
CHAPTER 17 

LIGHT WAVES 

17.1 WAVES OR PARTICLES 

The question whether light is a wave or a particle 
has a very interesting and a long history. The 
investigations about the nature of light has unfolded 
a huge treasure of knowledge and understanding. This 
question has great contributions to the development of 
the theory of quantum mechanics which presents an 
altogether different picture of the world in which there 
are no particles, no positions, no momenta in an 
ordinary sense. 

Newton, the greatest among the great, believed 
that light is a collection of particles. He believed that 
a light source emits tiny corpuscles of light and these 
corpuscles travel in straight lines when not acted upon 
by external forces. The fact that light seems to travel 
in straight lines and cast shadows behind the obstacles 
was perhaps the strongest evidence of the particle 
nature of light. Newton could explain the laws of 
reflection of light on the basis of elastic collisions of 
the particles of light with the surface it is incident 
upon. The laws of refraction were explained by 
assuming that the particles of denser medium, such as 
glass or water, strongly attract the particles of light 
causing a bending at the surface. Newton had 
performed a number of experiments to study the 
behaviour of light. The book Optiks written by him, 
gives a classic account of these experiments. 

The Dutch physicist Christian Huygens 
(16294695), who was a contemporary of Newton, 
suggested that light may be a wave phenomenon. The 
apparent rectilinear propagation of light may be due 
to the fact that the wavelength of light may be much 
smaller than the dimensions of these openings and 
obstacles. 

Huygens' proposal remained in a dump for almost 
about a century. The scientific community by and large 
had great faith in Newton's writings and the particle 
theory remained in chair for a long time when it was 
seriously challenged by the double-slit experiment of 
Thomas Young (1773-1829) in 1801. This experiment  

clearly established that light coming from two coherent 
sources interferes and produces maxima and minima 
depending on the path difference. A series of 
experiments on diffraction of light conducted by the 
French physicist Augustin Jean Fresnel (1788-1827), 
measurement of velocity of light in water by Foucault 
in 1850, development of theory of electromagnetic 
waves by Maxwell in 1860 which correctly predicted 
the speed of light, were parts of a long activity which 
put the corpuscle theory of light to an end and 
convincingly established that light is a wave 
phenomenon. 

But the drama was not yet over. The climax came 
when the wave theory of light failed to explain 
Hallwachs and Lenard's observation in 1900 that when 
light falls on a metal surface, electrons are- ejected and 
that the kinetic energy of the emitted electrons does 
not depend on the intensity of the light used. Hertz 
possibly had the first observation of this phenomenon 
in early 1880's. This observation is known as 
photoelectric effect and we shall study it in detail in a 
later chapter. Photoelectric effect was explained by 
another giant, Albert Einstein, in 1905 on a particle 
model of light only. The old question "waves or 
particles" was reopened and an amicable 
understanding was reached in accepting that light has 
dual character. It can behave as particles as well as 
waves depending on its interaction with the 
surrounding. Later, it was found that even the well-
established particles such as electrons also have a dual 
character and can show interference and diffraction 
under suitable situations. We shall study the wave 
particle duality in a later chapter. In this chapter, we 
shall study the wave aspect of light. 

17.2 THE NATURE OF LIGHT WAVES 

In a wave motion, there is some quantity which 
changes its value with time and space. In the wave on 
a string, it is the transverse displacement of the 
particles that changes with time and is different for 
different particles at the same instant. In the case of 
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sound waves, it is the pressure at a point in the 
medium that oscillates as time passes and has 
different values at different points at the same instant. 
We also know that it is the elastic properties of the 
medium that is responsible for the propagation of 
disturbance in a medium. The speed of a wave is 
determined by the elastic as well as the inertia 
properties of the medium. 

The case with light waves is a bit different. The 
light waves need no material medium to travel. They 
can propagate in vacuum. Light is a nonmechanical 
wave. It was very difficult for the earlier physicists to 
conceive a wave propagating without a medium. Once 
the interference and diffraction experiments 
established the wave character of light, the search 
began for the medium responsible for the propagation 
of light waves. Light comes from the sun to the earth 
crossing millions of kilometers where apparently there 
is no material medium. What transmits the wave 
through this region ? Physicists assumed that a very 
dilute and highly elastic material medium is present 
everywhere in space and they named it "ether". Ether 
was never discovered and today we understand that 
light wave can propagate in vacuum. 

The quantity that changes with space and time, in 
terms of which the wave equation should be written, 
is the electric field existing in space where light 
travels. We shall define and study electric field in later 
chapters, here we need only to know that (a) the 
electric field is a vector quantity and (b) the electric 
field is transverse to the direction of propagation of 
light (there are exceptions but we shall not discuss 
them). 

Because light waves are transverse, they can be 
polarized. If a plane wave of light is travelling along 
the x-direction, the electric field may be along the 
y-direction or along the z-direction or in any other 
direction in the y-z plane. The equation of such a light 
wave may be written as 

E = E0  sin w(t — x/v), 	... (17.1) 

where E0  is the magnitude of the electric field at point 
x at time t. The speed of light is itself an interesting 
quantity. The speed of light in vacuum with respect to 
any observer is always the same and is very nearly 8  
equal to 3 x 10 m/s. This speed is a fixed universal 
constant irrespective of the state of motion of the 
observer. This needs a basic revision of our concepts 
about space and time and is the basis of special theory 
of relativity. The speed of light in vacuum is generally 
denoted by the letter c. When a light wave travels in 
a transparent material, the speed is decreased by a 
factor pt, called the refractive index of the material. 

speed of light in vacuum 
— speed of light in the material 	

... (17.2) 

For a spherical wave originating from a point 
source, the equation of the wave is of the form E 

 _CE
a  

O- sinei(t — r I v) 

where a is a constant. 
The amplitude is proportional to the inverse of the 

distance and thus the intensity is proportional to the 
square of the inverse distance. 

Example 17.1 

The refractive index of glass is 1'5. Find the speed of 
light in glass. 

Solution : We have 

speed of light in vacuum 
)1 speed of light in the material 

Thus, speed of light in glass 

speed of light in vacuum 

8  3.0 x 10 m/s 
-- 2 () x 10 m/s. 

1.5 

The frequency of visible light varies from about 
3800 x 1011  Hzto about 7800 x 10 

11 
 Hz. The corres-

ponding wavelengths (obtained from X = c /v) are 
380 nm to 780 nm. The colour sensation to a human 
eye is related to the wavelength of the light. Light of 
wavelength close to 780 nm appears red, and that close 
to 380 nm appears violet. Table (17.1) shows a rough 
relationship between the colour sensed and the 
wavelength of light. 

Table 17.1 

Colour 

Red 

Orange 

Yellow 

Green 

Blue 

Violet 

 

Wavelength 
(order) 

620-780 nm 

590-620 nm 

570-590 nm 

500-570 nm 

450-500 nm 

380-450 nm 

 

Light of single wavelength is called monochromatic 
light. Equation (17.1) represents a monochromatic 
light wave. Often, the light emitted by a source is a 
mixture of light corresponding to different 
wavelengths. Depending on the composition of the 
mixture, a human eye senses a large number of 
colours. White light itself is a mixture of light of all 
wavelengths from about 380 nm to about 780 nm in 
appropriate proportion. 
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In fact, a strictly monochromatic light is not 
possible to obtain. There is always a spread in 
wavelength. The best monochromatic light are LASERS 
in which the spread in wavelength is very small but 
not zero. We shall use the word "monochromatic light" 
to mean that the light contains a dominant wavelength 
with only a little spread. 

We discussed in the previous chapter that if a 
wave is obstructed during its propagation by an 
obstacle or an opening, it gets diffracted. A plane wave 
going through a small opening becomes more like a 
spherical wave on the other side. Thus, the wave bends 
at the edges. Also, if the dimensions of the obstacle or 
the opening is much larger than the wavelength, the 
diffraction is negligible and the rays go along straight 
lines. 

In the case of light, the wavelength is around 
380-780 nm. The obstacles or openings encountered in 
normal situations are generally of the order of 
millimeters or even larger. Thus, the wavelength is 
several thousands times smaller than the usual 
obstacles or openings. The diffraction is almost 
negligible and the light waves propagate in straight 
lines and cast shadows of the obstacles. The light can 
then be treated as light rays which are straight lines 
drawn from the source and which terminate at an 
opaque surface and which pass through an opening 
undeflected. This is known as the Geometrical optics 
approximation and majority of the phenomena in 
normal life may be discussed in this approximation. 
The three major rules governing geometrical optics are 
the following. 

1. Rectilinear propagation of light : Light travels 
in straight lines unless it is reflected by a polished 
surface or the medium of propagation is changed. 

2. Reflection of light : The angle of incidence and 
the angle of reflection (i.e., the angles made by the 
incident and the reflected rays with the normal to the 
surface) are equal. Also, the incident ray, the reflected 
ray and the normal to the reflecting surface are 
coplanar. 

3. Refraction of light : When light travelling in 
one medium enters another medium, the angle of 
incidence i and the angle of refraction r (angle made 
by the refracted ray with the normal) satisfy 

sin i 	vi 
sin r v2  

where v1  and v2  are the speeds of light in the first and 
the second media respectively. Also, the incident ray, 
the refracted ray and the normal to the separating 
surface are coplanar. 

The rectilinear propagation of light is explained on 
the basis of wave theory by observing that the  

wavelength of light is much smaller than the obstacles 
or openings usually encountered. The laws of reflection 
and refraction can also be explained by wave theory. 
The rigorous derivation involves somewhat 
complicated mathematics, but things can be fairly 
well-understood by a geometrical method proposed by 
Huygens. This method tells us how to construct the 
shape of a wavefront of light wave from the given 
shape at an earlier instant. We refer again from the 
previous chapters that (a) a surface on which the wave 
disturbance is in same phase at all points is called a 
wavefront, (b) the direction of propagation of a wave 
at a point is perpendicular to the wavefront through 
that point, (c) the wavefronts of a wave originating 
from a point source are spherical and (d) the 
wavefronts for a wave going along a fixed direction are 
planes perpendicular to that direction. 

17.3 HUYGENS' PRINCIPLE 

The first proposer of the wave theory of light, 
Huygens, considered light to be a mechanical wave 
moving in a hypothetical medium which was named 
as ether. If we consider a surface a enclosing a light 
source S, the optical disturbance at any point beyond 
a must reach after crossing a. The particles of the 
surface a vibrate as the wave from S reaches there 
and these vibrations cause the layer beyond to vibrate. 
We can thus assume that the particles on a act as new 
sources of light waves emitting spherical waves and 
the disturbance at a point A (figure 17.1) beyond a, is 
caused by the superposition of all these spherical 
waves coming from different points of a. Huygens 
called the particles spreading the vibration beyond 
them as secondary sources and the spherical 
wavefronts emitted from these secondary sources as 
the secondary wavelets. 

• 
A 

Figure 17.1 

Huygens' principle may be stated in its most 
general form as follows : 

Various points of an arbitrary surface, when 
reached by a wavefront, become secondary sources of 
light emitting secondary wavelets. The disturbance 
beyond the surface results from the superposition of 
these secondary wavelets. 

Consider a spherical surface a with its centre at a 
point source S emitting a pulse of light (figure 17.2). 
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The optical disturbance reaches the particles on a at 
time t = 0 and lasts for a short interval in which the 
positive and negative disturbances are produced. These 
particles on a then send spherical wavelets which 
spread beyond a. At time t, each of these wavelets has 
a radius vt. In figure (17.2), the solid lines represent 
positive optical disturbance and the dashed lines 
represent negative optical disturbance. The sphere E 
is the geometrical envelope of all the secondary 
wavelets which were emitted at time t = 0 from the 
primary wavefront a. 

s. 

Figure 17.2 

It is clear that at the points just inside E, only the 
positive disturbances of various secondary wavelets are 
meeting. The wavelets, therefore, interfere 
constructively at these points and produce finite 
disturbance. For points well inside E, some of the 
wavelets contribute positive disturbance and some 
others, centred at a nearby point of a, produce negative 
disturbance. Thus, the resultant disturbance is zero at 
these points. The disturbance which was situated at a 
at time t = 0 is, therefore, confined to a surface E at 
time t. Hence, the secondary wavelets from a 
superpose in such a way that they produce a new 
wavefront at the geometrical envelope of the secondary 
wavelets. 

This allows us to state the method of Huygens' 
construction as follows : 

Huygens' Construction 

Various points of an arbitrary surface, as they are 
reached by a wavefront, become the sources of 
secondary wavelets. The geometrical envelope of these 
wavelets at any given later instant represents the new 
position of the wavefront at that instant. 

The method is quite general and although it was 
developed on the notion of mechanical waves it is, valid 
for light waves. The surface used in the Huygens 
construction may have any arbitrary shape, not 
necessarily a wavefront itself. If the medium is 
homogeneous, (i.e., the optical properties of the 
medium are same everywhere) light moves forward  

and does not reflect back. We assume, therefore, that 
the secondary wavelets are emitted only in the forward 
direction and the geometrical envelope of the wavelets 
is to be taken in the direction of advancement of the 
wave. If there is a change of medium, the wave may 
be reflected from the discontinuity just as a wave on 
a string is reflected from a fixed end or a free end. In 
that case, secondary wavelets on the backward side 
should also be considered. 

Reflection of Light 

Let us suppose that a parallel light beam is 
incident upon a reflecting plane surface a such as a 
plane mirror. The wavefronts of the incident wave will 
be planes perpendicular to the direction of incidence. 
After reflection, the light returns in the same medium. 
Consider a particular wavefront AB of the incident 
light wave at t = 0 (figure 17.3). We shall construct the 
position of this wavefront at time t. 

a 

Figure 17.3 

To apply Huygens' construction, we use the 
reflecting surface a for, the sources of secondary 
wavelets. As the various points of a are reached by 
the wavefront AB, they become sources of secondary 
wavelets. Because of the change of medium, the 
wavelets are emitted both in forward, and backward 
directions. To study reflection, the wavelets emitted in 
the backward directions are to be considered. 

