
CHAPTER 15 

WAVE MOTION AND WAVES 
ON A STRING 

15.1 WAVE MOTION 

When a particle moves through space, it carries 
kinetic energy with itself. Wherever the particle goes, 
the energy goes with it.. The energy is associated with 
the particle and is transported from one region of the 
space to the other together with the particle just like 
we ride a car and are taken from Lucknow to Varanasi 
with the car. 

There is another way to transport energy from one 
part of space to the other without any bulk motion of 
material together with it. Sound is transmitted in air 
in this manner. When you say "Hello" to your friend, 
no material particle is ejected from your lips and falls 
on your friend's ear. You create some disturbance in 
the part of the air close to your lips. Energy is 
transferred to \these air particles either by pushing 
them ahead or-pulling them' back. The density of the 
air in this part temporarily increases or decreases. 
These disturbed particles exert force on the next layer 
of air, transferring the disturbance to that layer. In 
this way, the disturbance proceeds in air and finally 
the air near the ear of the listener gets disturbed. 

The disturbance produced in the air near the 
speaker travels in air, the air itself does not move. The 
air that is near the speaker at the time of uttering a 
word remains all the time near the speaker even when 
the message reaches the listener. This type of motion 
of energy is called a wave motion. 

To give another example of propagation of energy 
without bulk motion of matter, suppose many persons 
are standing in a queue to buy cinema tickets from 
the ticket counter. It is not yet time, the counter is 
closed and the persons are getting annoyed. The last 
person in the queue is somewhat unruly, he leans 
forward pushing the man in front of him and then 
stands straight. The second last person, getting the 
jerk from behind, is forced to lean forward and push 
the man in front. This second last person manages to  

stand straight again but the third last person 
temporarily loses balance and leans forward. The jerk 
thus travels down the queue and finally the person at 
the front of the queue feels it. With the jerk, travels 
the energy down the queue from one end to another 
though the last person and the first person are still in 
their previous positions. 

Figure 15,1 

The world is full of examples of wave motion. When 
raindrops hit the surface of calm water, circular waves 
can be seen travelling on the surface. Any particle of 
water is only locally displaced for a short time but the 
disturbance spreads and the particles farther and 
farther get disturbed when the wave reaches them. 
Another common example of wave motion is the wave 
associated with light. One speciality about this wave 
is that it does not require any material medium for its 
propagation. The waves requiring a medium are called 
mechanical waves and those which do not require a 
medium are called nonmechanical waves. 

In the present chapter, we shall study the waves 
on a stretched string, a mechanical wave in one 
dimension. 

15.2 WAVE PULSE ON A STRING 

Let us consider a long string with one end fixed to 
a wall ana the other held by a person. The person pulls 
on the string keeping it tight. Suppose the person 
snaps his hand a little up and down producing a bump 



304 	 Concepts of Physics 

in the string near his hand (Figure 15.2). The 
operation takes a very small time say one tenth of a 
second after which the person stands still holding the 
string tight in his hand. What happens as time 
passes ? 

(a)  

(b)  

(c)  

Figure 15.2 

Experiments show that if the vertical displacement 
given is small, the disturbance travels down the string 
with constant speed. Figure (15.2) also shows the 
status of the string at successive instants. As time 
passes, the "bump" travels on the string towards right. 
For an elastic and homogeneous string, the bump 
moves with constant speed to cover equal distances in 
equal time. Also, the shape of the bump is not altered 
as it moves, provided the bump is small. Notice that 
no part of the string moves from left to right. The 
person is holding the left end tight and the string 
cannot slip from his hand. The part of the string, 
where the bump is present at an instant, is in up-down 
motion. As time passes, this part again regains its 
normal position. The person does some work on the 
part close to his hand giving some energy to that part. 
This disturbed part exerts elastic force on the part to 
the right and transfers the energy, the bump thus 
moves on to the right. In this way, different parts of 
the string are successively disturbed, transmitting the 
energy from left to right. 

When a disturbance is localised only to a small 
part of space at a time, we say that a wave pulse 
is passing through that part of the space. This happens 
when the source producing the disturbance (hand in 
this case) is active only for a short time. If the source 
is active for some extended time repeating its motion 
several times, we get a wave train or a wave packet. 
For example, if the person in figure (15.2) decides to 
vibrate his hand up and down 10 times and then stop, 
a wave train consisting of 10 loops will proceed on the 
string. 

Equation of a Travelling Wave 

Suppose, in the example of figure (15.2), the man 
starts snapping his hand at t = 0 and finishes his job 
at t = At. The vertical displacement y of the left end, of 
the string is a function of time. It is zero for t < 0, has 
non-zero value for 0 < t < At and is again zero for 
t> At. Let us represent this function by fit). Take the  

left end of the string as the origin and take the X-axis 
along the string towards right. The function fit) 
represents the displacement y of the particle at x = 0 
as a function of time 

y(x = 0, = f(t). 

The disturbance travels on the string towards right 
with a constant speed v. Thus, the displacement, 
produced at the left end at time t, reaches the point x 
at time t+ x/v. Similarly, the displacement of the 
particle at point x at time t was originated at the left 
end at the time t - x/v. But the displacement of the 
left end at time t - x/v is f(t - x/v). Hence, 

y(x, = y(x = 0, t - x/v) 

= f(t - x/v). 

The displacement of the particle at x at time t i.e., 
y(x, t) is generally abbreviated as y and the wave 
equation is written as 

	

y = f(t - x/v). 	 ... (15.1) 

Equation (15.1) represents a wave travelling in the 
positive x-direction with a constant speed v. Such a 
wave is called a travelling wave or a progressive wave. 
The function f is arbitrary and depends on how the 
source moves. The time t and the position x must 
appear in the wave equation in the combination 
t - x/v only. For example, 

(t - x/v)  

y = A sin
(t - x/v) 

T 	
y =A e T  

etc. are valid wave equations. They represent waves 
travelling in positive x-direction with constant speed. 

	

2 	2 	2 
)  

The equation y = A sin 
(X V t 

does not represent a 

wave travelling in x-direction with a constant speed. 

If a wave travels in negative x-direction with speed 
v, its general equation may be written as 

	

y = fit + x/v). 	 ... (15.2) 

The wave travelling in positive x-direction (equation 
15.1) can also be written as 

Y —
f 

{vt -  

or, 	 y = g(x - vt), 	 ... (15.3) 

where g is some other function having the following 
meaning. If we put ‘t = 0 in equation (15.3), we get the 
displacement of various particles at t = 0 i.e., 

y(x, t = 0) = g(x). 

Thus, g(x) represents the shape of the string at 
t = 0. If the, displacement of the different particles at 
t = 0 is represented by the function g(x), the 
displacement of the particle at x at time t will be 
y = g(x - vt). Similarly, if the wave is travelling along 
the negative x-direction and the displacement of 
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different particles at t = 0 is g(x), the displacement of 
the particle at x at time t will be 

y = g(x + vt). 	 ... (15.4) 

Thus, the function f in equation (15.1) and (15.2) 
represents the displacement of the point x = 0 as time 
passes and g in (15.3) and (15.4) represents the 
displacement at t = 0 of different particles. 

Example 15.1 

A wave is propagating on a long stretched string along 
its length taken as the positive x-axis. The wave equation 
is given as 

2 

y=yo e17t  

where y, = 4 mm, T = 1 0 s and X = 4 cm. (a) Find the 

velocity of the wave. (b) Find the function f(t) giving the 
displacement of the particle at x = 0. (c) Find the function 
g(x) giving the shape of the string at t = 0. (d) Plot the 
shape g(x) of the string at t = 0. (e) Plot the shape of the 
string at t = 5 s. 

Solution : (a) The wave equation may be written as 
2 

1 	X 

Y = Yo  e T 2 [ t  - VT] 

Comparing with the general equation y = f(t - x/v), we 
see that 

v= 
	s 

4 cm 
4 cnils.  

(b) putting x = 0 in the given equation, 

f(t)= yo e - (V7)2  . 

(c) putting t = 0 in the given equation 

g(x) = yoe - (x/x)2. 	 (ii) 

(d)  

x = 0 
fig-15.3 (a) 

(e)  

x = 0 	x = 20 cm 

fig-15.3 (b) 

15.3 SINE WAVE TRAVELLING ON A STRING 

What happens if the person holding the string in 
figure (15.2) keeps waving his hand up and down 
continuously. He keeps doing work on the string and  

the energy is continuously supplied to the string. Any 
part of the string continues to vibrate up and down 
once the first disturbance has reached it. It receives 
energy from the left, transmits it to the right and the 
process continues till the person is not tired. The 
nature of vibration of any particle is similar to that of 
the left end, the only difference being that the motion 
is repeated after a time delay of x/v. 

A very important special case arises when the 
person vibrates the left end x = 0 in a simple harmonic 
motion. The equation of motion of this end may then 
be written as 

f(t) = A sin wt, 	 ... (15.5) 

where A represents the amplitude and co the angular 
frequency. The time period of oscillation is T = 2n/co 
and the frequency of oscillation is v = 1/T = co/2n. The 
wave produced by such a vibrating source is called a 
sine wave or sinusoidal wave. 

Since the displacement of the particle at x = 0 is 
given by (15.5), the displacement of the particle at x 
at time t will be 

y = f(t - x/v) 
or, 	 y = A sin co(t - x/v). 	... (15.6) 

This follows from the fact that the wave moves 
along the string with a constant speed v and the 
displacement of the particle at x at time t was 
originated at x = 0 at time t - x/v. 

