.0300

575




= 12.5 cm of Hg.

B

B

T

P

T

P
 [For Container B] 

300

75
= 

10

5.12008.0PB 
 PB = 2 PA = 25 cm of Hg.

Mercury moves by a distance PB – PA = 25 – 12.5 = 12.5 Cm.

28. mHe = 0.1 g,  = 1.67,  = 4 g/mol, mH2 =? 

 = 28/mol 2 = 1.4

Since it is an adiabatic surrounding 

He dQ = nCVdT = dT
1

R

4

1.0



 = dT

)167.1(

R

4

1.0



 …(i)

H2 = nCVdT = dT
1

R

2

m



 = dT

14.1

R

2

m



 [Where m is the rqd. 

Mass of H2]

Since equal amount of heat is given to both and T is same in both.

Equating (i) & (ii) we get

dT
67.0

R

4

1.0
  dT

4.0

R

2

m
  m = 

67.0

4.0

2

1.0
 = 0.0298 ≈ 0.03 g

29. Initial pressure = P0, Initial Temperature = T0

Initial Volume = V0

V

P

C

C
= 

(a) For the diathermic vessel the temperature inside remains constant

P1 V1 – P2 V2  P0 V0 = P2 × 2V0  P2 = 
2

P0 , Temperature = To

For adiabatic vessel the temperature does not remains constant. The process is adiabatic

T1 V1
–1 = T2 V2

–1  T0V0
–1 = T2 × (2V0)

–1  T2 = 
1

0

0
0 V2

V
T











= 

1

0 2

1
T









 = 

1
0

2

T


P  TP  T

V/2 V/2

3:1

T2T1

3V/4 V/4

A B

H2He

A B
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P1 V1
 = P2 V2

  P0 V0
 = p1 (2V0)

   P1  = 











0

0
0 V2

V
P = 

2

P0

(b) When the values are opened, the temperature remains T0 through out 

P1 =
0

01

V4

RTn
, P2 = 

0

02

V4

RTn
[Total value after the expt = 2V0 + 2V0 = 4V0]

P = P1 + P2 = 
0

021

V4

RT)nn( 
= 

0

0

V4

nRT2
= 

V2

nRT0 = 
2

P0

30. For an adiabatic process, Pv = Const.

There will be a common pressure ‘P’ when the equilibrium is reached

Hence P1











2

V0 = P(V)

For left P = 










)V(

2

V
P 0

1 …(1)

For Right P = 










)VV(

2

V
P 0

0
2 …(2)

Equating ‘P’ for both left & right

= )V(

P1 = 
 )VV(

P

0

2   or 
V

VV0




= 










/1

1

2

P

P

 1
V

V0 


= 




/1
1

/1
2

P

P


V

V0


= 



 
/1

1

/1
1

/1
2

P

PP
 V = 





 /1
2

/1
1

/1
10

PP

PV
For left …….(3)

Similarly V0 – V = 




 /1
2

/1
1

/1
20

PP

PV
For right ……(4)

(b) Since the whole process takes place in adiabatic surroundings. The separator is adiabatic. Hence 
heat given to the gas in the left part = Zero.

(c) From (1) Final pressure P = 











)V(

2

V
P

y
0

1

Again from (3) V = 




 /1
2

/1
1

/1
10

PP

PV
or P = 

 






















 /1
2

/1
1

/1
10

0
1

PP

PV

2

V
P

= 
   

  10

/1
2

/1
101

PV

PP

2

VP






 
 = 












 
2

PP /1
2

/1
1

31. A = 1 cm2 = 1 × 10–4 m2,  M = 0.03 g = 0.03 × 10–3 kg, 

P = 1 atm = 105 pascal, L= 40 cm = 0.4 m.

L1 = 80 cm = 0.8 m, P = 0.355 atm

The process is adiabatic 

P(V) = P(V) =  1 × (AL) = 0.355 × (A2L)  1 1 = 0.355 2  
355.0

1
= 2

=  log 2 = log 







355.0

1
= 1.4941

V = 

P

= 
v/m

104941.1 5
= 





















4.0110

1003.0

104941.1

4

3

5

= 
5

55

103

10410441.1







= 446.33 ≈ 447 m/s 

1 

V V0–V

P2 T2P1 T1

V0/2 V0/2
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32. V = 1280 m/s, T = 0°C, oH2 = 0.089 kg/m3, rR = 8.3 J/mol-k,

At STP, P = 105 Pa, We know

Vsound = 
o

P




 1280 = 
089.0

105
 (1280)2 = 

089.0

105
  = 

5

2

10

)1280(089.0 
≈ 1.458

Again,

CV = 
1

R


= 

1458.1

3.8


= 18.1 J/mol-k

Again, 
V

P

C

C
=  or CP = CV = 1.458 × 18.1 = 26.3 J/mol-k 

33.  = 4g = 4 × 10–3 kg, V = 22400 cm3 = 22400 × 10–6 m3

CP = 5 cal/mol-ki = 5 × 4.2 J/mol-k = 21 J/mol-k

CP = 
1

R




= 
1

3.8




 21( – 1) =  (8.3)  21  – 21 = 8.3    = 
7.12

21

Since the condition is STP, P = 1 atm = 105 pa

V = 



= 

6

3

5

1022400

104

10
7.12

21









= 

3

65

1047.12

10224001021







= 962.28 m/s

34. Given o = 1.7 ×10–3 g/cm3  = 1.7 kg/m3, P = 1.5 × 105 Pa, R = 8.3 J/mol-k,

 = 3.0 KHz.

Node separation in a Kundt’ tube = 
2


= 6 cm,   = 12 cm = 12 × 10–3 m 

So, V =  = 3 × 103 × 12 × 10-2 = 360 m/s

We know, Speed of sound = 
o

P




 (360)2 = 
7.1

105.1 5
  = 

5

2

105.1

7.1)360(




= 1.4688

But CV = 
1

R


= 

1488.1

3.8


= 17.72 J/mol-k

Again 
V

P

C

C
=  So, CP = CV = 17.72 × 1.468 = 26.01 ≈ 26 J/mol-k 

35.  = 5 × 103 Hz, T = 300 Hz,
2


= 3.3 cm   = 6.6 × 10–2 m

V =  = 5 × 103 × 6.6 × 10–2 = (66 × 5) m/s

V = 

P

[Pv = nRT  P = 
mV

m
×Rt  PM = oRT 

o

P


= 

m

RT
]

= )566(
m

RT



= 

31032

3003.8



 (66 × 5)2 = 

31032

3003.8



  = 

3003.8

1032)566( 32


 

= 1.3995

Cv= 
1

R


= 

3995.0

3.8
= 20.7 J/mol-k,

CP = CV + R = 20.77 + 8.3 = 29.07 J/mol-k.

   
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