Suppose, the point A of a is reached by the 
wavefront AB at time t = 0. This point then emits a 
secondary wavelet. At time t, this wavelet becomes a 
hemispherical surface of radius vt centred at A. Here 
v is the speed of light. Let C be the point which is just 
reached by the wavefront at time t and hence the 
wavelet is a point at C itself. Draw the tangent plane 
CD from C to the hemispherical wavelet originated 
from A. Consider an arbitrary point P on the surface 
and let AP/AC = x. Let PQ be the perpendicular from 
P to AB and let PR be the perpendicular from P to 
CD. By the figure, 

PR PC AC-AP  
AD AC - AC -

1 - x 

or, 	PR = AD (1 - x) = vt(1 - x). 

QP _ AP _ 
BC - AC - 

Also, 
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or, 	 QP = x BC = xvt. 
The time taken by the wavefront to reach the point P 
is, therefore, 

_ QP  t1  - 	= xt. 

The point P becomes a source of secondary wavelets 
at time t1. The radius of the wavelet at time t, 
originated from P is, therefore, 

a= v(t - t1) = v(t - xt) = ut(1 - x). 	(ii) 

By (i) and (ii), we see that PR is the radius of the 
secondary wavelet at time t coming from P. As CD is 
perpendicular to PR, CD touches this wavelet. As P is 
an arbitrary point on a, all the wavelets originated 
from different points of a, touch CD at time t. Thus, 
CD is the envelope of all these wavelets at time t. It 
is, therefore, the new position of the wavefront AB. 
The reflected rays are perpendicular to this wavefront 
CD. 

In triangles ABC and ADC : 
AD = BC = vt, 

AC is common, 

and 	LADC = LABC = 90°. 

Thus, the triangles are congruent and 

LBAC = LDCA. 	 (iii) 

Now, the incident ray is perpendicular to AB and the 
normal is perpendicular to AC. The angle between the 
incident ray and the normal is, therefore, equal to the 
angle between AB and AC. Thus, LBAC is equal to 
the angle of incidence. 

Similarly, LDCA represents the angle of reflection 
and we have proved in (iii) that the angle of incidence 
equals the angle of reflection. From the geometry, it 
is clear that the incident ray, the reflected ray and the 
normal to the surface AC lie in the plane of drawing 
and hence, are coplanar. 

Refraction of Light 

a 

Figure 17.4 

Suppose a represents the surface separating two 
transparent media, medium 1 and medium 2 in which 
the speeds of light are vi  and v2  respectively. A 

parallel beam of light moving in medium 1 is incident  

on the surface and enters medium 2. In figure (17.4), 
we show the incident wavefront AB in medium 1 at 
t = 0. The incident rays are perpendicular to this 
wavefront. To find the position of this wavefront after 
refraction, we apply the method of Huygens' 
construction to the surface a. The point A of the 
surface is reached by the wavefront AB at t = 0. This 
point becomes the source of secondary wavelet which 
expands in medium 2 at velocity 02. At time t, this 
takes the shape of a hemisphere of radius 02  t centred 
at A. The point C of the surface is just reached by the 
wavefront at time t and hence, the wavelet is a point 
at C itself. Draw the tangent plane CD from C to the 
wavelet originating from A. 

Consider an arbitrary point P on the surface a and 
let AP/AC = x. Let PQ and PR be the perpendiculars 
from this arbitrary point P to the planes AB and CD 
respectively. By the figure, 

PR PC AC - AP 
AD = AC = AC —

1x 

or, 	PR = AD(1 - x) = v2 	- x). 

QP  AP _ 
BC AC x.  

Thus, 	QP = x BC = xv, t. 

The time, at which the wavefront arrives at P, is 

ti = QP  = xt. 
01  

The radius of the wavelet originated from P and 
going into the second medium is, therefore, 

a = v2(t - 	= 02  t( 1 - x). 	 (ii) 

By (i) and (ii), we see that PR is the radius of the 
wavelet originating from P. As CD is perpendicular to 
PR, CD touches this wavelet. As P is an arbitrary point 
on a, all the wavelets which originated from different 
points on a touch CD at time t. The plane CD is, 
therefore, the geometrical envelope of all the secondary 
wavelets at time t. It is, therefore, the position of the 
wavefront AB at time t. The refracted rays are 
perpendicular to CD. 

The angle BAC is also equal to the angle between 
the incident ray (which is perpendicular to AB) and 
the normal to the surface and hence, it is equal to the 
angle of incidence i. Similarly, L ACD is equal to the 
angle of refraction r. 

. BC 
We have sin i = 

AC 

and 	sin r = 
AD 
AC 

so that 
sin i BC vi  t = 
sin r AD 02  t 

(i) 

Also, 
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sin i 	V1  — 
sin r v2  

which is called the Snell's law. The ratio v1 /v2  is 
called the refractive index of medium 2 with respect 
to medium 1 and is denoted by p21. If the medium 1 
is vacuum, p2, is simply the refractive index of the 
medium 2 and is denoted by p. 

v1  c/v2  p2  
Also, 	f-121 

= 	= C/Vi pl 

From the figure, it is clear that the incident ray, 
the refracted ray and the normal to the surface o-  are 
all in the plane of the drawing i.e., they are coplanar. 

Suppose light from air is incident on water. It 
bends towards the normal giving i > r. From Snell's 
law proved above, v1  > v2. Thus, according to the wave 
theory the speed of light should be greater in air than 
in water. This is opposite to the prediction of Newton's 
corpuscle theory. If light bends due to the attraction 
of the particles of a medium then speed of light should 
be greater in the medium. Later, experiments on 
measurement of speed of light confirmed wave theory. 

Thus, the basic rules of geometrical optics could be 
understood in terms of the wave theory of light using 
Huygens' principle. In the rest of this chapter, we shall 
study the wave behaviour, such as the interference, 
diffraction and polarization of light. 

17.4 YOUNG'S DOUBLE HOLE EXPERIMENT 

Thomas Young in 1801 reported his experiment on 
the interference of light. He made a pinhole in a 
cardboard and allowed sunlight to pass through. This 
light was then allowed to fall upon another cardboard 
having two pinholes side by side placed symmetrically. 
The emergent light was received on a plane screen 
placed at some distance. At a given point on the screen, 
the waves from the two holes had different phases. 
These waves interfered to give a pattern of bright and 
dark areas. The variation of intensity on the screen 
demonstrated the interference taking place between 
the light waves reaching the screen from the two 
pinholes. 

The pattern of bright and dark areas is sharply 
defined only if light of a single wavelength is used. 
Young's original experiments were performed with 
white light and he deduced from the experiments that 
the wavelength of extreme i-ed light was around 
1/36000 inch and that of the extreme violet was around 
1/60000 inch. These results are quite close to their 
accurate measurements done with modern 
instruments.  

17.5 YOUNG'S DOUBLE SLIT EXPERIMENT 

In the double slit experiment, we use two long 
parallel slits as the sources of light in place of pin 
holes. The light coming out of the two slits is 
intercepted on a screen placed parallel to the plane of 
the slits. The slits are illuminated by a parallel beam 
of a monochromatic (of nearly a single wavelength) 
light. A series of dark and bright strips, called fringes, 
are observed on the screen. The arrangement of the 
experiment is schematically shown in figure (17.5a). 
Figure (17.5b) shows a cross-section of the 
arrangement of the Young's double slit experiment. 

Source 	 Slits 

s(-- 

-11.• 

(a)  

d 

2 

(b)  

Figure 17.5 

The two waves interfering at P have covered 
different distances S1P = x and S2P = x + Ax. The 
electric fields at P due to the two waves may be written 
as 

E1  = E01  sin(kx - cot) 

and 	E2 = E02 sin[k(x + az) - cot] 

= E02 sin[kx - cot + 6] 

where 	b = k 	
2n 

= 	Ax. 	 ... (17.3) 

The situation is mathematically identical to that 
discussed in chapter 15, section 15.7. The resultant 
field at the point P is 

E = 	sin(kx - cot + E) 

where 	Eo = 4 E + 2E01 Eo2  cosh ... (17.4) 

E01 + E02 cost) 

The conditions for constructive (bright fringe) and 
destructive (dark fringe) interferences are, 

and 	b = (2n + 1)n for dark fringes 
= 2nn 	for bright fringes ... (17.5) 

where n is an integer. 

or, 

-Ow 

E02 sins and 	tam - 



Ax = d —
D 

= nX (where n is an integer) 

nDX  
Y 

at y = 0, ± 'T-÷71" 2DX 3DX 	etc.  
d 	d 
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Using (17.3),these conditions may also be written 
as 

Ax = nX 	for bright fringes 

and 	Ax={72+-1X for dark fringes. ... (17.6) 2 

At the point B in figure (17.5b), Ax = 0 as S13 = S2B. 
This point is the centre of the bright fringe 
corresponding to n = 0. 

Intensity Variation 

If the two slits are identical, E01  = E02 = E0' and 
from equation (17.4), 

E02  = 2E0' 2(1 + cos6). 

As the intensity is proportional to the square of 
the amplitude, we get 

I = 2P(1 + cos6) = 4rcos 
2 
-
6 

... (17.7) 
2 

where I is the resultant intensity and I' is the intensity 
due to a single slit. 

The equation gives intensity as a function of 6. At 
the centre of a bright fringe, 6 = 2nn and I = 41'. At 
the centre of a dark fringe, S = (2n + 1)n and I = 0. At 
other points, the intensity is in between 0 and 4r as 
given by equation (17.7). 

Fringe-width and Determination of Wavelength 

The separation on the screen between the centres 
of two consecutive bright fringes or two consecutive 
dark fringes is called the fringe-width. Suppose S1  A 
is the perpendicular from S1  to S2 P (figure 17.5b). 
Suppose, 

D = OB = separation between the slits and 
the screen, 

d = separation between the slits 

and D >> d. 

Under the above approximation (D >> d), S1P and 
S2P are nearly parallel and hence S1  A is very nearly 
perpendicular to S1P, S2 P and OP. As S1S2  is 
perpendicular to OB and S1 A is perpendicular (nearly) 
to OP, we have 

LS2S1A = LPOB = 8. 

This is a small angle as D >> d. 
The path difference is 

Ax = PS2  - PSI  = PS2  - PA 

= S2 A = d sine) 

d tan() = d -1-'5 •  

or, 

i.e., 

The centres of dark fringes will be obtained where 

	

Ax = 
dD 	2 

= (fringes 

 1] X 

y  [n  1] DX 
2 d 

DA. 3DX 5DX 
i.e., 	at 	

+ 	+ 	+ 

	

Y 	2d ' 2d - 2d 

The fringe-width is, therefore, 

DX w . 

By measuring D, d and w in an experiment, one 
can calculate the wavelength of the light used. We 
see from equation (17.8) that as the separation d 
between the slits is increased, the fringe-width is 
decreased. If d becomes much larger than X, the 
fringe-width will be very small. The maxima and 
minima, in this case, will be so closely spaced that it 
will look like a uniform intensity pattern. This is an 
example of the general result that the wave effects are 
difficult to observe, if the wavelength is small 
compared to the dimensions of the obstructions or 
openings to the incident wavefront. 

Example 17.2 

In a Young's double slit experiment, the separation 
between the slits is 0'10 mm, the wavelength of light used 
is 600 nm and the interference pattern is observed on a 
screen 1.0 m away. Find the separation between the 
successive bright fringes. 

Solution : The separation between the successive bright 
fringes is 

1'0mx600x 10 -9 m 
w -

d 	0.10 x 10 - 3  m 

= 6.0 x 10 -3  m = 6.0 xnm. 

17.6 OPTICAL PATH 

Consider a light wave travelling in a medium of 
refractive index ?J. Its equation may be written as 

E = Eo  sin co(t - x/v) = E0  sin co(t - 1.t x/c). 

If the light wave travels a distance dx, the phase 
changes by 

or, 

... (17.8) 

The centres of the bright fringes are obtained at 
distances v from the point B where 

co 
.61 =m—Ax 

... 
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Instead, if the light wave travels in vaccum, its 
equation will be 

E= Ec, sin co(t - x/c). 

If the light travels through a distance µ Ax, the 
phase changes by 

62- = 	(P Ax) = (' Ax. 
	 (ii) 

By (i) and (ii), we see that a wave travelling 
through a distance Ax in a medium of refractive index 
11 suffers the same phase change as when it travels a 
distance pAx in vacuum. In other words, a path length 
of Ax in a medium of refractive indexµ is equivalent 
to a path length of pAx in vaccum. The quantity pdx 
is called the optical path of the light. In dealing with 
interference of two waves, we need the difference 
between the optical paths travelled by the waves. The 
geometrical path and the optical path are equal only 
when light travels in vacuum or in air where the 
refractive index is close to 1. 

The concept of optical path may also be introduced 
in terms of the change in wavelength as the wave 
changes its medium. The frequency of a wave is 
determined by the frequency of the source and is not 
changed when the wave enters in a new medium. If 
the wavelength of light in vacuum is X,a  and that in 
the medium is X„, then 

= 

and 	 Xn = v = 
c 

 v in; 

0 so that 	 Xn= — • 

At any given instant, the points differing by one 
wavelength have same phase of vibration. Thus, the 
points at separation Xn  in the medium have same 
phase of vibration. On the other hand, in vacuum, 
points at separation Ao  will have same phase of 
vibration. Thus, a path X4  in a medium is equivalent 
to a path A.0  = 'An  in vacuum. In general, a path Ax, in 
a medium of refractive index u, is equivalent to a path 
1.1Ax in vacuum which is called the optical path. 