The velocity of the particle at x at time t is given 

at 
A co cos co(t - x/v). 	... (15.7) 

The symbol at  is used in place of to indicate that 

while differentiating with respect to t, we should treat 
x as constant. It is the same particle whose displacement 
should be considered as a function of time. 

This velocity is totally different from the wave 
velocity v. The wave moves on the string at a constant 
velocity v along the x-axis, but the particle moves up and 

down with velocity 21  which changes with x and t at 

according to (15.7). 

Figure (15.4) shows the shape of the string as time 
passes. Each particle of the string vibrates in simple 
harmonic motion with the same amplitude A and 
frequency v. The phases of the vibrations are, however, 
different. When a particle P (figure 15.4) reaches its 
extreme position in upward direction, the particle Q 
little to its right, is still coming up and the particle R 
little to its left, has already crossed that phase and is 
going down. The phase difference is larger if the 
particles are separated farther. 

(i) 	by 



t+T/4 

t+T/2 

1+31/4 

t+T 

K 
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Figure 15.4 

Each particle copies the motion of another particle 
at its left with a time delay of x/v, where x is the 
separation between the two particles. For the particles 
P and W, shown in figure (15.4), the separation is 
dx = vT and the particle W copies the motion of P after 
a time delay of dx/v = T. But the motion of any particle 
at any instant is identical in all respects to its motion 
a time period T later. So, a delay of one time period 
is equivalent to no delay and hence, the particles P 
and W vibrate in the same phase. They reach their 
extreme positions together, they cross their mean 
positions together, their displacements are identical 
and their velocities are identical at any instant. Same 
is true for any pair of particles separated by a distance 
vT. This separation is called the wavelength of the 
wave and is denoted by the Greek letter X. Thus, 
X vT. 

The above relation can easily be derived 
mathematically. Suppose, the particles at x and x + L 
vibrate in the same phase. By equation (15.6) and 
(15.7), 

A sin it - 
vJJ

- A sinit x .41)] 

and A co cos[i t - U = A co cos[co(t x 	L .
JJ 

This gives 

w(t - E) = 	- x  +1.1 + 2 n n, 

where n is an integer. 
r, or, 	 0 = - coL 

 + z 7E 
v 

or, 	 L = 2 n n. 
co 

The minimum separation between the particles 
vibrating in same phase is obtained by putting n = 1 
in the above equation. Thus, the wavelength is 

X = 2n = vT. 	 ... (15.8)  

Also, 	v = X/T = vX, 	 ... (15.9) 

where v = 1/T is the frequency of the wave. 

This represents an important relation between the 
three characteristic parameters of a sine wave namely, 
the wave velocity, the frequency and the wavelength. 

The quantity 2n/X is called the wave number and 
is generally denoted by the letter k. 

, 
= 

2 n 2nv 
Thus, 	R - 

X 	V 

The segment, where the disturbance is positive, is 
called a crest of the wave and the segment, where the 
disturbance is negative, is called a trough. The 
separation between consecutive crests or between 
consecutive troughs is equal to the wavelength. 

Alternative Forms of Wave Equation 

We have written the wave equation of a wave 
travelling in x-direction as 

y = A sin co(t - x/v). 

This can also be written in several other forms 
such as, 

y = A sin (cot - kx) ... 	(15.10) 

= A sin - ... 	(15.11) 

= A sin k(vt - x). ... 	(15.12) 

Also, it should be noted that we have made our 
particular choice of t = 0 in writing equation (15.5) 
from which the wave equation is deduced. The origin 
of time is chosen at an instant when the left end 
x = 0 is crossing its mean position y = 0 and is going 
up. For a general choice of the origin of time, we will 
have to add a phase constant so that the equation will 
be 

y = A sink,* - x/v) + 4)]. 	... (15.13) 

The constant 4) will be n/2 if we choose t = 0 at an 
instant when the left end reaches its extreme position 
y = A. The equation will then be 

y = A cos o)(t - x/v). 	... (15.14) , 

If t = 0 is taken at the instant when the left end 
is crossing the mean position from upward to 
downward direction, 4) will be it qnd the equation will 
be 

y = A sin coi! - t) 

or, 	y = A sin(kx - cot). 	... (15.15) 

Example 15.2 

Consider the wave y = (5 nun) sin[(1 cm 	- (60 s 1)t]. 
Find (a) the amplitude (b) the wave number, (c) the 
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(b) 
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wavelength, (d) the frequency, (e) the time period and (D 
the wave velocity. 

Solution : Comparing the given equation with equation 
(15.15), we find 
(a) amplitude A - 5 mm 

(b) wave number k = 1 cm- 

2n 
(c) wavelength X = T = 2n cm 

o.) _ 60 H  
v_ 2 n 2 7C z  

30 
= — Hz It  

(e) time period T= 	s 
v 30 

(f) wave velocity v = v X = 60 cm/s. 

15.4 VELOCITY OF A WAVE ON A STRING 

The velocity of a wave travelling on a string 
depends on the elastic and the inertia properties of the 
string. When a part of the string gets disturbed, it 
exerts an extra force on the neighbouring part because 
of the elastic property. The neighbouring part responds 
to this force and the response depends on the inertia 
property. The elastic force in the string is measured 
by its tension F and the inertia by its mass per unit 
length. We have used the symbol F for tension and not 
T in order to avoid confusion with the time period. 

(a) 

Figure 15.5 

Suppose a wave y = f [t = u is travelling on the 

string in the positive x-direction with a speed. v. Let 
us choose an observer who is riding on a car that 
moves along the x-direction with the same velocity v 
(figure 15.5). Looking from this frame, the pattern of 
the string is at rest but the entire string is moving 
towards the negative x-direction with a speed v. If a 
crest is opposite to the observer at any instant, it will 
always remain opposite to him with the same shape 
while the string will pass through this crest in opposite 
direction like a snake. 

Consider a small element AB of the string of length 
Al at the highest point of a crest. Any small curve may 
be approximated by a circular arc. Suppose the small 
element Al forms an arc of radius R. The particles of 
the string in this element go in this circle with a speed 
v as the string slides through this part. The general 
situation is shown in figure (15.5a) and the expanded 
view of the part near Al is shown in figure (15.5b). 

We assume that the displacements are small so 
that the tension in the string does not appreciably 
change because of the disturbance. The element AB is 
pulled by the parts of the string to its right and to its 
left. Resultant force on this element is in the 
downward direction as shown in figure (15.5b) and its 
magnitude is 

Fr  = F sin° + F sine = 2F sine. 

As Al is taken small, 0 will be small and 

sine = 
Al/2  

so that the resultant force on Al is 

Fr  - 2F 
A1/2)

- 

If 1.1 be the mass per unit length of the string, the 
element AB has a mass Am = Al II. Its downward 
acceleration is 

Fr  FAVR  F 
a - 

Am 	t.t A/ 	MR 

But the element is moving in a circle of radius R with 
a constant speed v. Its acceleration is, therefore, 

2 

a = R• The above equation becomes 
2 v 

R = F tiR 
v = ✓FAA. 

The velocity of the wave on a string thus depends 
only on the tension F and the linear mass density M. 
We have used the approximation that the tension F 
remains almost unchanged as the part of the string 
vibrates up and down. This approximation is valid only 
for small- amplitudes because as the string vibrates, 
the lengths of its parts change during the course of 
vibration and hence, the tension changes. 

Example 15.3 

Figure (15.6) shows a string of linear mass density 
1.0 g/cm on which a wave pulse is travelling. Find the 

kg 

Figure 15.6 

(d) frequency 

or, ... (15.16) 



By (i), it is 

- 	 -9-]A cos co(t - x/v)1 [w A cos co(t - x/v)] 

0)  2 A  2 F 	2  

	 cos Co (t - x/v). 
v 
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time taken by the pulse in travelling through a distance 

of 50 cm on the string. Take g = 10 rn/s 2. 

Solution : The tension in the string is F = mg = 10 N. The 

mass per unit length is 1.1 = 1'0 g/cm = 0.1 kg/m. The wave 

10 N  
velocity is, therefore, u = VF/1.1 10 m/s. 

0.1 kg/m 

The time taken by the pulse in travelling through 50 cm 
is, therefore, 0'05 s. 

15.5 POWER TRANSMITTED ALONG THE STRING 
BY A SINE WAVE 

When a travelling wave is established on a string, 
energy is transmitted along the direction of 
propagation of the wave. Consider again a sine wave 
travelling along a stretched string in x-direction. The 
equation for the displacement in y-direction is 

x 

Figure 15.7 

y = A sin co(t - x/v). 	 (i) 

Figure (15.7) shows a portion of the string at a 
time t to the right of position x. The string on the left 
of the point x exerts a force F on this part. The 
direction of this force is along the tangent to the string 
at position x. The component of the force along the 
Y-axis is 

Fy = - F sina - Ftan0 = - F I-31  • 
ax 

The power delivered by the force F to the string 
on the right of position x is, therefore, 

P=1- F22•yl• ax at 

This is the rate at which energy is being 
transmitted from left to right across the point at x. 

The cost  term oscillates between 0 and 1 during a cycle 
and its average value is 1/2. The average power 
transmitted across any point is, therefore, 

1 0)  2A  2 F  

	

2 	2 2 
PQ= 

- 2 
	- 271 	v A v . 	(15.17) 

The power transmitted along the string is 
proportional to the square of the amplitude and square 
of the frequency of the wave. 