B 

AC of a medium of refractive index p. AB is 
perpendicular to the incident rays and hence 
represents a wavefront of the incident light. Similaly 
CD is perpendicular to the refracted rays and 
represents a wavefront of the refracted light. Now 
phase of the wave has a constant value at different 
points of a wavefront. Thus, phase at A = phase at B 
and phase at C = phase at D. 

Thus, the phase difference between A and D = 
phase difference between B and C. From the figure, 

sin i  BC AC BC x — 
- sin r AC AD AD 

or, 	BC = pAD. 
The phase of light wave changes by equal amount 

whether it covers a distance BC = pAD in vacuum 
or AD in the medium. Thus, a path AD in a medium 
of refractive index IA is equivalent to a path 1.4(AD) in 
vacuum which we call optical path. 

Figure 17.7 

Consider the situation in figure (17.7). The 
geometrical paths ABE, ACE and ADE are different, 
but the optical paths are equal. This is because each 
path leads to the same phase difference, phase at 
E- phase at A. Note that the ray having longer 
geometrical path covers less distance in the lens as 
compared to the ray having shorter geometrical path. 

Example 17.3 

The wavelength of light coming from a sodium source is 
589 nm. What will be its wavelength in water ? Refractive 
index of water = P33. 

Solution : The wavelength in water is A. = kip, where X 
is the wavelength in vacuum and 1.1 is the refractive 
index of water. Thus, 

1.33 
= 443 nm. 

D 

Figure 17.6 

We can also understand the 'idea of optical path 
with the help of figure (17.6). Suppose a parallel beam 
of light travelling in vacuum is incident on the surface  

17.7 INTERFERENCE FROM THIN FILMS 

When oil floating on water is viewed in sunlight, 
beautiful colours appear. These colours appear because 
of interference between the light waves sent by the 
film as explained below. 

Consider a thin film made of a transparent 
material with plane parallel faces separated by a 
distance d. Suppose a parallel beam of light is incident 
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on the film at an angle i as shown in figure (17.8). The 
wave is divided into two parts at the upper surface, 
one is reflected and the other is refracted. The 
refracted part, which enters into the film, again gets 
divided at the lower surface into two parts; one is 
transmitted out of the film and the other is reflected 
back. Multiple reflections and refractions take place 
and a number of reflected waves as well as transmitted 
waves are sent by the film. The film may be viewed 
by the reflected light (more usual case) or by the 
transmitted light. We shall discuss the transmitted 
light first. 

Figure 17.8 

In figure (17.8), we have collected the parallel rays 
transmitted by the film by a converging lens at a point 
P. The amplitude of the individual transmitted waves 
is different for different waves; it gradually decreases 
as more reflections are involved. The wave BP, DP, FP 
etc. interfere at P to produce a resultant intensity. Let 
us consider the phase difference between the two 
waves BP and DP. The two waves moved together and 
hence, remained in phase up to B where splitting 
occured and one wave followed the path BP and the 
other BCDP. 

Let us discuss the special case for normal incidence 
when the angle of incidence i = 0. Then, the points B 
and D coincide. The path BP equals DP and the only 
extra distance travelled by the wave along DP is 
BC + CD = 2d. As this extra path is traversed in a 
medium or refractive index p, the optical path 
difference between the waves BP and DP interfering 
at P is 

Ax = 2md. 

The phase difference is 

Ax  
= 2n = 2n 

d 
 

This is also the phase difference between the waves 
DP and FP or in fact, between any consecutively 
transmitted waves. All these waves are in phase if 

6 = 2nn 

or, 	 21.id = 	 ... (17.9) 

where n is an integer. 

If this condition is satisfied, constructive 
interference takes place and the film is seen 
illuminated. On the other hand, if 

= [n + 	?, 	 ... (17.10) 

o = (2n + 1)n and the consecutive waves are out of 
phase. The waves cancel each other although complete 
cancellation does not take place because the interfering 
waves do not have equal amplitude. Still, the 
illumination will be comparatively less. 

If white light is used, the film's thickness d will 
satisfy condition (17.9) for certain wavelengths and 
these colours will be strongly transmitted due to 
constructive interference. The colours corresponding to 
the wavelengths for which (17.10) is satisfied will be 
poorly transmitted due to destructive interference. 
This gives coloured appearance of the film. 

Next, let us consider the case when the film is 
viewed by the light reflected by it. The reflected light 
consists of waves from A, C, E, .... etc. (figure 17.8) 
which may be brought to a focus at a point P' by a 
converging lens. The optical path difference between 
the consecutively reflected waves reaching at P' is 
again 2iid in the limit of normal incidence i = O. 
Experimental arrangement may be a bit difficult for 
an exact normal incidence and then collection of 
reflected light along the same direction. However, we 
can suppose that it is viewed by light falling very 
nearly normal to it. We may expect that the condition 
of maximum illumination and minimum illumination 
will be same as equations (17.9) and (17.10). But a 
simple argument conflicts the case. If for a given 
thickness and wavelength, destructive interference 
takes place both in reflection as well as in 
transmission; where does the light go then ? What 
happens to the energy incident on the film ? Similarly, 
if the intensity is enhanced both in transmission and 
reflection, where does this extra energy come from ? It 
seems logical that  if the intensity in transmission is 
increased, it should be at the cost of reflection and vice 
versa. So the conditions for maximum and minimum 
illumination in reflection should be opposite to that ir 
transmission. We should have 

21.1c/ = n X for minimum illumination in reflection 
... (17.11) 



Figure 17.10 

and 

21.id = [n 	
1/n 	 ... (17.12) 

2 	in reflection. 
1 	for maximum.  

This comes out to be true experimentally. To 
explain why destructive interference takes place even 
when the optical path difference is an integral multiple 
of wavelength, let us recall our discussion of reflection 
and transmission of waves in chapter 15. If a composite 
string is prepared by joining a light string to a heavier 
one and if a wave pulse is sent from the lighter one 
towards the heavier one, a part is reflected from the 
junction and other is transmitted into the heavier 
string (figure 17.9a). The reflected pulse is inverted 
with respect to the incident pulse. 

-OW 

(b) 

Figure 17.9 

There is a sudden phase-change of it when a wave 
is reflected from a denser string. No such sudden phase 
change takes place if the wave is reflected from a rarer 
string (figure 17.9b). Same is true for light waves. The 
medium with higher refractive index is optically 
denser. When light is incident from air to a film, the 
reflected wave suffers a sudden phase-change of It. The 
next wave, with which it interferes, suffers no such 
sudden phase-change. If 2i.id is equal to X or its integral 
multiple, the second wave is out of phase with the first 
because the first has suffered a phase change of 7E. This 
explains the conditions (17.11) and (17.12). 

Example 17.4 

Find the minimum thickness of a film which will 
strongly reflect the light of wavelength 589 nm. The 
refractive index of the material of the film is 1.25. 

Solution : For strong reflection, the least optical path 
difference introduced by the film should be X/2. The 
optical path difference between the waves reflected from 
the two surfaces of the film is 21.1d. Thus, for strong 
reflection, 

2pd = X./2 

X. 589 nm  
118 nm. 

4 x 1.25  
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Figure (17.10) shows a schematic diagram of 
Fresnel's biprism and interference of light using it. 
Two thin prisms A1BC and A2BC are joined at the 
bases to form a biprism. The refracting angles Al  and 
A2 (denoted by a in the figure) are of the order of half 
a degree each. In fact, it is a simple prism whose base 
angles are extremely small. A narrow slit S, allowing 
monochromatic light, is placed parallel to the 
refracting edge C. The light going through the prism 
A1BC appears in a cone S1QT and the light going 
through A2BC appears in a cone S2PR. Here Si  and S2 
are the virtual images of S as formed by the prisms 
A1BC and A2BC. A screen E is placed to intercept the 
transmitted light. Interference fringes are formed on 
the portion QR of the screen where the two cones 
overlap. 

One can treat the points Si  and S2 as two coherent 
sources sending light to the screen. The arrangement 
is then equivalent to a Young's double slit experiment 
with Si  and S2 acting as the two slits. Suppose the 
separation between Si  and S2 is d and the separation 
between the plane of S1S2  and E is D. The fringe-width 
obtained on the screen is 

DX _ 	. 
w  

17.9 COHERENT AND INCOHERENT SOURCES 

Two sources of light waves are said to be coherent 
if the initial phase difference so  between the waves 
emitted by the sources remains constant in time. If 
oc, changes randomly with time, the sources are called 
incoherent. Two waves produce interference pattern 
only if, they originate from coherent sources. This 
condition is same as discussed for sound waves in the 
previous chapter. The process of light emission from 
ordinary sources such as the sun, a candle, an electric 

or, 

Light Waves 

17.8 FRESNEL'S BIPRISM 

D 
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bulb etc. is such that one has to use special techniques 
to get coherent sources. In an ordinary source, light is 
emitted by atoms in descrete steps. An atom after 
emitting a short light pulse becomes inactive for some 
time. It again gains energy by some interaction, 
becomes active and emits another pulse of light. Thus, 
at a particular time a particular group of atoms is 
active and the rest are inactive. The active time is of 
the order of 10 s and during this period, a wavetrain 
of several meters is emitted. 

We can picture the light coming from an ordinary 
source as a collection of several wavetrains, each 
several meters long and having no fixed phase relation 
with each other. Such a source is incoherent in itself. 
Different wavetrains are emitted by different groups 
of atoms and these groups act independently of each 
other, hence the phase varies randomly from train to 
train. If two lamps are substituted in place of the slits 
SI  and S2  in a Young's interference experiment, no 

fringe will be seen. This is because each source keeps 
on changing its phase randomly and hence, the phase 
difference between the two sources also changes 
randomly. That is why, a narrow aperture So  is used 
to select a particular wavetrain which is incident on 
the two slits together. This ensures that the initial 
phase difference of the wavelets originating from 
S1  and S2  does not change with time. When a new 
wavetrain is emitted by the lamp, the phase is 
randomly changed but that change is simultaneously 
communicated to both S1  and S2 and the phase 
difference remains unchanged. In order to obtain a 
fairly distinct interference pattern, the path difference 
between the two waves originating from coherent 
sources should be kept small. This is so because the 
wavetrains are finite in length and hence with large 
difference in path, the waves do not overlap at the 
same instant in the same region of space. The second 
wavetrain arrives well after the first train has already 
passed and hence, no interference takes place. In 
practice, the path difference should not exceed a few 
centimeters to observe a good interference pattern. 

Because of the incoherent nature of the basic 
process of light emission in ordinary sources, these 
sources cannot emit highly monochromatic light. A 
strictly monochromatic light, having a well-defined 
single frequency or wavelength, must be a sine wave 
which has an infinite extension. A wavetrain of finite 
length may be described by the superposition of a 
number of sine waves of different wavelengths. Thus, 
the light emitted by an ordinary source always has a 
spread in wavelength. An ordinary sodium vapour 
lamp emits light of wavelength 589'0 nm and 589'6 nm 
with a spread of about ± 0.01 nm in each line. Shorter  

the length of the wavetrain, larger is the spread in 
wavelength. 

It has been made possible to produce light sources 
which emit very long wavetrains, of the order of several 
hundred metres. The spread in wavelength is 
accordingly very small. These sources are called laser 
sources. The atoms behave in a cooperative manner in 
such a source and hence the light is coherent. Two 
independent laser sources can produce interference 
fringes and the path difference may be several metres 
long. 

17.10 DIFFRACTION OF LIGHT 

When a wave is obstructed by an obstacle, the rays 
bend round the corner. This phenomenon is known as 
diffraction. We can explain the effect using Huygens' 
principle. When a wavefront is partially obstructed, 
only the wavelets from the exposed parts superpose 
and the resulting wavefront has a different shape. This 
allows for the bending round the edges. In case of light 
waves, beautiful fringe patterns comprising maximum 
and minimum intensity are formed due to diffraction. 

Figure 17.11 

Figure (17.11) shows the basic arrangement for 
observing diffraction effects in light waves. It consists 
of a narrow source of light So, a diffracting element G 
(an obstacle or an opening) and a screen E. The 
wavefronts emitted by the source So  are partially 
obstructed by the element G. The secondary wavelets 
originating from different points of the unobstructed 
part interfere on the screen E and produce the 
diffraction pattern of varying intensity. A special case 
of diffraction, which is very important in practice and 
which is simpler to analyse mathematically, arises 
when the source So  and the screen E are far away from 
the diffracting element G. Plane waves are incident on 
G and the waves interfering at a particular point come 
parallel to each other. This special class of diffraction 
is called Fraunhofer diffraction after the physicist 
Joseph von Fraunhofer (1787-1826) who investigated 
such diffraction cases in great detail. Fraunhofer 
diffraction can be observed in a laboratory by placing 
converging lenses before and after G and keeping the 
source So  and the screen E in their focal planes 
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respectively (figure 17.12). The source and the screen 
are effectively at infinite distance from the diffracting 
element. 

Figure 17.12 

If the source or the screen is at a finite distance 
from the diffracting element G, it is called Fresnel 
diffraction after the physicist Augustin Jean Fresnel 
(1788-1827). 

It is a coincidence that the two great physicists, 
Fraunhofer and Fresnel, investigating diffraction 
phenomenon lived a short life of equal number of 
years. 

We shall now discuss some of the important cases 
of diffraction. 

17.11 FRAUNHOFER DIFFRACTION 
BY A SINGLE SLIT 

(a) 

Figure 17.13 

Suppose a parallel beam of light is incident 
normally on a slit of width b (figure 17.13). According 
to Huygens' principle, each and every point of the 
exposed part of the plane wavefront (i.e., every point 
of the slit) acts as a source of secondary wavelets 
spreading in all directions. The light is received by a 
screen placed at a large distance. In practice, this 
condition is achieved by placing the screen at the focal 
plane of a converging lens placed just after the slit. A 
particular point P on the screen receives waves from 
all the secondary sources. All these waves start 
parallel to each other from different points of the slit 
and interfere at P to give the resultant intensity. 