Example 15.4 

The average power transmitted through a given point on 
a string supporting a sine wave is 0'20 W when the 
amplitude of the wave is 2.0 mm. What power will be 
transmitted through this point if the amplitude is 
increased to 3.0 mm. 

Solution : Other things remaining the same, the power 
transmitted is proportional to the square of the 
amplitude. 
Thus, 

P 	2  2 A  2 
Al 

PZ  	 9 
0.20W 4 2 25  

P2= 2'25 x 0.20W = 0'45 W. 

15.6 INTERFERENCE AND 
THE PRINCIPLE OF SUPERPOSITION 

So far we have considered a single wave passing 
on a string. Suppose two persons are holding the string 
at the two ends and snap their hands to start a wave 
pulse each. One pulse starts from the left end and 
travels on the string towards right, the other starts at 
the right end and travels towards left. The pulses 
travel at same speed although their shapes depend on 
how the persons snap their hands. Figure (15.8) shows 
the shape of the string as time passes. 

—10 	4— 

—O. 4— 

      

     

4--10 

 

	 j-\ 

 

  

11-  

  

(a) 
	

(b) 

Figure 15.8 

The pulses travel towards each other, overlap and 
recede from each other. The remarkable thing is that 
the shapes of the pulses, as they emerge after the 
overlap, are identical to their original shapes. Each 
pulse has passed the overlap region so smoothly as if 
the other pulse was not at all there. After the 
encounter, each pulse looks just as it looked before and 
each pulse travels just as it did before. The waves can 
pass through each other freely without being modified. 

or, 

or, 



Wave Motion and Waves on a String 	 309 

This is a unique property of the waves. The particles 
cannot pass through each other, they collide and their 
course of motion changes. How do we determine the 
shape of the string at the time when the pulses 
actually overlap ? The mechanism to know the 
resultant displacement of a particle which is acted 
upon by two or more waves simultaneously is very 
simple. The displacement of the particle is equal to the 
sum of the displacements the waves would have 
individually produced. If the first wave alone is 
travelling, let us say it displaces the particle by 0.2 cm 
upward and if the second wave alone is travelling, 
suppose the displacement of this same particle is 
0.4 cm upward at that instant. The displacement of 
the particle at that instant will be 0.6 cm upward if 
both the waves pass through that particle 
simultaneously. The displacement of the particles, if 
the first wave alone were travelling, may be written as 

Yl = fi(t - x/v) 

and the displacement if the second wave alone were 
travelling may be written as 

Y2 = f2(t x/v)• 
If both the waves are travelling on the string, the 
displacement of its different particles will be given by 

y = + y2  = fi(t - x/v) + f2(t + x/v). 

The two individual displacements may be in 
opposite directions. The magnitude of the resulting 
displacement may be smaller than the magnitudes of 
the individual displacements. 

If two wave pulses, approaching each other, are 
identical in shape except that one is inverted with 
respect to the other, at some instant the displacement 
of all the particles will be zero. However, the velocities 
of the particles will not be zero as the waves will 
emerge in the two directions shortly. Such a situation 
is shown in figure (15.8b). We see that there is an 
instant when the string is straight every where. But 
soon the wave pulses emerge which move away from 
each other 

Suppose one person snaps the end up and down 
whereas the other person snaps his end sideways. The 
displacements produced are at right angles to each 
other as indicated in figure (15.9). When the two waves 
overlap, the resultant displacement of any particle is 
the vector sum of the two individual displacements. 

Y • 

X 

Figure 15.9 

The above observations about the overlap of the 
waves may be summarised in the following statement 
which is known as the principle of superposition. 

When two or more waves simultaneously pass 
through a point, the disturbance at the point is given 
by the sum of the disturbances each wave would 
produce in absence of the other wave(s). 

In general, the principle of superposition is valid 
for small disturbances only. If the string is stretched 
too far, the individual displacements do not add to give 
the resultant displacement. Such waves are called 
nonlinear waves. In this course, we shall only be 
talking about linear waves which obey the 
superposition principle. 

When two or more waves pass through the same 
region simultaneously we say that the waves interfere 
or the interference of waves takes place. The principle 
of superposition says that the phenomenon of wave 
interference is remarkably simple. Each wave makes 
its own contribution to the disturbance no matter what 
the other waves are doing. 

15.7 INTERFERENCE OF WAVES 
GOING IN SAME DIRECTION 

Suppose two identical sources send sinusoidal 
waves of same angular frequency co in positive 
x-direction. Also, the wave velocity and hence, the 
wave number k is same for the two waves. One source 
may be started a little later than the other or the two 
sources 'may be situated at different points. The two 
waves arriving at a point then differ in phase. Let the 
amplitudes of the two waves be Al  and A2  and the two 
waves differ in phase by an angle 5. Their equations 
may be written as 

yi  = Al  sin(kx - cot) 

and 	y2  = A2 sin(kx - cot + 5). 

According to the principle of superposition, the 
resultant wave is represented by 

= yi + Y2 = Ai sin(kx - cot) + A2 sin(kx - cot + 5) 

= Al  sin(kx - cot) + A2 sin(kx - cot) cost, 
+ A2 cos(kx - cot)sinS 

= sin(kx - cot) (Al  + A2cosS) + cos(kx - cot) (A2sinS). 

We can evaluate it using the method described in 
Chapter-12 to combine two simple harmonic motions. 

If we write 

Al  + A2 toss = A cos e 

and 	 A2 sins = A sin c, 	 (ii) 

we get 

y = A [sin(kx - cot) cos c + cos(kx - cot) sin c] 

= A sin(kx - cot + c). 
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Thus, the resultant is indeed a sine wave of amplitude 
A with a phase difference E with the first wave. By (i) 
and (ii), 

A 2  = A 2  cos 2£ + A 2  sin 2E 

= (A1 + A2 cost)) 2  + (A2 sino 2  
Ai2 + A22 4.  

2A1 A2 cost) 

or, 	A = Ai2  + A22  + 2 A 1  A2 cost) . ... (15.18) 

A sin 	A2  sine, 
Also, tan c = 	 ... (15.19) 

A cos c Al + A2 cost) . 

As discussed in Chapter-12, these relations may be 
remembered by using a geometrical model. We draw 
a vector of length Al  to represent yi  = Al  sin(kx - cot) 
and another vector of length A2 at an angle b with the 
first one to represent y2  = A2 sin(kx - wt + 5). The 
resultant of the two vectors then represents the 
resultant wave y = A sin(kx - cot + c). Figure (15.10) 
shows the construction. 

Constructive and Destructive Interference 

We see from equation (15.18) that the resultant 
amplitude A is maximum when cost) = + 1, or 
o = 2 n it and is minimum when cost) = - 1, or 

= (2 n + 1) it, where n is an integer. In the first case, 
the amplitude is Al  + A2 and in the second case, it is 
I Al  - A21. The two cases are called constructive and 
destructive interferences respectively. The conditions 
may be written as, 

c)nstructive interference : 6 = 2 n it 
destructive interference : 5 = (2 n + 1) it 

Example 15.5 

Two waves are simultaneously passing through a string. 
The equations of the waves are given by 

y1  = Al sin k(x - vt) 

and 	y, = A, sin k(x - vt + x„), 

where the wave number k = 6.28 cm and x0 = 1'50 cm. 

The amplitudes are A, = 5.0 mm and A2 = 4.0 mm. Find 
the phase difference between the waves and the amplitude 
of the resulting wave. 

Solution : The phase of the first wave is k (x - vt) and of 
the second is k (x - vt + x0). 

The phase difference is, therefore, 

0= k xo  = (6'28 cm -1) (1.50 cm) = 2 it x 1.5 = 3 n.  

The waves satisfy the condition of destructive 
interference. The amplitude of the resulting wave is 
given by 

I AI  - A2 1 = 5.0 mm - 4.0 	= 1.0 mm. 

15.8 REFLECTION AND TRANSMISSION OF WAVES 

In figure (15.2), a wave pulse was generated at the 
left end which travelled on the string towards right. 
When the pulse reaches a particular element, the 
forces on the element from the left part of the string 
and from the right part act in such a way that the 
element is disturbed according to the shape of the 
pulse. 

The situation is different when the pulse reaches 
the right end which is clamped at the wall. The 
element at the right end exerts a force on the clamp 
and the clamp exerts equal and opposite force on the 
element. The element at the right end is thus acted 
upon by the force from the string left to it and by the 
force from the clamp. As this end remains fixed, the 
two forces are opposite to each other. The force from 
the left part of the string transmits the forward wave 
pulse and hence, the force exerted by the clamp sends 
a return pulse on the string whose shape is similar to 
the original pulse but is inverted. The original pulse 
tries to pull the element at the fixed end up and the 
return pulse sent by the clamp tries to pull it down. 
The resultant displacement is zero. Thus, the wave is 
reflected from the fixed end and the reflected wave is 
inverted with respect to the original wave. The shape 
of the string at any time, while the pulse is being 
reflected, can be found by adding an inverted image 
pulse to the incident pulse (figure 15.11). 

Figure 15.11 

Let us now suppose that the right end of the string 
is attached to a light frictionless ring which can freely 
move on a vertical rod. A wave pulse is sent on the 
string from left (Figure 15.12). When the wave reaches 
the right end, the element at this end is acted on by 
the force from the left to go up. However, there is no 
corresponding restoring forge from the right as the rod 
does not exert a vertical force on the ring. As a result, 
the right end is displaced in upward direction more 

... (15.20) 
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than the height of the pulse i.e., it overshoots the 
normal maximum displacement. The lack of restoring 
force from right can be equivalently described in the 
following way. An extra force acts from right which 
sends a wave from right to left with its shape identical 
to the original one. The element at the end is acted 
upon by both the incident and the reflected wave and 
the displacements add. Thus, a wave is reflected by 
the free end without inversion. 