At the point P0  which is at the bisector plane of 
the slit, all the waves reach after travelling equal 
optical path and hence, are in phase. The waves, thus, 
interfere constructively with each other and maximum 
intensity is observed. As we move away from P0, the 
waves arrive with different phases and the intensity 
is changed. 

Let us consider a point P which collects the waves 
originating from different points of the slit at an 
angle 6. Figure (17.13) shows the perpendicular from 
the point A to the parallel rays. This perpendicular 
also represents the wavefront of the parallel beam 
diffracted at an angle 0. The optical paths from any 
point on this wavefront to the point P are equal. The 
optical path difference between the waves sent by the 
upper edge A of the slit and the wave sent by the 

centre of the slit is 12  sine. This is shown in expanded 

view in figure (17.13b). Consider the angle for Which 

—
2 

sin0 = X/2. The above mentioned two waves will have 

a phase difference 

b= 2n 
2  
X 
— 

X 

The two waves will cancel each other. The wave 
from any point in the upper half of the slit is exactly 
cancelled by the wave from the point b/2 distance 
below it. The whole slit can be divided into such pairs 
and hence, the intensity at P will be zero. This is the 
condition of the first minimum i.e., the first dark 
fringe. 

b 
So, 	 —

2 
sine = 2 

 

or, 	 b sine = X (first minimum). 

Similar arguments show that other minima (zero 
intensity) are located at points corresponding to 
b sin0 = 2X, 3X ... 

or, 	b sine = n?. (dark fringe). 	... (17.13) 

The points of the maximum intensity lie nearly 
midway between the successive minima. A detailed 
mathematical analysis shows that the amplitude .E0' of 
the electric field at a general point P is 

, 	I3 sin  E0  = Eo 	 ..• (17.14) 

1 co  
where, 	13 = 

2 v 
b sin0 = —

X 
b sine 	... (17.15) 

and E0  is the amplitude at the point P0  which 
corresponds at 6 = 0. 

The intensity is proportional to the square of the 
amplitude. If 4 represents the intensity at P0, its value 
at P is 
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2 . 

= 4 SM 213 ... (17.16) 

We draw, in figure (17.14), variation of the 
intensity as a function of sine. 

Figure 17.14 . 

Most of the diffracted light is distributed between 

sine = - -A. and + -b • The intensity at the first maximum 

after the central one is only 1/22 of the intensity of 
the central maximum. This divergence in 6 is inversely 
proportional to the width b of the slit. If the slit-width 
b is decreased, the divergence is increased and the 
light is diffracted in a wider cone. On the other hand, 
if the slit-width is large compared to the wavelength, 
X/b = 0 and the light continues undiffracted in the 
direction 6 = 0. This clearly indicates that diffraction 
effects are observable only when the obstacle or the 
opening has dimensions comparable to the wavelength 
of the wave. 

Example 17.5 

A parallel beam of monochromatic light of wavelength 
450 nm passes through a long slit of width 0.2 mm. Find 
the angular divergence in which most of the light is 
diffracted. 

Solution : Most of the light is diffracted between the two 
first order minima. These minima occur at angles given 
by b sine = ± 
or, 	sine = ± X/b 

450 x 10-
.9 m  ± 2.25 x 10-3. 

0.2 x 10 3 m 

or, 	6 = ± 2.25 x 10 3  rad. 

The angular divergence = 4.5 x 10 -3  rad. 

17.12 FRAUNHOFER DIFFRACTION 
BY A CIRCULAR APERTURE 

When a parallel beam of light is passed through 
an opaque board with a circular hole in it, the light is 
diffracted by the hole. If received on a screen at a large 
Ai.tnriep the nattern is a' bright disc surrounded by  

alternate dark and bright rings of decreasing intensity 
as shown in figure (17.15). The wavefront is obstructed 
by the opaque board and only the points of the 
wavefront, that are exposed by the hole, send the 
secondary wavelets. The bright and dark rings are 
formed by the superposition of these wavelets. The 
mathematical analysis ,shows that the first dark ring 
is formed by the light diffracted from the hole at an 
angle 6 with the axis where, 

sine) = 1.22 -
X 

• 	 ... (17.17) 

- T 
b 

(b) 

Figure 17.15 

Here X is the wavelength of the light used and b 
is the diameter of the hole. If the screen is at a 
distance D(D >> b) from the hole, the radius of the first 
dark ring is 

R = 1.22 —XD  • 	... (17.18) 

If the light transmitted by the hole is converged 
by a converging lens at the screen placed at the focal 
plane of this lens, the radius of the first dark ring is 

R = 1.22 b• 	 ... (17.19) 

As most of the light coming from the hole is 
concentrated within the first dark ring,-  this radius is 
also called the radius of the diffraction disc. 

Diffraction by a circular aperture is of great 
practical importance. In many of the optical 
instruments, lenses are used. When light passes 
through a lens, the wavefront is limited by its rim 
which is usually circular. If a parallel beam of light is 
incident on a converging lens, only the part intercepted 
by the lens gets transmitted into the converging beam. 
Thus, the light is diffracted by the lens. This lens itself 
works to converge the diffracted light in its focal plane 
and hence, we observe a bright disc, surrounded by 
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alternate dark and bright rings, as the image. The 
radius of the diffraction disc is given by equation 
(17.19) where, b now stands for the diameter of the 
aperature of the lens. 

The above discussion shows that a converging lens 
can never form a point image of a distant point source. 
In the best conditions, it produces a bright disc 
surrounded by dark and bright rings. If we assume 
that most of the light is concentrated within the 
central bright disc, we can say that the lens produces 
a disc image for a distant point source. This is not only 
true for a distant point source but also for any point 
source. The radius of the image disc is 

R = 1.22 D 

where, D is the distance from the lens at which the 
light is focused. 

Example 17.6 

A beam of light of wavelength 590 nm is focussed by a 
converging lens of diameter 10'0 cm at a distance of 
20 cm from it. Find the diameter of the disc image 
formed. 

Solution : The angular radius of the central bright disc in 
a diffraction pattern from circular aperture is given by 

sin0 — 
1.22 X  

— 
1-22 x 590 x 10-9m 

— 0.7 x 10 -6  rad. 
10.0 x 10' m 

The radius of the bright disc is 

0.7 x 10 -5 x 20 cm = 1'4 x 10-4 cm. 

The diameter of the disc image = 2.8 x 10 -4 cm. 

17.13 FRESNEL DIFFRACTION 
AT A STRAIGHT EDGE 

Obstructed 
portion 

Figure 17.16 

Consider the situation shown in figure (17.16). Let 
S be a narrow slit sending monochromatic light. The 
light is obstructed by an opaque obstacle having a 
sharp edge A. The light is collected on a screen E. The  

portion of the screen below Po  in the figure is the 
region of the geometrical shadow. 

Cylindrical wavefronts emitted from the slit are 
obstructed by the obstacle. The points on the exposed 
portion of the wavefront emit secondary wavelets which 
interfere to produce varying intensity on the screen E. 

The curve in the figure shows the variation of 
intensity of light on the screen. We see that the 
intensity gradually decreases as we go farther inside 
the region of geometrical shadow i.e., below Po. As we 
go above Po, the intensity alternately increases and 
decreases. The difference of the maximum intensity 
and minimum intensity goes on decreasing as we go 
farther away from Po  and finally we get uniform 
illumination. 

17.14 LIMIT OF RESOLUTION 

The fact that a lens forms a disc image of a point 
source, puts a limit on resolving two neighbouring 
points imaged by a lens. 

Figure 17.17 

Suppose S, and S2  are two point sources placed 
before a converging lens (figure 17.17). If the 
separation between the centres of the image-discs is 
small in comparison to the radii of the discs, the discs 
will largely overlap on one another and it will appear 
like a single disc. The two points are then not resolved. 
If S, and S2  are moved apart, the centres of their 
image-discs also move apart. For a sufficient 
separation, one can distinguish the presence of two 
discs in the pattern. In this case, we say that the points 
are just resolved. 

The angular radius 0 of the diffraction disc is given 

by sin° = 112̀- , where b is the radius of the lens. Thus, 

increasing the radius of the lens improves the 
resolution. This is the reason why objective lenses of 
powerful microscopes and telescopes are kept large 
in size. 

Pt  

Po 

P2 
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The human eye is itself a converging lens which 
forms the image of the points (we see) on the retina. 
The above discussion then shows that two points very 
close to each other cannot be seen as two distinct 
points by the human eye. 

Rayleigh Criterion 

Whether two disc images of nearby points are 
resolved or not may depend on the person viewing the 
images. Rayleigh suggested a quantitative criterion for 
resolution. Two images are called just resolved in this 
criterion if the centre of one bright disc falls on the 
periphery of the second. This means, the radius of each 
bright disc should be equal to the separation between 
them. In this case, the resultant intensity has a 
minimum between the centres of the images. Figure 
(17.18) shows the variation of intensity when the two 
images are just resolved. 

Just resolved 

Figure 17.18 

17.15 SCATTERING OF LIGHT 

When a parallel beam of light passes through a 
gas, a part of it appears in directions other than the 
incident direction. This phenomenon is called 
scattering of light. The basic process in scattering is 
absorption of light by the molecules followed by its 
re-radiation in different directions. The strength of 
scattering can be measured by the loss of energy in 
the light beam as it passes through the gas. It should 
be distinguished from the absorption of light as it 
passes through a medium. In absorption, the light 
energy is converted into internal energy of the medium 
whereas in scattering, the light energy is radiated in 
other directions. The strength of scattering depends on 
the wavelength of the light beside the size of the 
particles which cause scattering. If these particles are 
smaller than the wavelength, the scattering is 
proportional to 1/A. 

4
. This is known as Rayleigh's law 

of scattering. Thus, red light is scattered the least and 
violet is scattered the most. This is why, red signals 
are used to indicate dangers. Such a signal goes to 
large distances without an appreciable loss due to 
scattering. 

The blue appearance of sky is due to scattering of 
sunlight from the atmosphere. When you look at the 
sky, it is the scattered light that enters the eyes. 
Among the shorter wavelengths, the colour blue is 
present in larger proportion in sunlight. Light of short 
wavelengths, are strongly scattered by the air 
molecules and reach the observer. This explains the 
blue colour of sky. Another natural phenomenon 
related to the scattering of light is the red appearance 
of sun at the sunset and at the sunrise. At these times, 
the sunlight has to travel a large distance through the 
atmosphere. The blue and neighbouring colours are 
scattered away in the path and the light reaching the 
observer is predominantly red. 

If the earth had no atmosphere, the sky would 
appear black and stars could be seen during day hours. 
In fact if you go about 20 km up, where the atmosphere 
becomes quite thin, the sky does appear black and 
stars are visible during day hours as astronouts have 
found. 

Besides air molecules, water particles, dust etc. 
also scatter light. The appearance of sky is affected by 
the presence of these scattering centres. On a humid 
day before rains, the sky appears light blue whereas, 
on a clear day it appears deep blue. The change in the 
quality of colour of sky results from the fact that the 
water droplets and the dust particles may have size 
greater than the wavelength of light. Rayleigh's law of 
scattering does not operate in this case and colours 
other than blue may be scattered in larger proportion. 
The appearance of sky in large industrial cities is also 
different from villages. An automobile engine typically 
ejects about 10 11  particles per second. Similarly for 
other machines. Such particles remain suspended in 
air for quite long time unless rain or wind clears them. 
Often the sky looks hazy with a greyish tinge in such 
areas. 

17.16 POLARIZATION OF LIGHT 

In writing equation (17.1) for light wave, we 
assumed that the direction of electric field is fixed and 
the magnitude varies sinusoidally with space and time. 
The electric field in a light wave propagating in free 
space is perpendicular to the direction of propagation. 
However, there are infinite number of directions 
perpendicular to the direction of propagation and the 
eletric field may be along any of these directions. For 
example, if the light propagates along the X-axis, the 
eletric field may be along the Y-axis, or along the 
Z-axis or along any direction in the Y-Z plane. If the 
electric field at a point always remains parallel to a 
fixed direction as the time passes, the light is called 
linearly polarized along that direction. For example, if 
the electric field at a point is always parallel to the 
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Y-axis, we say that the light is linearly polarized along 
the Y-axis. The same is also called plane polarized 
light. The plane containing the electric field and the 
direction of propagation is called the plane of 
polarization. 

Figure 17.19 

As we have mentioned earlier, light is emitted by 
atoms. The light pulse emitted by one atom in a single 
event has a fixed direction of electric field. However, 
the light pulses emitted by different atoms, in general, 
have electric fields in different directions. Hence, the 
resultant electric field at a point keeps on changing its 
direction randomly and rapidly. Such a light is called 
unpolarized. The light emitted by an ordinary source 
such as an electric lamp, a mercury tube, a candle, the 
sun etc. are unpolarized. 

Suppose an unpolarized light wave travels along 
the X-axis. The electric field at any instant is in the 
Y-Z plane, we can break the field into its components 
Ey  and Ez  along the Y-axis and the Z-axis 
respectively. The fact that the resultant electric field 
changes its direction randomly may be mathematically 
expressed by saying that Ey  and E, have a phase 
difference S that changes randomly with time. Thus, 

Ey = 	sin(cot - kx + 5) 

Ez  = E2sin(cot - kx). 

The resultant electric field makes an angle 6 with the 
Y-axis where 

E, 	E2sin(cot - kx) 
thnO -  

Ey  El  sin(cot - kx + 8) 

Since S changes randomly with time, so does 0 and 
the light is unpolarized. 