---10rA0  

	ro 

4—r\o  

Figure 15.12 

Quite often, the end point is neither completely 
fixed nor completly _free to move. As an example, 
consider a light string attached to a heavier string as 
shown in figure (15.13). If a wave pulse is produced 
on the light string moving towards the junction, a part 
of the wave is reflected and a part is transmitted on 
the heavier string. The reflected wave is inverted with 
respect to the original one (figure 15.13a). 

4- 

4- 

(a) 
	

(b) 

Figure 15.13 

On the other hand, if the wave is produced on the 
heavier string, which moves towards the junction, a 
part will be reflected and a part transmitted, no 
inversion of wave shape will take place (figure 15.13b). 

The rule about the inversion at reflection may be 
stated in terms of the wave velocity. The wave velocity 
is smaller for the heavier string (v = JF/a ) and larger 
for the lighter string. The above observation may be 
stated as follows. 

If a wave enters a region where the wave velocity 
is smaller, the reflected wave is inverted. If it enters a 
region where the wave velocity is larger, the reflected 
wave is not inverted. The transmitted wave is never 
inverted. 

15.9 STANDING WAVES 

Suppose two sine waves of equal amplitude and 
frequency propagate on a long string in opposite  

directions. The equations of the two waves are given 
by 

yi  = A sin(wt - kx) 

and 	y2 = A sin(wt + kx + 

These waves interfere to produce what we call 
standing waves. To understand these waves, let us 
discuss the special case when S = 0. 

The resultant displacements of the particles of the 
string are given by the principle of superposition as 

Y = + Y2 

= A [sin(wt - kx) + sin(wt + kx)] 

= 2 A sin cat cos kx 

or, 	y = (2 A cos kx) sin wt. 	... (15.21) 

This equation can be interpreted as follows. Each 
particle of the string vibrates in a simple harmonic 
motion with an amplitude 12 A cos kx1. The 
amplitudes are not equal for all the particles. In 
particular, there are points where the amplitude 
12 A cos kx1 = 0. This will be the case when 

cos kx = 0 

kx =(n +1) it 
2 

x = [n + 
2 2 

where n is an integer. 

For these particles, cos kx = 0 and by equation 
(15.21) the displacement y is zero all the time. 
Although these points are not physically clamped, they 
remain fixed as the two waves pass them 
simultaneously. Such points are known as nodes. 

For the points where 1 cos kx I = 1, the amplitude 
is maximum. Such points are known as antinodes. 

We also see from equation (15.21) that at a time 
when sin cot = 1, all the particles for which cos kx is 
positive reach their positive maximum displacement. 
At this particular instant, all the particles for which 
cos kx is negative, reach their negative maximum 
displacement. At a time when sin cot = 0, all the 
particles cross their mean positions. Figure (15.14a) 
shows the change in the shape of the string as time 
passes. Figure (15.14b) shows the external appearance 
of the vibrating string. This type of wave is called a 
standing wave or a stationary wave. The particles at 
nodes do not move at all and the particles at the 
antinodes move with maximum amplitude. 

It is clear that the separation between consecutive 
nodes or consecutive anidnodes is ?./2. As the particles 
at the nodes do not move at all, energy cannot be 
transmitted across them. The main differences 
between a standing wave and a travelling wave are 
summarised below. 

or, 

or, 
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1. In a travelling wave, the disturbance produced 
in a region propagates with a definite velocity but in 
a standing wave, it is confined to the region where it 
is produced. 

2. In a travelling wave, the motion of all the 
particles are similar in nature. In a standing wave, 
different particles move with different amplitudes. 

3. In a standing wave, the particles at nodes 
always remain in rest. In travelling waves, there is no 
particle which always remains in rest. 

4. In a standing wave, all the particles cross their 
mean positions together. In a travelling wave, there is 
no instant when all the particles are at the mean 
positions together. 

5. In a standing wave, all the particles between 
two successive nodes reach their extreme positions 
together, thus moving in phase. In a travelling wave, 
the phases of nearby particles are always different. 

6. In a travelling wave, energy is transmitted from 
one region of space to other but in a standing wave, 
the energy of one region is always confined in that 
region. 

t=T 

Example 15.6 

Two travelling waves of equal amplitudes and equal 
frequencies move in opposite directions along a string. 
They interfere to produce a standing wave having the 
equation 

y = A cos kx sin cot 

in which A = PO mm, k = P57 cm and co = 78'5 s 
(a) Find the velocity of the component travelling waves. 
(b) Find the node closest to the origin in the region 
x> 0. (c) Find the antinode closest to the origin in the 
region x> 0. (d) Find the amplitude of the particle at 
x 2.33 cm. 

Solution : (a) The standing wave is formed by the 
superposition of the waves 

y1 
A 

= —
2 

sin(cot - kx) and 

A 
y2  = —

2 
sin(cot + kx). 

The wave velocity (magnitude) of either of the waves is 

	

o 	78.5 s -1  
v  k 1'57 cm -1 50 cm/s.  

(b) For a node, cos kx = 0. 

The smallest positive x satisfying this relation is given 
by 

kx =2 
2 

IC 
or, 	

x= 
	

3.14 	
- 1 cm. 

2 k 2 x 1.57 cm - 

(c) For an antinode, I cos kx I = 1. 

The smallest positive x satisfying this relation is given 
by 

kx = Tc 

or, 	 x = = 2 cm. 

      

Node 

         

               

              

t=o 

t=T/8 

t=T/4 

t=3T/8 

t=T/2 

t=5T/8 

t=3T/4 

t=7T/8 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

(d) The amplitude of vibration of the particle at x is given 
by IA cos kxI. For the given point, 

kx = (1'57 cm -1) (2'33 cm) = n = + • 

Thus, the amplitude will be 

(Po mm) I c0s(n + n/6) I = -2-- mm = 0.86 mm. 

Antinode 	 

(a) 

Antinode 
	

Antinode 	Antinode 

  

Antinode 

AT BOTH ENDS (QUALITATIVE DISCUSSION) 

Consider a string of length L fixed at one end to 
a wall and the other end tied to a tuning fork which 
vibrates longitudinally with a small amplitude (figure 
15.15). The fork produces sine waves of amplitude A 
which travel on the string towards the fixed end and 

(b) 

Figure 15.14 

15.10 STANDING WAVES ON A STRING FIXED 



1.6kg 

Figure 15.16 

Solution : The tension in the string is F = (1.6 kg)(10 m/s 2) 

= 16 N. 

The linear mass density is 	
20  g 

- 
50 cm 

- 0.04 kg/m. 

The fundamental frequency is 

- 
- 	1 F 1 .V 

2 L 

1 	16N  
2 x (0.4 m) 	0.

04 kg/m - 25 Hz. 
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get reflected from this end. The reflected waves which 
travel towards the fork are inverted in shape because 
they are reflected from a fixed end. These waves are 
again reflected from the fork. As the fork is heavy and 
vibrates longitudinally with a small amplitude, it acts 
like a fixed end and the waves reflected here are again 
inverted in shape. Therefore, the wave produced 
directly by the fork at this instant and the twice 
reflected wave have same shape, except that the twice 
reflected wave has already travelled a length 2L. 

Figure 15.15 

Suppose the length of the string is such that 
2L = X.. The two waves interfere constructively and the 
resultant wave that proceeds towards right has an 
amplitude 2A. This wave of amplitude 2A is again 
reflected by the wall and then by the fork. This twice 
reflected wave again interferes constructively with the 
oncoming new wave and a wave of amplitude 3A is 
produced. Thus, as time passes, the amplitude keeps 
on increasing. The string gets energy from the 
vibrations of the fork and the amplitude builds up. 
Same arguments hold if 2L is any integral' multiple of 

that is L = n&12 where n is an integer. 

In the above discussion, we have neglected any loss 
of energy due to air viscosity or due to lack of flexibility 
of string etc. In actual practice, energy is lost by 
several processes and the loss increases as the 
amplitude of vibration increases. Ultimately, a balance 
is reached when the rate of energy received from the 
fork equals the rate of energy lost due to various 
damping processes. In the steady state, waves of 
constant amplitude are present on the string from left 
to right as well as from right to left. These waves, 
propagating in opposite directions, produce standing 
waves on the string. Nodes and antinodes are formed 
and the amplitudes of vibration are large at antinodes. 
We say that the string is in resonance with the fork. 
The condition, L=0.12, for such a resonance may be 
stated in a different way. We have from equation (15.9) 

U = v2L, 
or, 	 ?=v/v. 

The condition for resonance is, therefore, 

L=n - 

The lowest frequency with which a standing wave can 
be set up in a string fixed at both the ends is thus 

1  	 vo  — 
2 LFIR. 	

... (15.23) 

This is called the fundamental frequency of the string. 
The other possible frequencies of standing waves are 
integral multiples of the fundamental frequency. The 
frequencies given by equation (15.22) are called the 
natural frequencies, normal frequencies or resonant 
frequencies. 

Example 15.7 

A 50 cm long wire of mass 20 g supports a mass of 1.6 kg 
as shown in figure (15.16). Find the fundamental 
frequency of the portion of the string between the wall 

and the pulley. Take g = 10 m/s 2. 