If S is zero, tan° = E2/E1  = constant and the 
electric field is always parallel to a fixed direction. The 
light is linearly polarized. 

If S = n , tan6 = - E2/E1  and again the electric field 
is parallel to a fixed direction and the light is linearly 
polarized. 

81= n/2 and E1  = E2, then 

E2sin(cot - kx) 
tane - - 

Ey  E1  sin(wt - kx + n/2) 

= tan(cot - kx) 

6 = cot - kx. 

At any point x, the angle 0 increases at a uniform 
rate co. The electric field, therefore, rotates at a 
uniform angular speed co. Also, 

2 	2 	2 	2 
 co 	

,2 	 2 
E = Ey  s+ 	= Ei

2 
 cos (t - kx) + Ei  sin

2 
 (tot - kx) = 

i.e., the magnitude of the field remains constant. The 
tip of the electric field, thus, goes in a circle at a 
uniform angular speed. Such a light is called a 
circularly polarized light. 

If S = n/2 but E1  * E2, the tip of the electric field 
traces out an ellipse. Such a light wave is called an 
elliptically polarized light. 

Polaroids 

There are several methods to produce polarized 
light from the unpolarized light. An instrument used 
to produce polarized light from unpolarized light is 
called a polarizes. Plane sheets in the shape of circular 
discs called polaroids are commercially available which 
transmit light with E-vector parallel to a special 
direction in the sheet. These polaroids have long chains 
of hydrocarbons which become conducting at optical 
frequencies. When light falls perpendicularly on the 
sheet, the electric field parallel to the chains is 
absorbed in setting up electric currents in the chains 
but the field perpendicular to the chains gets 
transmitted. The direction perpendicular to the chains 
is called the transmission axis of the polaroid. When 
light passes through the polaroid, the transmitted light 
becomes linearly polarized with E-vector parallel to the 
transmission axis. 

If linearly polarized light is incident on a polaroid with 
the E-vector parallel to the transmission axis, the light is 
completely transmitted by the polaroid. If the E-vector is 
perpendicular to the transmission axis, the light is 
completely stopped by the polaroid. If the E-vector is at 
an angle 0 with the transmission axis, light is partially 
transmitted. The intensity of the transmitted light is 

I =1p cos 2 0 ... (17.20) 

where 10  is the intensity when the incident E-vector is 
parallel to the transmission axis. This is known as the 
law of Malus. 

Figure 17.20 

If 

or, 
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Polarization by Reflection and Refraction 

x 

Figure 17.21 

Consider a light beam from air incident on the 
surface of a transparent medium of refractive index 
p. The incident ray, the reflected ray and the refracted 
ray are all in one plane. The plane is called the plane 
of incidence. In figure (17.21) we have shown this plane 
as the X- Y plane. Consider the incident light going 

along AB. The electric field E must be perpendicular 
to AB. If the incident light is unpolarized,the electric 
field will randomly change its direction, remaining at 
all times in a plane perpendicular to AB. We can 
resolve the field in two components, one in the X- Y 
plane and the other along the Z-direction. In figure 
(17.21), the component in the X- Y plane is shown by 
the double-arrow perpendicular to AB and the 
component along the Z-direction by the solid dot. 

Light with electric field along the Z-direction is 
more strongly reflected as compared to that in the 
plane. This is shown in the figure by reduced size of 
the double arrow. Similarly, the refracted light has a 
larger component of electric field in the X-Y plane 
shown in the figure by the reduced size of the solid 
dot. 

If the light is incident on the surface with an angle 
of incidence i given by 

tan i = p, 	 ... (17.21) 

the reflected light is completely polarized with the 
electric field along the Z-direction as suggested by figure 

(17.22). The refracted ray is never completely 
polarized. The angle i given by equation (17.21) is 
called the Brewster's angle and equation (17.21) itself 
is known as the Brewster's law. 

Figure 17.22 

The fact that reflected light is polarized is used in 
preparing 'polarizing sunglasses' which reduce the 
glare from roads, snow, water surfaces etc. The glasses 
are, in fact, polaroids with their transmission axis 
perpendicular to the electric field of the polarized 
reflected light. The reflected light, which is responsible 
for the glare, is thus largely absorbed. The direct light 
coming to the glasses is unpolarized and is less 
absorbed. In this respect,the polarizing sunglasses are 
different from the ordinary dark- coloured sunglasses 
which absorb any light passing through them reducing 
the intensity to a large extent. 

Polarization by Scattering 

When unpolarized light is scattered by small 
particles, the scattered light is partially polarized. The 
blue light received from the sky is accordingly partially 
polarized. Though human eye does not distinguish 
between an unpolarized light and a polarized light, the 
eyes of a bee can detect the difference. Austrian Novel 
Laureate Karl Von Frisch performed experiments for 
several years on bees and concluded that the bees 
can not only distinguish unpolarized light from 
polarized light but can also determine the direction of 
polarization. 

Worked Out Examples 

1. White light is a mixture of light of wavelengths between 
400 nm and 700 nm. If this light goes through water 
(p = r33), what are the limits of the wavelength there ? 

Solution : When a light having wavelength X0  in vacuum 

goes through a medium of refractive index 
wavelength in the medium becomes X = 

nrn 
For X°  = 400 nm, X = 400 1.33  - 300 nm 

and for = 700 nm, X = 700 
nm

525 nm. 
1'33 

Thus, the limits are 300 nm and 525 nm.  

2. The optical path of a monochromatic light is the same if 
it goes through 2'00 cm of glass or 2'25 cm of water. If 
the refractive index of water is 1'33, what is the refractive 
index of glass? 

Solution : When light travels through a distance x in a 
medium of refractive index p, its optical path is px. Thus, 
if p is the refractive index of glass, 

p(2'00 cm) = 1'33 x (2'25 cm) 

p = 1'33 x —
2'25 

1.50. 
2'00 

N. the 

or, 
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3. White light is passed through a double slit and 
interference pattern is observed on a screen 2.5 m away. 
The separation between the slits is 0.5 mm. The first 
violet and red fringes are formed 2'0 mm and 3'5 mm 
away from the central white fringe. Calculate the 
wavelengths of the violet and the red light. 

Solution : For the first bright fringe, the distance from the 
centre is 

DX, 
d 

For violet light, y = 2.0 mm. Thus, 

(25 m)X  
2.0 mm - 

0.5 mm 

- (0
.5 mm) (2.0 mm) 
 2.5 m 

Similarly, for red light, y = 3.5 mm. Thus, 

(25 m)X  
3.5 mm - 

0.5 mm 

or, 	 X = 700 nm. 

4. A double slit experiment is performed with sodium 
(yellow) light of wavelength 589'3 nm and the interference 
pattern is observed on a screen 100 cm away. The tenth 
bright fringe has its centre at a distance of 12 mm from 
the central maximum. Find the separation between the 
slits. 

Solution : For the nth maximum fringe, the distance above 
the central line is 

raD 
x= — 

d 

According to the data given, 

x = 12 mm, n = 10, X = 589.3 nm, D = 100 cm. 

Thus, the separation between the slits is 

d - OD 10 x 589'3 x 10 -9  M X 100 X 10 -2 m  
x 	 12 x 10-3 m 

= 4'9 x 10 4  m = 0'49 mm. 

5. The intensity of the light coming from one of the slits in 
a Young's double slit experiment is double the intensity 
from the other slit. Find the ratio of the maximum 
intensity to the minimum intensity in the interference 
fringe pattern observed. 

Solution : The intensity of the light originating from the 
first slit is double the intensity from the second slit. The 
amplitudes of the two interfering waves are in the ratio 
✓2 : 1, say ✓2 A and A. 
At the point of constructive interference, the resultant 
amplitude becomes (✓2 + 1) A. At the points of 
destructive interference, this amplitude is (✓2 - 1) A. The 
ratio of the resultant intensities at the maxima to that 

at the minima is 
(.12 + 1) 2A 2  34  

	

(✓2 - 1) 2A 2 	• 

6. The width of one of the two slits in a Young's double slit 
experiment is double of; the other slit. Assuming that the 
amplitude of the light 'coming from a slit is proportional 
to the slit-width, find the ratio of the maximum to the 
minimum intensity in the interference pattern. 

Solution : Suppose the amplitude of the light wave coming 
from the narrower slit is A and that coming from the 
wider slit is 2A. The maximum intensity occurs at a 
place where constructive interference takes place. Then 
the resultant amplitude is the sum of the individual 
amplitudes. Thus, 

A.,. = 2A + A = 3A. 

The minimum intensity occurs at a place where 
destructive interference takes place. The resultant 
amplitude is then difference of the individual 
amplitudes. Thus, 

Am,. = 2A - A = A. 

As the intensity is proportional to the square of the 
amplitude, 

Imp (Amax) 2  (3A) 2  
Irma (Amin) 	

2 	9. 

7. ,Two sources Si  and S2 emitting light of wavelength 
600 nm are placed a distance 1.0 x 10 2  cm apart. A 
detector can be moved on the line S ,P which is 
perpendicular to S ,S,. (a) What would be the minimum 
and maximum path difference at the detector as it is 
moved along the line SIP? (b) Locate the position of the 
farthest minimum detected. 

Solution 

I
d S1 	  

Figure 17-W1 

(a) The situation is shown in figure (17-W1). The path 
difference is maximum when the detector is just at the 
position of S, and its value is equal to d = 1.0 x 10 -2  cm. 
The path difference is minimum when the detector is at 
a large distance from S The path difference is then 
close to zero. 

(b) The farthest minimum occurs at a point P where the 
path difference is ?./2. If S,P = D, 

S2 P - S ,P = —
2 
X 

+d -D== 

or, - 400 nm. 

or, 



sheet is 

- 1)t (1'6 - 1) x 1.8 x 10 -6 m 
600 x 10 -9  M 	• 
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or, D 2 + d 2  =[D + 212  

2 

or, d 2  = 	+ 
4 

d 2  10. 
or, D 7,  

(Po x 10 -4 m) 2  
150 x 10 -9,m = 1.7 cm. 

600 x 10 -9 m 

8. A beam of light consisting of two wavelengths, 6500 A 
and 5200 A is used to obtain interference fringes in a 

Young's double slit experiment (1 A = 10 '6  m). The 
distance between the slits is 2.0 mm and the distance 
between the plane of the slits and the screen is 120 cm. 

(a) Find the distance of the third bright fringe on the 
screen from the central maximum for the wavelength 
6500 A. (b) What is the least distance from the central 
maximum where the bright fringes due to both the 
wavelengths coincide? 

Solution : (a) The centre of the nth bright fringe is at a 

distance y = 
n7.D
-71- from the central maximum. For the 3rd 

bright fringe of 6500 A, 
3 x 6500 x 10 -16 m x 1.2 m  

Y - 
2 x 10 -3 M 

= 0.117 cm = 0.12 cm. 

(b) Suppose the mth bright fringe of 6500 A coincides 
with the nth bright fringe of 5200 A. 

mx 6500AxD_nx 5200AxD  

m =  5200 4 
n 6500 5 

The minimum values of m and n that satisfy this 
equation are 4 and 5 respectively. The distance of the 
4th bright fringe of 6500 A or the 5th bright fringe of 
5200 A from the central maximum is 

4 x 6500 x 10 -19 m x 1'2 m  
Y - ' 

2 x 10 -3 m 

= 0.156 	= 0.16 cm. 

9. Monochromatic light of wavelength 600 nm is used in a 
Young's double slit experiment. One of the slits is covered 
by a transparent sheet of thickness 1.8 x 10 -6  m made 
of a material of refractive index 1.6. How many fringes 
will shift due to the introduction of the sheet ? 

Solution : When the light travels through a sheet of 
thickness t, the optical path travelled is p t where p is 
the refractive index. When one of the slits is covered by 
the sheet, air is replaced by the sheet and hence, the 
optical path changes by (p - 1)t. One fringe shifts when 
the optical path changes by one wavelength. Thus, the 
number of fringes shifted due to the introduction of the 

White light is incident normally on a glass plate of 
thickness 0'50 x 10 -6  and index of refraction 1-50. Which 
wavelengths in the visible region (400 nm-700 rim) are 
strongly reflected by the plate ? 

Solution : The light of wavelength X is strongly reflected 
if 

2pd=[n+-1-
2

)X, 

where n is a nonnegative integer. 

Here, 	2pd = 2 x 1'50 x 0.5 x 10-6 m 

= 1'5 x 10 e  m. 

Putting X = 400 nm in (i) and using (ii), 

1.5 x 10-6 m = (rt + 1)(400 x 10 -9 m) 
2 

or, 

Putting X = 700 rim in (ii), 

1.5 x 10 -6 m = [n + 1) (700 x 10 -9 m) 
2 

or, 	 n = 1'66. 

Thus, within 400 nm to 700 nm the integer n can take 
the values 2 and 3. Putting these values of n in (i), the 
wavelengths become 

x 
2n 
	- 600 nm and 429 nm. 
 + 1 

Thus, light of wavelengths 429 rim and 600 nm are 
strongly reflected. 

11. A parallel beam of green light of wavelength 546 rim 
passes through a slit of width 0'40 mm. The transmitted 
light is collected on a screen 40 cm away. Find the 
distance between the two first order minima. 

Solution : The minima occur at an angular deviation 0 
given by b sine = ra., where n is an integer. For the first 

order minima, n = ± 1 so that sine = ± • As the fringes 

are observed at a distance much larger than the width 
of the slit, the linear distances from the central 
maximum are given by 

x = DtanO 

= Dsine = ± —
XD 

 • 

Thus, the minima are formed at a distance —
b 

from the 

central maximum on its two sides. The separation 
between the minima is 

2XD - 
2 x 546 x 10 -9 m x 40 x 10 2 m 

 1.1 MM. 
b 	 0.40 x 10 -3m 

Then, 

or, 

(i)  

(ii)  

n = 3.25. 
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QUESTIONS FOR SHORT ANSWER 

1. Is the colour of 620 nm light and 780 nm light same ? 
Is the colour of 620 nm light and 621 nm light same ? 
How many colours are there in white light ? 