What happens if the resonance condition (15.23) is 
not met. The phase difference between the twice 
reflected wave and the new wave is not an integral 
multiple of 2 t. 

In fact, the phase difference with the new wave 
then depends on the number of reflections suffered by 
the orignal wave and hence, depends on time. At 
certain time instants, the amplitude is enhanced and 
at some other time instants, the amplitude is 
decreased. Thus, the average amplitude does not 
increase by interference and the vibrations are small. 
The string absorbs only a little amount of energy from 
the source. 

L  n v 
Or, 

2 v 
v_ nu  n 	 

2 L 2 L / or, ... (15.22) 
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15.11 ANALYTIC TREATMENT OF VIBRATION 
OF A STRING FIXED AT BOTH ENDS 

Suppose a string of length L is kept fixed at the 
ends x = 0 and x = L and sine waves are produced on 
it. For certain wave frequencies, standing waves are 
set up in the string. ,Due to the multiple reflection at 
the ends and damping effects, waves going in the 
positive x-direction interfere to give a resultant wave 

yi  = A sin(kx - cot). 

Similarly, the waves going in the negative x-direction 
interfere to give the resultant wave 

y2  = A sin(kx + cot + 61. 

The resultant displacement of the particle of the string 
at position x and at time t is given by the principle of 
superposition as 

y = + y2  = A [ sin(kx - cot) + sin(kx + cot + 5)] 

= 2A sin( kx + —6 ] cos( wt + —2°  . 
2 	 (i) 

If standing waves areformed, formed, the ends x = 0 and x = L 
must be nodes because they are kept fixed. Thus, we 
have the boundary conditions 

y= 0 at x= 0 for all t 

and 	y = 0 at x = L for all t. 

The first boundary condition is satisfied by equation 

(i) if sin = 0 

or, 	 5=0. 

Equation (i) then becomes 

y = 2A sin kx cos cot 	... (15.24) 

The second boundary condition will be satisfied if 

sin kL = 0 

or, 	kL = n n 	where n = 1,2,3,4,5, ... 

2 n L 
or, 	=nn 

If the length of the string is an integral multiple 
of X/2, standing waves are produced. Again writing 

X = vT = , equation (15.25) becomes 

n v n 	 
v — = 2 — 11 

2 L LIF/  

which is same as equation (15.22). 

The lowest possible frequency is 

v 	1 
v°  = 2 L = 2L 

This is the fundamental frequency of the string. 

The other natural frequencies with which standing 
waves can be formed on the string are 

2  	1st overtone or 
v1  = 2 vo  = 2 L ✓F/P 	2nd harmonic 

3  	2nd overtone or 
v2  = 3 v°  = 2 L ✓F/P 	3rd harmonic 

3rd overtone or v, = 4 vo  = —
4 

2 L 	 4th harmonic 

etc. In general, any integral multiple of the 
fundamental frequency is an allowed frequency. These 
higher frequencies are called overtones. Thus, 
v1  = 2 vo  is the first overtone, v2  = 3 vo  is the second. 
overtone etc. An integral multiple of a frequency is 
called its harmonic. Thus, for a string fixed at both The 
ends, all the overtones are harmonics of the 
fundamental frequency and all the harmonics of the 
fundamental frequency are overtones. 

This property is unique to the string and makes it 
so valuable in musical instruments such as violin, 
guitar, sitar, santoor, sarod etc. 

Normal Modes of Vibration 

When a string vibrates according to equation 
(15.24) with some natural frequency, it is said to 
vibrate in a normal mode. For the nth normal mode 

k = 121' and the equation for the displacement is, from 

equation (15.24), 

cos cot. y = 2 A sin
n n  x 	

... (15.27) 

For fundamental mode, n = 1 and the equation of 
the standing wave is, from (15.27), 

it x 
y = 2 A sin —

L 
cos cot. 

The amplitude of vibration of .the particle at x is 
2A sin(rc x/L) which is zero at x = 0 and at x = L. It is 
maximum at x = L/2 where sin(n x/L) = 1. Thus, we 
have nodes at the ends and just one antinode at the 
middle point of the string. 

In the first overtone, also known as the second 
harmonic, the constant n is equal to 2 and 
equation(15.27) becomes 

y = 2 A sin 
2 n x 

cos cot. 

The amplitude 2A sin x  is zero at x = 0, L/2 and L 

and is maximum at /A and 31/4. The middle point of 
the string is also a node and is not displaced during 
the vibration. The points x = L/4 and x = 3L/4 are the 
antinodes. 

In the second overtone, n = 3 and equation(15.27) 
becomes 

y = 2A sin
3 n x 

cos cot. 

x 
or, 	L = n X 

2 
... (15.25) 

... (15.26) 
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The nodes are at x = 0, L/3, 2L/3 and L where 
sin 3  L  x  = 0. There are two nodes in between the ends. 

Antinodes occur midway between the nodes, i.e., at 
x = L/6, L/2 and 5L/6. 

Similarly, in the nth overtone, there are n nodes 
between the ends and n+1 antinodes midway between 
the nodes. The shape of the string as it vibrates in a 
normal mode is shown in figure (15.17) for some of the 
normal modes. 

(a) 
N 

(b) 
N 

Figure 15.17 

When the string of a musical instrument such as 
a sitar is plucked aside at some point, its shape does 
not correspond to any of the normal modes discussed 
above. In fact, the shape of the string is a combination 
of several normal modes and thus, a combination of 
frequencies are emitted. 

VIBRATION OF A STRING FIXED AT ONE END 

Standing waves can be produced on a string which 
is fixed at one end and whose other end is free to move 
in a transverse direction. Such a free end can be nearly 
achieved by connecting the string to a very light 
thread. 

If the vibrations are produced by a source of 
"correct" frequency, standing waves are produced. If 
the end x = 0 is fixed and x = L is free, the equation is 
again given by (15.24) 

y = 2A sin kx cos cot 

with the boundary condition that x = L is an antinode. 
The boundary condition that x = 0 is a node is 
automatically satisfied by the above equation. For 
x = L to be an antinode, 

sin kL = ± 1 

or, 	 kL = (n +11 7c
2  

27

A. 	2 
d, [ri  ± 1 

Or,
J7C 

2Lv 
 — n +

2
-
1 JI 

or,  

1 
n + 

2 	 or, 	v = 	+
2 	

— 	CIF/µ.... (15.28) 
 2L 2L 

These are the normal frequencies of vibration. The 
fundamental frequency is obtained when n = 0, i.e., 

vo  = v / 4L 

The overtone frequencies are 
3v 	,., 

v1= 	= 3v0  

5v 
V2 = 71--E = 5V0 

V3 =
v 

= 7vo  etc. 
4L 

We see that all the harmonics of the fundamental 
are not the allowed frequencies for the standing waves. 
Only the odd harmonics are the overtones. Figure 
(15.18) shows shapes of the string for some of the 
normal modes. 

15.13 LAWS OF TRANSVERSE VIBRATIONS 
OF A STRING : SONOMETER 

The fundamental frequency of vibration of a string 
fixed at both ends is given by equation (15.26). From 
this equation, one can immediately write the following 
statements known as "Laws of transverse vibrations 
of a string". 

(a) Law of length — The fundamental frequency of 
vibration of a string (fixed at both ends) is inversely 
proportional to the length of the string provided its 
tension and its mass per unit length remain the same. 

v oc  11 L if F and IA are constants. 

(b) Law of tension — The fundamental frequency of 
a string is proportional to the square root of its tension 
provided its length and the mass per unit length 
remain the same. 

v 	:F if L and id are constants. 

(c) Law of mass — The fundamental frequency of a 
string is inversely proportional to the square root of the 
linear mass density, i.e., mass per unit length provided 
the length and the tension remain the same. 

A 
	

A 

(c) 

!I 
N 

j 	 A 	 A 
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v cx 	if L and F are constants. 

i-t 
These laws may be experimentally studied with an 

apparatus called sonometer. 
A typical design of a sonometer is shown in figure 

(15.19). One has a wooden box, also called the sound 
box, on which two bridges A and B are fixed at the 
ends. A metal wire C is welded with the bridges and 
is kept tight. This wire C is called the auxiliary wire. 
Another wire D, called the experimental wire is fixed 
at one end to the bridge A and passes over the second 
bridge B to hold a hanger H on which suitable weights 
can be put. Two small movable bridges C1  and C2 may 
slide under the auxiliary wire and another two 
movable bridges D1  and D2 may slide under the 
experimental wire. 

Figure 15.19 

The portion of the wire between the movable 
bridges forms the "string" fixed at both ends. By sliding 
these bridges, the length of the wire may be changed. 
The tension of the experimental wire D may be 
changed by changing the weights on the hanger. One 
can remove the experimental wire itself and put 
another wire in its place thereby changing the mass 
per unit length. 

The waves can be produced on the wire by 
vibrating a tuning fork (by holding its stem and gently 
hitting a prong on a rubber pad) and pressing its stem 
on the platform of the sound box of the sonometer. The 
simple harmonic disturbance is transmitted to the wire 
through the bridges. The frequency of vibration is 
same as that of the tuning fork. If this frequency 
happens to be equal to one of the natural frequencies 
of the wire, standing waves with large amplitudes are 
set up on it. The tuning fork is then said to be in 
"resonance" or in "unison" with the wire. 