2. The wavelength of light in a medium is X = kip, where 
. is the wavelength in vacuum. A beam of red light 

(X0  = 720 nm) enters into water. The wavelength in water 
is A. = Xo/p = 540 nm. To a person under water does this 
light appear green ? 

3. Whether the diffraction effects from a slit will be more 
clearly visible or less clearly, if the slit-width is 
increased ? 

4. If we put a cardboard (say 20 cm x 20 cm) between a 
light source and our eyes, we can't see the light. But 
when we put the same cardboard between a sound 
source and our ear, we hear the sound almost clearly. 
Explain. 

5. TV signals broadcast by Delhi studio cannot be directly 
received at Patna which is about 1000 km away. But 
the same signal goes some 36000 km away to a satellite, 
gets reflected and is then received at Patna. Explain. 

6. Can we perform Young's double slit experiment with 
sound waves ? To get a reasonable "fringe pattern", what 

should be the order of separation between the slits ? How 
can the bright fringes and the dark fringes be detected 
in this case ? 

7. Is it necessary to have two waves of equal intensity to 
study interference pattern ? Will there be an effect on 
clarity if the waves have unequal intenstity ? 

8. Can we conclude from the interference phenomenon 
whether light is a transverse wave or a longitudinal 
wave ? 

9. Why don't we have interference when two candles are 
placed close to each other and the intensity is seen at a 
distant screen ? What happens if the candles are 
replaced by laser sources ? 

10. If the separation between the slits in a Young's double 
slit experiment is increased, what happens to the 
fringe-width ? If the separation is increased too much, 
will the fringe pattern remain detectable ? 

11. Suppose white light falls on a double slit but one slit is 
covered by a violet filter (allowing X = 400 nm). Describe 
the nature of the fringe pattern observed. 

OBJECTIVE I 

1. Light is 
(a) wave phenomenon 	(b) particle phenomenon 
(c) both particle and wave phenomenon. 

2. The speed of light depends 
(a) on elasticity of the medium only 
(b) on inertia of the medium only 
(c) on elasticity as well as inertia 
(d) neither on elasticity nor on inertia. 

3. The equation of a light wave is written as 
y = A sin(kx - wt). Here, y represents 
(a) displacement of ether particles 
(b) pressure in the medium 
(c) density of the medium 
(d) electric field. 

4. Which of the following properties show that light is a 
transverse wave ? 
(a) Reflection. 	 (b) Interference. 
(c) Diffraction. 	 (d) Polarization. 

5. When light is refracted into a medium, 
(a) its wavelength and frequency both increase 
(b) its wavelength increases but frequency remains 
unchanged 
(c) its wavelength decreases but frequency remains 
unchanged 
(d) its wavelength and frequency both decrease. 

6. When light is refracted, which ,of the following does not 
change ? 
(a) Wavelepgth. 	 (b) Frequency. 
(c) Velocity. 	 (d) Amplitude.  

7. The amplitude modulated (AM) radio wave bends 
appreciably round the corners of a 1 m x 1 m board but 
the frequency modulated (FM) wave only negligibly 
bends. If the average wavelengths of AM and FM waves 
are A.. and Xf  , 
(a) Xa  > Xf 	03) A.a = Xf 	(c) 	< Xf 
(d) we don't have sufficient information to decide about 
the relation of k, and AD  

8. Which of the following sources gives best monochromatic 
light ? 
(a) A candle.(b) A bulb.(c) A mercury tube. (d) A laser . 

9. The wavefronts of a light wave travelling in vacuum are 
given by x + y + z = c. The angle made by the direction 
of propagation of light with the X-axis is 
(a) 0° 	(b) 45° 	(c) 90° 	(d) cos -1(1//3). 

10. The wavefronts of light coming from a distant source of 
unknown shape are nearly 
(a) plane (b) elliptical (c) cylindrical (d) spherical. 

11. The inverse square law of intensity (i.e., the intensity 
1 

cc —2- ) is valid for a 

(a) point source 	 (b) line source 
(c) plane source 	 (d) cylindrical source. 

12. Two sources are called coherent if they produce waves 
(a) of equal wavelength 	(b) of equal velocity 
(c) having same shape of wavefront 
(d) having a constant phase difference. 

13. When a drop of oil is spread on a water surface, it 
displays beautiful colours in daylight because of 
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(a) disperson of light 	(b) reflection of light 
(c) polarization of light 	(d) interference of light. 

14. Two coherent sources of different intensities send waves 
which interfere. The ratio of maximum intensity to the 
minimum intensity is 25. The intensities of the sources 
are in the ratio 
(a) 25 : 1 	(b) 5 : 1 	(c) 9 : 4 	(d) 625: 1. 

15. The slits in a Young's double slit experiment have equal 
width and the source is placed symmetrically with 
respect to the slits. The intensity at the central 
fringe is 4 . If one of the slits is closed, the intensity at 

this point will be 
(a) Io 	(b) 4/4 	(c) 4/2 	(d) 44. 

16. A thin transparent sheet is placed in front of a Young's 
double slit. The fringe-width will 
(a) increase 	 (b) decrease 
(c) remain same 	 (d) become nonuniform. 

17. If Young's double slit experiment is performed in water, 
(a) the fringe width will decrease 
(b) the fringe width will increase 
(c) the fringe width will remain unchanged 
(d) there will be no fringe. 

OBJECTIVE II 

1. A light wave can travel 
(a) in vacuum 	 (b) in vacuum only 
(c) in a material medium (d) in a material medium only. 

2. Which of the following properties of light conclusively 
support wave theory of light ? 
(a) Light obeys laws of reflection. 
(b) Speed of light in water is smaller than the speed in 
vacuum. 
(c) Light shows interference. 
(d) Light shows photoelectric effect. 

3. When light propagates in vacuum there is an electric 
field and a magnetic field. These fields 
(a) are constant in time 
(b) have zero average value 
(c) are perpendicular to the direction of propagation of 
light. 
(d) are mutually perpendicular. 

4. Huygens' principle of secondary wavelets may be used 
to 
(a) find the velocity of light in vacuum 
(b) explain the particle behaviour of light 
(c) find the new position of a wavefront 
(d) explain Snell's law. 

5. Three observers A, B and C measure the speed of light 
coming from a source to be vA, 0B  and vc. The observer 
A moves towards the source and C moves away from the 
source at the same speed. The observer B stays 
stationary. The surrounding space is vacuum 
everywhere. 

(a) 1),, > UD  > vc. 	 (b) VA  < vs < vc. 

(c) V A  = vB = vc, 	 (d) Uu = (vA  vc)• 

6. Suppose the medium in the previous question is water. 
Select the correct option(s) from the list given in that 
question. 

7. Light waves travel in vacuum along the X-axis. Which 
of the following may represent the wavefronts ? 
(a) x = c. 	(b) y = c. 	(c) z = c. 	(d) x + y + z = c. 

8. If the source of light used in a Young's double slit 
experiment is changed from red to violet, 
(a) the fringes will become brighter 
(b) consecutive fringes will come closer 
(c) the intensity of minima will increase 
(d) the central bright fringe will become a dark fringe. 

9. A Young's double slit experiment is performed with 
white light. 
(a) The central fringe will be white. 
(b) There will not be a completely dark fringe. 
(c) The fringe next to the central will be red. 
(d) The fringe next to the central will be violet. 

10. Four light waves are represented by 
(i) y = alsin cot. 	 (ii) y = a2sin(cot + c). 

(iii) y = a,sin 20 t. 	 (iv) y = a,sin 2(cot + E). 
Interference fringes may be observed due to 
superposition of 
(a) (i) and (ii) 	 (b) (i) and (iii) 
(c) (ii) and (iv) 	 (d) (iii) and (iv). 

EXERCISES 

1. Find the range of frequency of light that is visible to an 
average human being (400 run < < 700 run) 

2. The wavelength of sodium light in air is 589 nm. (a) 
Find its frequency in air. (b) Find its wavelength in 
water (refractive index = 1.33). (c) Find its frequency in 
water. (d) Find its speed in water. 

3. The index of refraction of fused quartz is 1.472 for light 
of wavelength 400 nm and is 1'452 for light of 

wavelength 760 run. Find the speeds of light of these 
wavelengths in fused quartz. 

4. The speed of the yellow light in a certain liquid is 
2.4 x 10 8  m/s. Find the refractive index of the liquid. 

5. Two narrow slits emitting iight in phase are separated 
by a distance of 1*0 cm. The wavelength of the light is 
5.0 x 10 -7  m. The interference pattern is observed on 
a screen placed at a distance of 1.0 m. (a) Find the 
separation between the consecutive maxima. Can you 
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expect to distinguish between these maxima ? (b) Find 
the separation between the sources which will give a 
separation of 1.0 mm between the consecutive maxima. 

6. The separation between the consecutive dark fringes in 
a Young's double slit experiment is 1'0 mm. The screen 
is placed at a distance of 2'5 m from the slits and the 
separation between the slits is 1.0 mm. Calculate the 
wavelength of light used for the experiment. 

7. In a double slit interference experiment, the separation 
between the slits is 1.0 mm, the wavelength of light used 
is 5'0 x 10 -7  m and the distance of the screen from the 
slits is 1.0 m. (a) Find the distance of the centre of the 
first minimum from the centre of the central maximum. 
(b) How many bright fringes are formed in one 
centimeter width on the screen ? 

8. In a Young's double slit experiment, two narrow vertical 
slits placed 0'800 mm apart are illuminated by the same 
source of yellow light of wavelength 589 nm. How far 
are the adjacent bright bands in the interference pattern 
observed on a screen 2'00 m away ? 

9. Find the angular separation between the consecutive 
bright fringes in a Young's double slit experiment with 
blue-green light of wavelength 500 nm. The separation 
between the slits is 2.0 x 10 -3  M. 

10. A source emitting light of wavelengths 480 nm and 
600 nm is used in. a double slit interference experiment. 
The separation between the slits is 0'25 mm and the 
interference is observed on a screen placed at 150 cm 
from the slits. Find the linear separation between the 
first maximum (next to the central maximum) 
corresponding to the two wavelengths. 

11. White light is used in a Young's double slit experiment. 
Find the minimum order of the violet fringe 
(X = 400 nm) which overlaps with a red fringe 
(. = 700 nm). 

12. Find the thickness of a plate which will produce a 
change in optical path equal to half the wavelength X of 
the light passing through it normally. The refractive 
index of the plate is 11. 

13. A plate of thickness t made of a material of refractive 
index II is placed in front of one of the slits in a double 
slit experiment. (a) Find the change in the optical path 
due to introduction of the plate. (b) What should be the 
minimum thickness t which will make the intensity at 
the centre of the fringe pattern zero ? Wavelength of the 
light used is X. Neglect any absorption of light in the 
plate. 

14. A transparent paper (refractive index = 1'45) of 
thickness 0'02 mm is pasted on one of the slits of a 
Young's clOuble slit experiment which uses 
monochromatic light of wavelength 620 nm. How many 
fringes will cross through the centre if the paper is 
removed ? 

15. In a Young's double slit experiment using mono-
chromatic light, the fringe pattern shifts by a certain 
distance on the screen when a mica sheet of refractive 
index 1'6 and thickness 1'964 micron (1 micron 
= 10 -6 m) is introduced in the path of one of the 
interfering waves. The mica sheet is then removed and 

the distance between the screen and the slits is doubled. 
It is found that the distance between the successive 
maxima now is the same as the observed fringe-shift 
upon the introduction of the mica sheet. Calculate the 
wavelength of the monochromatic light used in the 
experiment. 

16. A mica strip and a polysterene strip are fitted on the 
two slits of a double slit apparatus. The thickness of the 
strips is 0'50 mm and the separation between the slits 
is 0'12 cm. The refractive index of mica and polysterene 
are 1'58 and 1'55 respectively for the light of wavelength 
590 nm which is used in the experiment. The 
interference is observed on a screen a distance one meter 
away. (a) What would be the fringe-width ? (b) At what 
distance from the centre will the first maximum be 
located ? 

17. Two transparent slabs having equal thickness but 
different refractive indices pi  and II, are pasted side by 
side to form a composite slab. This slab is placed just 
after the double slit in a Young's experiment so that the 
light from one slit goes through one material and the 
light from the other slit goes through the other material. 
What should be the minimum thickness of the slab so 
that there is a minimum at the point Po  which is 
equidistant from the slits ? 

18. A thin paper of thickness 0'02 mm having a refractive 
index 1'45 is pasted across one of the slits in a Young's 
double slit experiment. The paper transmits 4/9 of the 
light energy falling on it. (a) Find the ratio of the 
maximum intensity to the minimum intensity in the 
fringe pattern. (b) How many fringes will cross through 
the centre if an identical paper piece is pasted on the 
other slit also ? The wavelength of the light used is 
600 nm. 

19. A Young's double slit apparatus has slits separated by 
0'28 mm and a screen 48 cm away from the slits. The 
whole apparatus is immersed in water and the slits are 
illuminated by the red light (X = 700 nm in vacuum). 
Find the fringe-width of the pattern formed on the 
screen. 

20. A parallel beam of monochromatic light is used in a 
Young's double slit experiment. The slits are separated 
by a distance d and the screen is placed parallel to the 
plane of the slits. Show that if the incident beam makes 

an angle 6 = sin -1{-2H with the normal to the plane of 
2d 

the slits, there will be a dark fringe at the centre P0  of 
the pattern. 

21. A narrow slit S transmitting light of wavelength X is 
placed a distance d above a large plane mirror as shown 
in figure (17-E1). The light coming directly from the slit 



 

di  
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and that coming after the reflection interfere at a screen 
E placed at a distance D from the slit. (a) What will be 
the intensity at a point just above the mirror, i.e., just 
above 0 ? (b) At what distance from 0 does the first 
maximum occur ? 

22. A long narrow horizontal slit is placed 1 mm above a 
horizontal plane mirror. The interference between the 
light coming directly from the slit and that after 
reflection is seen on a screen 1.0 m away from the slit. 
Find the fringe-width if the light used has a wavelength 
of 700 nm. 

23. Consider the situation of the previous problem. If the 
mirror reflects only 64% of the light energy falling on 
it, what will be the ratio of the maximum to the 
minimum intensity in the interference pattern observed 
on the screen ? 

24. A double slit S, — S2  is illuminated by a coherent light 
of wavelength X. The slits are separated by a distance 
d. A plane mirror is placed in front of the double slit at 
a distance D1  from it and a screen E is placed behind 
the double slit at a distance D2  from it (figure 17-E2). 
The screen E receives only the light reflected by the 
mirror. Find the fringe-width of the interference pattern 
on the screen. 

Figure 17-E2 

25. White coherent light (400 nm-700 nm) is sent through 
the slits of a Young's double slit experiment (figure 
17-E3). The separation between the slits is 0.5 mm and 
the screen is 50 cm away from the slits. There is a hole 
in the screen at a point 1.0 mm away (along the width 
of the fringes) from the central line. (a) Which.  
wavelength(s) will be absent in the light coming from 
the hole ? (b) which wavelength(s) will have a strong 
intensity ? 

T 
1.0.m 

50cm 

Figure 17-E3 

26. Consider the arrangement shown in figure (17-E4). The 
distance D is large compared to the separation d 
between the slits. (a) Find the minimum value of d so 
that there is a dark fringe at 0. (b) Suppose d has this 
value. Find the distance x at which the next bright fringe 
is formed. (c) Find the fringe-width. 

PT 

J- 
0 

Figure 17-E4 

27. Two coherent point sources S, and S2  vibrating in phase 
emit light of wavelength k. The separation between the 
sources is 21,. Consider a line passing through S2 and 
perpendicular to the line S1  S2. What is the smallest 
distance from S2  where a minimum of intensity occurs ? 

28. Figure (17-E5) shows three equidistant slits being 
illuminated by a monochromatic parallel beam of light. Let 
BP0  — AP,= 2. / 3 and D » X,. (a) Show that in this case 
d= .\12XD/ 3 . (b) Show that the intensity at P, is three times 
the intensity due to any of the three slits individually. 

Po  

Figure 17-E5 

29. In a Young's double slit experiment, the separation 
between the slits = 2.0 mm, the wavelength of the light 
= 600 nm and the distance of the screen from the slits 
= 2.0 m. If the intensity at the centre of the central 
maximum is 0.20 W/m 2, what will be the intensity at a 
point 0.5 cm away from this centre along the width of 
the fringes ? 

30. In a Young's double slit interference experiment the 
fringe pattern is observed on a screen placed at a 
distance D from the slits. The slits are separated by a 
distance d and are illuminated by monochromatic light 
of wavelength X. Find the distance from the central point 
where the intensity falls to (a) half the maximum, (b) 
one fourth of the maximum. 

31. In a Young's double slit experiment 2. = 500 nm, 
d = 1.0 mni and D = 1.0 m. Find the minimum distance 
from the central maximum for which the intensity is 
half of the maximum intensity. 

32. The linewidth of a bright fringe is sometimes defined as 
the separation between the points on the two sides of 
the central line where the intensity falls to half the 
maximum. Find the linewidth of a bright fringe in a 
Young's double slit experiment in terms of 2., d and D 
where the symbols have their usual meanings. 
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33. Consider the situation shown in figure (17-E6). The two 
slits S1  and S2  placed symmetrically around the central 
line are illuminated by a monochromatic light of 
wavelength X. The separation between the slits is d. The 
light transmitted by the slits falls on a screen E1  placed 
at a distance D from the slits. The slit S3  is at the central 
line and the slit S4  is at a distance z from S3. Another 
screen E2  is placed a further distance D away from E,. 
Find the ratio of the maximum to minimum intensity 
observed on E, if z is equal to 

AD 

	

 
(a) z = - 	

XD 
(b) - 	

XD 
(c) - • 

	

2d 	 4d 

Figure 17-E6 

34. Consider the arrangement shown in figure (17-E7). By 
some mechanism, the separation between the slits S3  
and S4  can be changed. The intensity is measured at the 

point P which is at the common perpendicular bisector 

31 

S41 

Figure 17-E7  

of S1S2  and S3S4. When z = , the intensity measured 

at P is I. Find this intensity when z is equal to 

	

DX 	 3DX 	 2DX 

	

(a) - 	(b) - 	and 	(c) 

	

2d 	 d • 
35. A soap film of thickness 0.0011 mm appears dark when 

seen by the reflected light of wavelength 580 nm. What 
is the index of refraction of the soap solution, if it is 
known to be between 1.2 and 1.5 ? 

36. A parallel beam of light of wavelength 560 nm falls on 
a thin film of oil (refractive index = 1'4). What should be 
the minimum thickness of the film so that it strongly 
reflects the light ? 

37. A parallel beam of white light is incident normally on 
a water film PO x 10 -4  cm thick. Find the wavelength 
in the visible range (400 nm-700 nm) which are strongly 
transmitted by the film. Refractive index of water = 1'33. 

38. A glass surface is coated by an oil film of uniform 
thickness 1.00 x 10 -4  cm. The index of refraction of the 
oil is 1.25 and that of the glass is 1-50. Find the 
wavelengths of light in the visible region 
(400 nm-750 nm) which are completely transmitted by 
the oil film under normal incidence. 

39. Plane microwaves are incident on a long slit having a 
width of 5.0 cm. Calculate the wavelength of the 
microwaves if the first diffraction minimum is formed 
at 8 = 30°. 

40. Light of wavelength 560 nm goes through a pinhole of 
diameter 0.20 mm and falls on a wall at a distance of 
2.00 m. What will be the radius of the central bright 
spot formed on the wall ? 

41. A convex lens of diameter 8.0 cm is used to focus a 
parallel beam of light of wavelength 620 nm. If the light 
be focused at a distance of 20 cm from the lens, what 
would be the radius of the central bright spot formed ? 

P 

0 
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9. 0.014 degree 
10. 0/2 mm 
11. 7 

12. 	 
2(.1- 1) 

13. (a) OA - 1)t, 

14. 14.5 
15. 590 nm 
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25. (a) 400 nm, 667 nm, 	(b) 500 nm 

26. (a) V-21-3 	(b) d 	(c) 2d 
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39. 2.5 cm 

40. 1.37 cm 

41. 3.8x 10-6 m 
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SOLUTIONS TO CONCEPTS 
CHAPTER 17

1. Given that, 400 m <  < 700 nm.

1 1 1

700nm 400nm
 



8 8

7 7 7 7

1 1 1 3 10 c 3 10

7 10 4 10 7 10 4 10   

 
    
    

(Where, c = speed of light = 3  108 m/s)

 4.3  1014 < c/ < 7.5  1014

 4.3  1014 Hz < f < 7.5  1014 Hz.
2. Given that, for sodium light,  = 589 nm = 589  10–9 m

a) fa = 
8

9

3 10

589 10




= 5.09  1014 1 c
sec f    



b) a w w
w9

w a

1

1.33 589 10

  
    

  
= 443 nm

c) fw = fa = 5.09  1014 sec–1 [Frequency does not change]

d)
8

a a aw
w

w a w

vv 3 10
v

v 1.33

  
   

 
= 2.25  108 m/sec.

3. We know that, 2 1

1 2

v

v






So, 
8

8
400

400

1472 3 10
v 2.04 10 m/ sec.

1 v


   

[because, for air,  = 1 and v = 3  108 m/s]

Again, 
8

8
760

760

1452 3 10
v 2.07 10 m/ sec.

1 v


    

4.
8

t 8

1 3 10
1.25

(2.4) 10

 
  


velocity of light in vaccum

since,  = 
velocity of light in the given medium

  
 

5. Given that, d = 1 cm = 10–2 m,  = 5  10–7 m and D = 1 m

a) Separation between two consecutive maxima is equal to fringe width.

So,  = 
7

2

D 5 10 1

d 10





  
 m = 5  10–5 m = 0.05 mm.

b) When,  = 1 mm = 10–3 m

10–3m = 
75 10 1

D

 
 D = 5  10–4 m = 0.50 mm.

6. Given that,  = 1 mm = 10–3 m, D = 2.t m and d = 1 mm = 10–3 m

So, 10–3m = 
3

25

10

 
  = 4  10–7 m = 400 nm.

7. Given that, d = 1 mm = 10–3 m, D = 1 m.

So, fringe with = 
D

d


= 0.5 mm.

a) So, distance of centre of first minimum from centre of central maximum = 0.5/2 mm = 0.25 mm

b) No. of fringes = 10 / 0.5 = 20.

8. Given that, d = 0.8 mm = 0.8  10–3 m,  = 589 nm = 589  10–9 m and D = 2 m.

So,  = 
D

d


= 

9

3

589 10 2

0.8 10





 


= 1.47  10–3 m = 147 mm.
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9. Given that,  = 500 nm = 500  10–9 m and d = 2  10–3 m

As shown in the figure, angular separation  = 
D

D dD d

  
 

So,  = 
9

3

500 10

D d 2 10





  
 


= 250  10–6

= 25  10–5 radian = 0.014 degree.

10. We know that, the first maximum (next to central maximum) occurs at y = 
D

d



Given that, 1 = 480 nm, 2 = 600 nm, D = 150 cm = 1.5 m and d = 0.25 mm = 0.25  10–3 m

So, y1 = 
9

1
3

D 1.5 480 10

d 0.25 10





  



= 2.88 mm

y2 = 
9

3

1.5 600 10

0.25 10





 


= 3.6 mm.

So, the separation between these two bright fringes is given by,
 separation = y2 – y1 = 3.60 – 2.88 = 0.72 mm.

11. Let mth bright fringe of violet light overlaps with nth bright fringe of red light.


m 400nm D n 700nm D m 7

d d n 4

   
  

 7th bright fringe of violet light overlaps with 4th bright fringe of red light (minimum). Also, it can be 
seen that 14th violet fringe will overlap 8th red fringe.
Because, m/n = 7/4 = 14/8.

12. Let, t = thickness of the plate
Given, optical path difference = ( – 1)t = /2

 t = 
2( 1)


 



13. a) Change in the optical path = t – t = ( – 1)t
b) To have a dark fringe at the centre the pattern should shift by one half of a fringe.

 ( – 1)t = t
2 2( 1)

 
 

 
.

14. Given that,  = 1.45, t = 0.02 mm = 0.02  10–3 m and  = 620 nm = 620  10–9 m
We know, when the transparent paper is pasted in one of the slits, the optical path changes by ( – 1)t.
Again, for shift of one fringe, the optical path should be changed by .
So, no. of fringes crossing through the centre is given by,

n = 
3

9

( 1)t 0.45 0.02 10

620 10





   


 
= 14.5

15. In the given Young’s double slit experiment, 
 = 1.6, t = 1.964 micron = 1.964  10–6 m

We know, number of fringes shifted = 
( 1)t 


So, the corresponding shift = No.of fringes shifted  fringe width

= 
( 1)t D ( 1)tD

d d

    
 


… (1)

Again, when the distance between the screen and the slits is doubled,

Fringe width = 
(2D)

d


…(2)

From (1) and (2), 
( 1)tD

d

 
= 

(2D)

d



  = 
( 1)t 


= 

6(1.6 1) (1.964) 10

2

  
= 589.2  10–9 = 589.2 nm.

B

S1

S2



D
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16. Given that, t1 = t2 = 0.5 mm = 0.5  10–3 m, m = 1.58 and p = 1.55, 
 = 590 nm = 590  10–9 m, d = 0.12 cm = 12  10–4 m, D = 1 m

a) Fringe width = 
9

4

D 1 590 10

d 12 10





  



= 4.91  10–4 m.

b) When both the strips are fitted, the optical path changes by 
x = (m – 1)t1 – (p – 1)t2 = (m – p)t
= (1.58 – 1.55)  (0.5)(10–3) = 0.015  10–13 m.

So, No. of fringes shifted = 
3

3

0.015 10

590 10








= 25.43.

 There are 25 fringes and 0.43 th of a fringe.
 There are 13 bright fringes and 12 dark fringes and 0.43 th of a dark fringe.

So, position of first maximum on both sides will be given by
 x = 0.43  4.91  10–4 = 0.021 cm

x = (1 – 0.43)  4.91  10–4 = 0.028 cm (since, fringe width = 4.91  10–4 m)
17. The change in path difference due to the two slabs is (1 – 2)t (as in problem no. 16).

For having a minimum at P0, the path difference should change by /2.

So,  /2 = (1 –2)t  t = 
1 22( )


  

.

18. Given that, t = 0.02 mm = 0.02  10–3 m, 1 = 1.45,  = 600 nm = 600  10–9 m
a) Let, I1 = Intensity of source without paper = I
b) Then I2 = Intensity of source with paper = (4/9)I

 1 1

2 2

I r9 3

I 4 r 2
   [because I  r2]

where, r1 and r2 are corresponding amplitudes.

So, 
2

max 1 2
2

min 1 2

I (r r )

I (r r )





= 25 : 1

b) No. of fringes that will cross the origin is given by,

n = 
( 1)t 


= 

3

9

(1.45 1) 0.02 10

600 10





  


= 15.

19. Given that, d = 0.28 mm = 0.28  10–3 m, D = 48 cm = 0.48 m, a = 700 nm in vacuum 
Let, w = wavelength of red light in water
Since, the fringe width of the pattern is given by,

= 
9

w
3

D 525 10 0.48

d 0.28 10





  



= 9  10–4 m = 0.90 mm.