How can one identify whether the tuning fork is 
in resonance with the wire or not ? A simple method 
is to place a small piece of paper (called a paper rider) 
at the middle point of the wire between the movable 
bridges. When vibrations in the wire are induced by 
putting the tuning fork in contact with the board, the 
paper-piece also vibrates. If the tuning fork is in 
resonance with the fundamental mode of vibration of  

the wire, the paper-piece is at the antinode. Because 
of the large amplitude of the wire there, it violently 
shakes and quite often jumps off the wire. Thus, the 
resonance can be detected just by visible inspection. 

The paper-piece is also at an antinode if the wire 
is vibrating in its 3rd harmonic, although the 
amplitude will not be as large as it would be in the 
fundamental mode. The paper-piece may shake but not 
that violently. 

Another good method to detect the resonance is 
based on the interference of sound waves of different 
frequencies. The tuning fork is sounded by gently 
hitting a prong on a rubber pad and the wire is plucked 
by hand. The resultant sound shows a periodic increase 
and decrease in intensity if the frequency of the fork 
is close (but not exactly equal) to one of the natural 
frequencies of the wire. This periodic variation in 
intensity is called beats that we shall study in the next 
chapter. The length is then only slightly varied till the 
beats disappear and that ensures resonance. 

Law of Length 

To study the law of length, only the experimental 
wire is needed. The wire is put under a tension by 
placing suitable weights (say 3 to 4 kg) on the hanger. 

A tuning fork is vibrated and the length of the wire 
is adjusted by moving the movable bridges such that 
the fork is in resonance with the fundamental mode 
of vibration of the wire. The frequency v of the tuning 
fork and the length 1 of the wire resonating with it are 
noted. The experiment is repeated with different 
tuning forks and the product v / is evaluated for each 
fork which should be a constant by the law of length. 

Law of Tension 

To study the law of tension, one may proceed as 
follows. A particular length of the experimental wire 
is selected by keeping the movable bridges D1, D2 

fixed. The auxiliary wire is plucked. The vibration is 
transmitted to the experimental wire through the 
sound box. By adjusting the movable bridges 
C1  and C2, the fundamental frequency of the auxiliary 
wire is made equal to the fundamental frequency of 
the experimental wire by testing that the two wires 
resonate with each other. The tension in the 
experimental wire is changed and the length of the 
auxiliary wire is again adjusted to resonate with it. 
The experiment is repeated several times with 
different tensions and the corresponding lengths of the 
auxiliary wire are noted. Suppose l' represents the 
length of the auxiliary wire resonating with the fixed 
length of the experimental wire when the tension in 
it is T. Also suppose v is the frequency of vibration of 
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the wires in their fundamental modes in this situation. 
Then, 

v c< —
1 

according to the law of length 
/' 

and v «TT' according to the law of tension. 

Hence, l' « lArr. 

The product PIT-  may be evaluated from the 
experiments which should be a constant. 

Why do we have to use the auxiliary wire in the 
above scheme and not a tuning fork ? That is because, 
to adjust for the resonance, the variable quantity 
should be continuously changeable. As the length of 
the experimental wire is kept fixed and its frequency 
is to be compared as a function of tension, we need a 
source whose frequency can be continuously changed. 
Choosing different tuning forks to change the 
frequency will not work as the forks are available for 
descrete frequencies only. 

Law of Mass 

To study the law of mass, the length and the 
tension are to be kept constant and the mass per unit 
length is to be changed. Again, the auxiliary wire is 
used to resonate with the fixed length of the 
experimental wire as was suggested during the study 
of the law of tension. A fixed length of the 
experimental wire is chosen between the bridges 
D1  and D2 and a fixed tension is applied to it. The 
auxiliary wire is given a tension by hanging a certain 
load and its length is adjusted so that it resonates with 
the experimental wire. The experiment is repeated 
with different experimental wires keeping equal 
lengths between the movable bridges and applying 
equal tension. Each time the length l' of the auxiliary 
wire is adjusted to bring it in resonance with the 
experimental wire. The mass per unit length of each 
experimental wire is obtained by weighing a known 
length of the wire. We have 

v oc 1//' according to the law of length 

and v ec 1/'T according to the law of mass. 

Thus, /' ccVT.1 . 

The law of mass is thus studied by obtaining 

each time which should be a constant. 

Example 15.8 

In a sonometer experiment, resonance is obtained when 
the experimental wire has a length of 21 cm between the 
bridges and the vibrations are excited by a tuning fork 
of frequency 256 Hz. If a tuning fork of frequency 384 Hz 
is used, what should be the length of the experimental 
wire to get the resonance? 

Solution : By the law of length, 1, v1  = 12  v2  

or, 	/ = /1  = 	x 21 cm = 14 cm. 2 v2 	384  

15.14 TRANSVERSE AND LONGITUDINAL WAVES 

The wave on a string is caused by the 
displacements of the particles of the string. These 
displacements are in a direction perpendicular to the 
direction of propagation of the wave. If the disturbance 
produced in a wave has a direction perpendicular to 
the direction of propagation of the wave, the wave is 
called a transverse wave. The wave on a string is a 
transverse wave. Another example of transverse wave 
is the light wave. It is the electric field which changes 
its value with space and time and the changes are 
propagated in space. The direction of the electric field 
is perpendicular to the direction of propagation of light 
when light travels in free space. 

Sound waves are not transverse. The particles of 
the medium are pushed and pulled along the direction 
of propagation of sound. We shall study in some detail 
the mechanism of sound waves in the next chapter. If 
the disturbance produced as the wave passes is along 
the direction of the wave propagation, the wave is 
called a longitudinal wave. Sound waves are 
longitudinal. 

All the waves cannot be characterised as either 
longitudinal or transverse. A very common example of 
a wave that is neither longitudinal nor transverse is 
a wave on the surface of water. When water in a steady 
lake is disturbed by shaking a finger in it, waves are 
produced on the water surface. The water particles 
move in elliptic or circular path as the wave passes 
them. The elliptic motion has components both along 
and perpendicular to the direction of propagation of 
the wave. 

15.15 POLARIZATION OF WAVES 

Figure 15.20 

Suppose a stretched string goes through a slit 
made in a cardboard which is placed perpendicular to 
the string (figure 15.20). If we take the X-axis along 
the string, the cardboard will be in Y-Z plane. Suppose 
the particles of the string are displaced in y-direction 
as the wave passes. If the slit in the cardboard is also 
along the Y-axis, the part of the string in the slit can 
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vibrate freely in the slit and the wave will pass 
through the slit. However, if the cardboard is rotated 
by 90° in its plane, the slit will point along the Z-axis. 
As the wave arrives at the slit, the part of the string 
in it tries to move along the Y-axis but the contact 
force by the cardboard does not allow it. The wave is 
not able to pass through the slit. If the slit is inclined 
to the Y-axis at some other angle, only a part of the 
wave- is transmitted and in the transmitted wave the 
disturbance is produced parallel to the slit. Figure 
(15.21) suggests the same arrangement with two 
chairs. 

Figure 15.21 

If the disturbance produced is always along a fixed 
direction, we say that the wave is linearly polarized 
in that direction. The waves considered in this chapter 
are linearly polarized in y-direction. Similarly, if a 
wave produces displacement along the z-direction, its 
equation is given by z = A sin oi(t - x/v) and it is a 
linearly polarized wave, polarized in z-direction. 
Linearly polarized waves are also called plane 
polarized. 

If each particle of the string moves in a small circle 
as the wave passes through it, the wave is called 
circularly polarized. If each particle goes in ellipse, the 
wave is called elliptically polarized. 

Finally, if the particles are randomly displaced in 
the plane perpendicular to the direction of propagation, 
the wave is called unpolarized. 

A circularly polarized or unpolarized wave passing 
through a slit does not show change in intensity as 
the slit is rotated in its plane. But the transmitted 
wave becomes linearly polarized in the direction 
parallel to the slit. 

Worked Out Examples 

1. The displacement of a particle of a string carrying a 
travelling wave is given by 

y = (3.0 cm) sin 6.28(0.50x - 50 t), 
where x is in centimeter and t in second. Find (a) the 
amplitude, (b) the wavelength, (c) the frequency and (d) 
the speed of the wave. 

Solution : Comparing with the standard wave equation 

y = Asin(kx - cot) 

= Asin2n 

we see that, 

amplitude = A = 3'0 an, 

1 
wavelength = X = 0.50 	

= 2.0 cm, 

1 
and the frequency = v —

T 
= 50 Hz. 

The speed of the wave is v = vX 

= (50 s (2.0 cm) 

= 100 cm/s. 

2. The equation for a wave travelling in x-direction on a 
string is 

y = (3.0 cm) sin[(3'14 cm - ') x - (314 s 1)t]. 

(a) Find the maximum velocity of a particle of the string. 

(b) Find the acceleration of a particle at x = 6.0 cm at 
time t = 0.11 s. 

Solution : 

(a) The velocity of the particle at x at time t is 

v =
at 
 = (3.0 cm) (- 314 s 	cos[(3.14 cm - x - (314 s -1)t] 

= (- 9.4 m/s) cos[(3'14 cm -1) x - (314 s ')t]. 

The maximum velocity of a particle will be 

v = 9'4 m/s. 

(b) The acceleration of the particle at x at time t is 

a 
 = at

= - (9'4 m/s) (314 s sin[(3'14 cm -1) x - (314 s -')t] at 

= - (2952 m/s 2) sin[(3.14 cm -1) x - (314 s 

The acceleration of the particle at x = 6.0 cm 'at time 

t = 0-11 s is a = - (2952 m/s 2) sin[6n - 	= 0. 
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3. A long string having a cross-sectional area 0.80 mm 2  and 
density 12'5 g/cm 3, is subjected to a tension of 64 N along 
the X-axis. One, end of this string is attached to a vibrator 
moving in transverse direction at a frequency of 20 Hz. 
At t = 0, the source is at a maximum displacement 
y = 1•0 cm. (a) Find the speed of the wave travelling on 
the string. (b) Write the equation for the wave. (c) What 
is the displacement of the particle of the string at 
x = 50 cm at time t = 0'05 s ? (d) What is the velocity of 
this particle at this instant ? 