20. It can be seen from the figure that the wavefronts reaching O from S1 and S2 will
have a path difference of S2X.
In the  S1S2X,

sin = 2

1 2

S X

S S

So, path difference = S2 X = S1S2 sin = d sin = d  /2d = /2
As the path difference is an odd multiple of /2, there will be a dark fringe at point P0.

21. a) Since, there is a phase difference of  between direct light and 
reflecting light, the intensity just above the mirror will be zero.

b) Here, 2d = equivalent slit separation 
D = Distance between slit and screen.

We know for bright fringe, x = 
y 2d

D


= n

But as there is a phase reversal of /2.


y 2d

D


+ 

2


= n 

y 2d

D


= n –

2


 y = 

D

4d




mica

Screen

polysterene

S2

S1


P0

x
S2

S1

Dark
fringe(1 – 0.43)

0.43

S2

S1

2d

D

Screen 
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22. Given that, D = 1 m,  = 700 nm = 700  10–9 m

Since, a = 2 mm, d = 2a = 2mm = 2  10–3 m (L loyd’s mirror experiment)

Fringe width = 
9

3

D 700 10 m 1m

d 2 10 m





  



= 0.35 mm.

23. Given that, the mirror reflects 64% of energy (intensity) of the light.

So, 1 1

2 2

I r16 4
0.64

I 25 r 5
   

So, 
2

max 1 2
2

min 1 2

I (r r )

I (r r )





= 81 : 1.

24. It can be seen from the figure that, the apparent distance of the screen from the slits is, 
D = 2D1 + D2

So, Fringe width = 1 2(2D D )D

d d

 


25. Given that,  = (400 nm to 700 nm), d = 0.5 mm = 0.5  10–3 m, 

D = 50 cm = 0.5 m and on the screen yn = 1 mm = 1  10–3 m

a) We know that for zero intensity (dark fringe)

yn = nD2n 1

2 d

 
 
 

where n = 0, 1, 2, …….

 n = 
3 3

6 3nd2 2 10 0.5 10 2 2
10 m 10 nm

(2n 1) D 2n 1 0.5 (2n 1) (2n 1)

 
  

     
   

If n = 1, 1 = (2/3)  1000 = 667 nm

If n = 1, 2 = (2/5)  1000 = 400 nm

So, the light waves of wavelengths 400 nm and 667 nm will be absent from the out coming light.

b) For strong intensity (bright fringes) at the hole

 yn = n n
n

n D y d

d nD


  

When, n = 1, 1 = ny d

D
= 

3 3
610 0.5 10

10 m 1000nm
0.5

 
 

  .

1000 nm is not present in the range 400 nm – 700 nm

Again, where n = 2, 2 = ny d

2D
= 500 nm

So, the only wavelength which will have strong intensity is 500 nm.
26. From the diagram, it can be seen that at point O.

Path difference = (AB + BO) – (AC + CO) 

= 2(AB – AC) [Since, AB = BO and AC = CO] = 2 22( d D D) 

For dark fringe, path difference should be odd multiple of /2.

So, 2 22( d D D)  = (2n + 1)(/2)

 2 2d D = D + (2n + 1) /4 

 D2 + d2 = D2 + (2n+1)2 2/16 + (2n + 1) D/2

Neglecting, (2n+1)2 2/16, as it is very small

We get, d = 
D

(2n 1)
2




For minimum ‘d’, putting n = 0  dmin = 
D

2


.

C O

P

B

d

A

x

DD

D

yn
d=0.5mm

50cm

1 mm
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27. For minimum intensity 
 S1P – S2P = x = (2n +1) /2
From the figure, we get

 2 2Z (2 ) Z (2n 1)
2


    


2

2 2 2 2Z 4 Z (2n 1) Z(2n 1)
4


       

 Z = 
2 2 2 2 2 24 (2n 1) ( / 4) 16 (2n 1)

(2n 1) 4(2n 1)

       


   
…(1)

Putting, n = 0  Z = 15/4 n = –1  Z = –15/4
n = 1  Z = 7/12 n = 2  Z = –9/20

 Z = 7/12 is the smallest distance for which there will be minimum intensity.
28. Since S1, S2 are in same phase, at O there will be maximum intensity.

Given that, there will be a maximum intensity at P.
 path difference = x = n
From the figure,

(S1P)2 – (S2P)2 = 2 2 2 2 2 2( D X ) ( (D 2 ) X )    

= 4D – 42 = 4 D (2 is so small and can be neglected)

 S1P – S2P = 
2 2

4 D

2 x D




= n


2 2

2D

x D


 n2 (X2 + D2) = 4D2 = X = 2D
4 n

n


when n = 1, x = 3 D (1st order)
n = 2, x = 0 (2nd order)

 When X = 3 D, at P there will be maximum intensity.
29. As shown in the figure, 

(S1P)2 = (PX)2 + (S1X)2 …(1)
(S2P)2 = (PX)2 + (S2X)2 …(2)

From (1) and (2), 
(S1P)2 – (S2P)2 = (S1X)2 – (S2X)2

= (1.5  + R cos )2 – (R cos  – 15 )2

= 6 R cos 

 (S1P – S2P) = 
6 Rcos

2R

 
= 3 cos .

For constructive interference, 
(S1P – S2P)2 = x = 3 cos  = n

 cos  = n/3   = cos–1(n/3), where n = 0, 1, 2, ….
  = 0°, 48.2°, 70.5°, 90° and similar points in other quadrants.

30. a) As shown in the figure, BP0 – AP0 = /3

 2 2(D d ) D / 3   

 D2 + d2 = D2 + (2 / 9) + (2D)/3

 d = (2 D) / 3 (neglecting the term 2/9 as it is very small)

b) To find the intensity at P0, we have to consider the interference of light 
waves coming from all the three slits.

Here, CP0 – AP0 = 2 2D 4d D 

S2
Z

S1

P

2

Screen

P0

x

d 

d 

D 

C

B 

A 

Screen

x2

OS2S1

P

D


xS1 1.5O

P

S2

R
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=  1/ 2
2 8 D 8

D D D 1 D
3 3D

 
    

=  8 4
D 1 ...... D

3D 2 3

 
   


[using binomial expansion]

So, the corresponding phase difference between waves from C and A is,

c = 
2 x 2 4 8 2 2

2
3 3 3 3

            
   

…(1)

Again, B = 
2 x 2

3 3

 



…(2)

So, it can be said that light from B and C are in same phase as they have some phase difference 
with respect to A.

So, R = 2 2(2r) r 2 2r r cos(2 / 3)     (using vector method)

= 2 2 24r r 2r 3r  


0

2 2
PI K( 3r ) 3Kr 3I  

As, the resulting amplitude is 3 times, the intensity will be three times the intensity due to individual slits. 
31. Given that, d = 2 mm = 2  10–3 m,  = 600 nm = 6  10–7 m, Imax = 0.20 W/m2, D = 2m

For the point, y = 0.5 cm

We know, path difference = x = 
2 3yd 0.5 10 2 10

D 2

   
 = 5  10–6 m

So, the corresponding phase difference is,

 = 
6

7

2 x 2 5 10

6 10





  


 


50 2
16

3 3

 
     = 

2
3


So, the amplitude of the resulting wave at the point y = 0.5 cm is,

A = 2 2 2 2 2 2r r 2r cos(2 / 3) r r r      = r

Since, 
2

2
max

I A

I (2r)
 [since, maximum amplitude = 2r]


2 2

2 2

I A r

0.2 4r 4r
 


0.2

I 0.05
4

  W/m2.

32. i) When intensity is half the maximum 
max

I 1

I 2



2 2

2

4a cos ( / 2) 1

24a




 2cos ( / 2) 1/ 2 cos( / 2) 1/ 2    

 /2 = /4   = /2
 Path difference, x = /4
 y = xD/d = D/4d

ii) When intensity is 1/4th of the maximum 
max

I 1

I 4



2 2

2

4a cos ( / 2) 1

44a




 2cos ( / 2) 1/ 4 cos( / 2) 1/ 2    

 /2 = /3   = 2/3
 Path difference, x = /3
 y = xD/d = D/3d
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33. Given that, D = 1 m, d = 1 mm = 10–3 m,  = 500 nm = 5  10–7 m
For intensity to be half the maximum intensity.

y = 
D

4d


(As in problem no. 32)

 y = 
7

3

5 10 1

4 10





 


 y = 1.25  10–4 m.

34. The line width of a bright fringe is sometimes defined as the separation between the points on the two 
sides of the central line where the intensity falls to half the maximum.
We know that, for intensity to be half the maximum

y = ±
D

4d



 Line width = 
D

4d


+

D

4d


= 

D

2d


.

35. i) When, z = D/2d, at S4, minimum intensity occurs (dark fringe)
 Amplitude = 0,
At S3, path difference = 0
 Maximum intensity occurs.
 Amplitude = 2r.
So, on 2 screen,

2
max

2
min

I (2r 0)

I (2r 0)





= 1

ii) When, z = D/2d, At S4, minimum intensity occurs. (dark fringe)
 Amplitude = 0.
At S3, path difference = 0
 Maximum intensity occurs.
 Amplitude = 2r.
So, on 2 screen, 


2

max
2

min

I (2r 2r)

I (2r 0)


  



iii) When, z = D/4d, At S4, intensity = Imax / 2

 Amplitude = 2r .

 At S3, intensity is maximum.
 Amplitude = 2r


2

max
2

min

I (2r 2r )

I (2r 2r )





= 34.

36. a) When, z = D/d
So, OS3 = OS4 = D/2d  Dark fringe at S3 and S4.

 At S3, intensity at S3 = 0  I1 = 0
At S4, intensity at S4 = 0  I2 = 0

At P, path difference = 0  Phase difference = 0.

 I = I1 + I2 + 1 2I I cos 0° = 0 + 0 + 0 = 0  Intensity at P = 0.

b) Given that, when z = D/2d, intensity at P = I
Here, OS3 = OS4 = y = D/4d

  = 
2 x 2 yd 2 D d

D 4d D 2

    
     

  
. [Since, x = path difference = yd/D]

Let, intensity at S3 and S4 = I
 At P, phase difference = 0
So, I + I + 2I cos 0° = I.
 4I = I  I = 1/4.

D

S1

S2

x
d

 1

D

S3

S4

 2

O
P

D

S1

S2

z
d

D

S3

S4
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When, z = 
3D

2d


,  y = 

3D

4d



  = 
2 x 2 yd 2 3D d 3

D 4d D 2

    
     

  
Let, I be the intensity at S3 and S4 when,  = 3/2
Now comparing,

2 2 2 2

2 2 2 2

I a a 2a cos(3 / 2) 2a
1

I a a 2a cos / 2 2a

   
  

  
 I = I = I/4.

 Intensity at P = I/4 + I/4 + 2  (I/4) cos 0° = I/2 + I/2 = I.
c) When z = 2D/d
 y = OS3 = OS4 = D/d

  = 
2 x 2 yd 2 D d

2
D d D

   
      

  
.

Let, I = intensity at S3 and S4 when,  = 2.
2 2 2 2

2 2 2 2

I a a 2a cos2 4a
2

I a a 2a cos / 2 2a

   
  

   


 I = 2I = 2(I/4) = I/2
At P, Iresultant = I/2 + I/2 + 2(I/2) cos 0° = I + I = 2I.
So, the resultant intensity at P will be 2I.

37. Given d = 0.0011  10–3 m
For minimum reflection of light, 2d = n

  = 
9

7

n 2n 580 10 2n 5.8
(2n)

2d 4d 444 11 10





   
  

 
= 0.132 (2n)

Given that,  has a value in between 1.2 and 1.5.
 When, n = 5,  = 0.132  10 = 1.32.

38. Given that,  = 560  10–9 m,  = 1.4.

For strong reflection, 2d = (2n + 1)/2  d = 
(2n 1)

4d

 

For minimum thickness, putting n = 0.

 d = 
4d


 d = 

9560 10

14


= 10–7 m = 100 nm. 

39. For strong transmission, 2 d = n   = 
2 d

n



Given that,  = 1.33, d = 1  10–4 cm = 1  10–6 m.

  = 
6 92 1.33 1 10 2660 10

m
n n

    


when, n = 4, 1 = 665 nm
n = 5, 2 = 532 nm
n = 6, 3 = 443 nm

40. For the thin oil film,
d = 1  10–4 cm = 10–6 m, oil = 1.25 and x = 1.50

 = 
6 62 d 2 10 1.25 2 5 10 m

(n 1/ 2) 2n 1 2n 1

     


  

  = 
5000 nm

2n 1
For the wavelengths in the region (400 nm – 750 nm)

When, n = 3,  = 
5000 5000

2 3 1 7


 
= 714.3 nm
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When, n = 4,  = 
5000 5000

2 4 1 9


 
= 555.6 nm

When, n = 5,  = 
5000 5000

2 5 1 11


 
= 454.5 nm

41. For first minimum diffraction, b sin  = 
Here,  = 30°, b = 5 cm
  = 5  sin 30° = 5/2 = 2.5 cm.

42.  = 560 nm = 560  10–9 m, b = 0.20 mm = 2  10–4 m, D = 2 m

Since, R = 
D

1.22
b


= 

9

4

560 10 2
1.22

2 10





 



= 6.832  10–3 M = 0.683 cm.

So, Diameter = 2R = 1.37 cm.
43.  = 620 nm = 620  10–9 m, 

D = 20 cm = 20  10–2 m, b = 8 cm = 8  10–2 m

 R = 
4 2

2

620 10 20 10
1.22

8 10

 



  



= 1891  10–9 = 1.9  10–6 m

So, diameter = 2R = 3.8  10–6 m

  
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