Solution : 
(a) The mass of 1 m long part of the string is 

m= (0'80 mm 2) X (1 In) X (12.5 g/cm 3) 

= (0'80 x 10 -6 m 3) X (12'5 X 103  kg/m 3) 

=•0.01 kg. 

The linear mass density is µ = 0.01 kg/m. The wave 
speed is u =11'4 

64 N  
80 m/s. 

0.01 kg/m 

(b) The amplitude of the source is A = 1'0 cm and the 
frequency is v = 20 Hz. The angular frequency is 

= 2nv = 40ns -1. Also at t = 0, the displacement is equal 
to its amplitude i.e., at t = 0, x = A. The equation of 
motion of the source is, therefore, 

y = (1.0 cm) cos[(40n s ') t] . 	 (i) 

The equation of the wave travelling on the string along 
the positive X-axis is obtained by replacing t with 
t - x/v in equation (i). It is, therefore, 

y = (1.0 cm) cos[(40ns -) {t - 
xll 

= (1.0 cm) cos[(40ns 	- 	m 1)xl , 	(ii) 

where the value of u has been put from part (a). 

(c) The displacement of the particle at x = 50 cm at time 

t = 0'05 s is by equation (ii), 

y = (1.0 cm) cos[(40n s ') (0.05 s) - 	m ') (0.5 m)] 

= (1.0 cm) cos 2n - 4i] 

1'0 cm  
- 0.71 cm. 

✓2 

(d) The velocity of the particle at position x at time t is, 
by equation (ii), 

u 	= - (1'0 cm) (40n s ') sin[(40n s ') t - m 	. at 	 2 
Putting the values of x and t, 

v = - (40n cm/s) sin(2n - 

= /2 
40n cm/s = 89 cm/s.  

4. The speed of a transverse wave, going on a wire having 
a length 50 cm and mass 5.0 g, is 80 m/s. The area of 
cross-section of the wire is 1.0 mm 2  and its Young's 
modulus is 16 X 10 11  N/m 2. Find the extension of the wire 
over its natural length. 

Solution : The linear mass density is 

- 5 x 10 -3 kg  
50 x 10-2m

- 10 x 10 -2 k. 

The wave speed is u = VF/1.1. 

Thus, the tension is F = 1.w 2  

=[1.0 x 	 =64 

The Young's modulus is given by 

F/A  
Y = 

AL/L 

The extension is, therefore, 

FL 
AY 

(64 N) (0'50 m)  
- 0 02 mm. 

(1.0x 10-em 2) X (16 x 10 11 N/m 2)  

5. A uniform rope of length 12 m and mass 6 kg hangs 
vertically from a rigid support. A block of mass 2 kg is 
attached to the free end of the rope. A transverse pulse 
of wavelength 0'06 m is produced at the lower end of the 
rope. What is the wavelength of the pulse when it reaches 
the top of the rope ? 

Solution : As the rope is heavy, its tension will be different 
at different points. The tension at the free end will be 
(2 kg)g and that at the upper end it will be (8 kg)g. 

Figure 15-W1 

We have, 	 v vX 

or, 	 ✓FAA =v_ 

or, 	 iF/X v fp. 	 (i) 

The frequency of the wave pulse will be the same 
everywhere on the rope as it depends only on the 
frequency of the source. The mass per unit length is also 
the same throughout the rope as it is uniform. Thus, by 

. 
(i), — is constant. 

Hence, 
	J(2 kg)g  ✓(8 kg)g  

0.06m 	X, 

where X, is the wavelength at the top of the rope. This 
gives X, = 0.12 m. 

v 
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6. Two waves passing through a region are represented by 

y = (1.0 cm) sin[(3.14 cm -1)x - (157 s -1)t] 

and 
	y = (1.5 cm) sin[(1.57 cm - ')x - (314 s 

Find the displacement of the particle at x = 4.5 cm at time 
t = 5.0 ms. 

Solution : According to the principle of superposition, each 
wave produces its disturbance independent of the other 
and the resultant disturbance is equal to the vector sum 
of the individual disturbances. The displacements of the 
particle at x = 4.5 cm at time t = 5.0 ms due to the two 
waves are, 

= (1.0 cm) sin[(3.14 cm -1) (4.5 cm) 

- (157 s 	(5.0 x 10 -3  SA 

= (1.0 cm) sin[4.5n - 23-4] 

= (1.0 cm) sin[4n + n/4]  - PO cm 

and 

y2  = (1.5 cm) sin[(1.57 cm 1) (4.5 cm) 

- (314 s 	(5.0 x 10 3  s)] 

= (1'5 cm) sin[2.25n - 

= (1.5 cm) siii[2n - 7c/4] 

7C 	5 cm 
= - (1'5 cm) sin

4 
 = 

1 12 

The net displacement is 

- 0.5 cm  
Y 	+ Y2 =

✓2
0.35 cm. 

7. The vibrations of a string fixed at both ends are described 
by the equation 

y = (5.00 mm) sin[(1.57 cm -1) x] sin[(314 s t] , 

(a) What is the maximum displacement of the particle at 
x = 5.66 cm ? (b) What are the wavelengths and the wave 
speeds of the two transverse waves that combine to give 
the above vibration ? (c) What is the velocity of the 
particle at x = 5'66 cm at time t = 2'00 s ? (d) If the 
length of the string is 10.0 cm, locate the nodes and the 
antinodes. How many loops are formed in the 
vibration ? 

Solution : 
(a) The amplitude of the vibration of the particle at 
position x is 

A = I (5'00 mm) sin[(1.57 cm -1) x] I 

For 	x = 5.66 cm, 

A = (5'00 mm) sin [Lc  x 5'66 
2  

(5.00 mm) sin [2.5 Tt -11 
3 

(5'00 mm) cos 3 
 

= 2.50 mm. 

(b) From the given equation, the wave number 

k = 1'57 cm -1  and the angular frequency co = 314 s -1. 
Thus, the wavelength is 

- 2n -  2 x 3'14 
1 -400 cm 

k 1.57 cm- 

to 	314 	 - and the frequency is v = - 
2n 2 x 3614 

50 s 1. 
 

The wave speed is v = vX = (50 s (4'00 cm) = 2'00 m/s. 

(c) The velocity of the particle at position x at time t is 
given by 

o = at = (5.00 mm) sin[(1.57 cm -1) x] 

[314 s cos(314 s t] 

= (157 cm/s) sin(1.57 cm -1) x cos(314 s 5t. 

Putting x = 5.66 cm and t = 2'00 s, the velocity of this 
particle at the given instant is 

(157 cm/s) 	+ cos(200 n) 

= (157 cm/s) x cos lc  x 1 = 78.5 cm/.9 

(d) the nodes occur where the amplitude is zero i.e., 

sin(1.57 cm -1) x O. 

[7t- 1 
or, 	 cm ) x = nn, 

where n is an integer. 

Thus, 	 x = 2 n cm. 

The nodes, therefore, occur at x = 0, 2 cm, 4 cm, 6 cm, 
8 cm and 10 cm. Antinodes occur in between them i.e., 
at x = 1 cm, 3 cm, 5 cm, 7 cm and 9 cm. The string 
vibrates in 5 loops. 

8. A guitar string is 90 cm long and has a fundamental 
frequency of 124 Hz. Where should it be pressed to 
produce a fundamental frequency of 186 Hz ? 

Solution : The fundamental frequency of a string fixed at 
both ends is given by 

v FE. 
2 L 	1.1 

As F and 	
v1 L2 

are fixed, 
72 

= 
L, 

v, 	124 Hz  fan  or, 
	

L - 2  L - 	CM,\  - 60 cm. 
186 Hz 

Thus, the string should be pressed at 60 cm from an 
end. 
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9. A sonometer wire has a total length of 1 m between the 
fixed ends. Where should the two bridges be placed below 
the wire so that the three segments of the wire have their 
fundamental frequencies in the ratio 1 : 2 : 3 ? 

Solution : Suppose the lengths of the three segments are 
L„ L2  and L2  respectively. The fundamental frequencies 

are 

v 
2 L, 

v
2 

= 
2 L ✓,1 F/p 

2 
 

v 
2 1. 

1 	 
✓FAL 

	

3 	2 

so that 	v,L1  = v2L2  - v3/.3. 

As : v2 : v, - 1 : 2 : 3, we have 

v2 =. 2 v1  and v3  - 3 v, so that by (I) 

v 	L1  
L L 2 	1 	2 

•2 

V L, 
and 	La = 

v 1  3 
L 	• 

,  

As L, + L2 1" L3  = 1 m, 

we get L ,(1 + 	= 1 m 

6 
Or, 	

ri m  

L2 = = 
2 11

3m 
 

L3= 
	2 

m. = = — 
3 11 

One bridge should be placed at —
6 m from one end and 11 

the other should be placed at —21 
 m from the other end. 

1 

10. A wire having a linear mass density 5.0 x 10-3  kg/m is 
stretched between two rigid supports with a tension of 
450 N. The wire resonates at a frequency of 420 Hz. The 
next higher frequency at which the same wire resontites 
is 490 Hz. Find the length of the wire. 

Solution : Suppose the wire vibrates at 420 Hz in its nth 
harmonic and at 490 Hz in its (n + 1)th harmonic. 

420 sVF/ii 
2 L 

	

and 	490 s - 
2 
 LVF/p. 

490 n + 
n 
 1 

This gives ,T2-6  

	

or, 	n 6. 

Putting the value in (i), 

	

420 s _ 1  6 	450 N 	900 = —
2 L /15.0 x 10 3  kg/m 

	

or, 	L =
900 
420

m = 2.1 m. 

(i) 

Thus, 

and 

L  m/s 

0 

QUESTIONS FOR SHORT ANSWER 

1. You are walking along a seashore and a mild wind is 
blowing. Is the motion of air a wave motion ? 

2. The radio and TV programmes, telecast at the studio, 
reach our antenna by wave motion. Is it a mechanical 
wave or nonmechanical ? 

3. A wave is represented by an equation 
y = c1  sin (c2x + c3t). In which direction is the wave going ? 
Assume that c1, c2  and c3  are all positive. 

4. Show that the particle speed can never be equal to the 
wave speed in a sine wave if the amplitude is less than 
wavelength divided by 2E. 

5. Two wave pulses identical in shape but inverted with 
respect to each other are produced at the two ends of a 
stretched string. At an instant when the pulses reach 
the middle, the string becomes completely straight. 
What happens to the energy of the two pulses ? 

6. Show that for a wave travelling on a string 

Ymax V MLIX 

V. amax 

where the symbols have usual meanings. Can we use 
componendo and dividendo taught in algebra to write 

ym. + vm. v. + am. 

ymax - um. Umex -  a. 

7. What is the smallest positive phase constant which is 
equivalent to 7'5 7v ? 

8. A string clamped at both ends vibrates in its 
fundamental mode. Is there any position (except the 
ends) on the string which can be touched without 
disturbing the motion ? What if the string vibrates in 
its first overtone ? 
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OBJECTIVE I 

1. A sine wave is travelling in a medium. The minimum 
distance between the two particles, always having same 
speed, is 

(c) x/2 	(d) X. (a) X/4 	(b) 
2. A sine wave is travelling in a medium. A particular 

particle has zero displacement at a certain instant. The 
particle closest to it having zero displacement is at a 
distance 
(a) X/4 	(b) Xr3 	(c) X/2 	(d) X. 

3. Which of the following equations represents a wave 
travelling along Y-axis ? 
(a) x = A sin (ky - cot) 	(b) y = A sin (kx - cot) 
(c) y = A sin ky cos cot 	(d) y = A cos ky sin cot. 

4. The equation y - A sin 2(kx - cot) represents a wave 
motion with 
(a) amplitude A, frequency co/27c 
(b) amplitude A/2, frequency co/7t 
(c) amplitude 2A, frequency co/47c 
(d) does not represent a wave motion. 

5. Which of the following is a mechanical wave ? 
(a) Radio waves. 	 (b) X-rays. 
(c) Light waves. 	 (d) Sound waves. 

6. A cork floating in a calm pond executes simple harmonic 
motion of frequency v when a wave generated by a boat 
passes by it. The frequency of the wave is 
(a) v 	(b) v/2 	(c) 2v 	(d) ✓2v. 

7. Two strings A and B, made of same material, are 
stretched by same tension. The radius of string A is 
double of the radius of B. A transverse wave travels on 
A with speed v, and on B with speed v, . The ratio 
DA  /vB  is 
(a) 1/2 	(b) 2 	(c) 1/4 	(d) 4. 

8. Both the strings, shown in figure (15-Q1), are made of 
same material and have same cross-section. The pulleys 
are light. The wave speed of a transverse wave in the 
string AB is v, and in CD it is v, . Then v, /v, is 
(a) 1 	(b) 2 	(c) ✓2 	(d) 1/✓2. 

Figure 15-Q1 

9. Velocity of sound in air is 332 m/s. Its velocity in vacuum 
will be 
(a) > 332 m/s 	 (b) = 332 m/s 
(c) < 332 nVs 	 (d) meaningless. 

10. A wave pulse, travelling on a two -piece string, gets 
partially reflected and partially transmitted at the 
junction. The reflected wave is inverted in shape as 
compared to the incident one. If the incident wave has 
wavelength and the transmitted wave X', 

(a) X' > X 	(b) X' = X 	(c) X' < 
(d) nothing can be said about the relation of X and X'. 

11. Two waves represented by y = a sin(cot - kx) and 
y = a cos(cot - kx) are superposed. The resultant wave 
will have an amplitude 
(a) a 	(b) ✓2a 	(c) 2a 	(d) 0. 

12. Two wires A and B, having identical geometrical 
construction, are stretched from their natural length by 
small but equal amount. The Young's modulus of the 
wires are YA  and YB  whereas the densities are 
PA  and N. It is given that YA  > YB  and pA  > pi,. A 
transverse signal started at one end takes a time t, to 
reach the other end for A and t2  for B. 
(a) t,< t,. 	 (b) t, = t, 	(c) t, > t2 . 
(d) The information is insufficient to find the relation 
between t, and t2 . 

13. Consider two waves passing through the same string. 
Principle of superposition for displacement says that the 
net displacement of a particle on the string is sum of the 
displacements produced by the two waves individually. 
Suppose we state similar principles for the net velocity 
of the particle and the net kinetic energy of the particle. 
Such a principle will be valid for 
(a) both the velocity and the kinetic energy 
(b) the velocity but not for the kinetic energy 
(c) the kinetic energy but not for the velocity 
(d) neither the velocity nor the kinetic energy. 

14. Two wave pulses travel in opposite directions on a string 
and approach each other. The shape of one pulse is 
inverted with respect to the other. 
(a) The pulses will collide with each other and vanish 
after collision. 
(b) The pulses will reflect from each other i.e., the pulse 
going towards right will finally move towards left and 
vice versa. 
(c) The pulses will pass through each other but their 
shapes will be modified. 
(d) The pulses will pass through each other without any 
change in their shapes. 

15. Two periodic waves of amplitudes A, and A2  pass 
through a region. If A1  > A, , the difference in the 
maximum and minimum resultant amplitude possible is 
(a) 2A, (b) 2A2 (c) A, + A2  (d) A, - A2. 

16. Two waves of equal amplitude A, and equal frequency 
travel in the same direction in a medium. The amplitude 
of the resultant wave is 
(a) 0 	(b) A 	(c) 2A 	(d) between 0 and 2A. 

17. Two sine waves travel in the same direction in a 
medium. The amplitude of each wave is A and the phase 
difference between the two waves is 120°. The resultant 
amplitude will be 
(a) A 	(b) 2A 	(c) 4A 	(d) ✓2A. 

18. The fundamental frequency of a string is proportional 
to 
(a) inverse of its length 	(b) the diameter 
(c) the tension 	 (d) the density. 
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19. A tuning fork of frequency 480 Hz is used to vibrate a 
sonometer wire having natural frequency 240 Hz. The 
wire will vibrate with a frequency of 
(a) 240 Hz 	 (b) 480 Hz 
(c) 720 Hz 	 (d) will not vibrate. 

20. A tuning fork of frequency 480 Hz is used to vibrate a 
sonometer wire having natural frequency 410 Hz. The 
wire will vibrate with a frequency 
(a) 410 Hz 	(b) 480 Hz 	(c) 820 Hz 	(d) 960 Hz. 

21. A sonometer wire of length l vibrates in fundamental 
mode when excited by a tuning fork of frequency 416 Hz. 
If the length is doubled keeping other things same, the 

string will 
(a) vibrate with a frequency of 416 Hz 
(b) vibrate with a frequency of 208 Hz 
(c) vibrate with a frequency of 832 Hz 
(d) stop vibrating. 

22. A sonometer wire supports a 4 kg load and vibrates in 
fundamental mode with a tuning fork of frequency 
416 Hz. The length of the wire between the bridges is 
now doubled. In order to maintain fundamental mode, 
the load should be changed to 
(a) 1 kg 	(b) 2 kg 	(c) 8 kg 	(d) 16 kg.  

OBJECTIVE H 

1. A mechanical wave propagates in a medium along the 
X-axis. The particles of the medium 
(a) must move on the X-axis 
(b) must move on the Y-axis 
(c) may move on the X-axis 
(d) may move on the Y-axis. 

2. A transverse wave travels along the Z-axis. The particles 
of the medium must move 
60, along the Z-axis 	(b) along the X-axis 
(c) along the Y-axis 	(d) in the X-Y plane. 

3. Longitudinal waves cannot 
(a) have a unique wavelength 

	
(b) transmit energy 

(c) have a unique wave velocity 
	

(d) be polarized. 

4. A wave going in a solid 
(a) must be longitudinal 

	
(b) may be longitudinal 

(c) must be transverse 
	

(d) may be transverse. 

5. A wave moving in a gas 
(a) must be longitudinal 

	
(b) may be longitudinal 

(c) must be transverse 
	

(d) may be transverse. 

6. Two particles A and B have a phase difference of n when 
a sine wave passes through the region. 
(a) A oscillates at half the frequency of B. 
(b) A and B move in opposite directions. 
(c) A and B must be separated by half of the wavelength. 
(d) The displacements at A and B have equal 
magnitudes. 

7. A wave is represented by the equation 

y = (0.001 mm) sin[(50 s ')t + (2.0 m -1)x]. 

(a) The wave velocity = 100 m/s. 
(b) The wavelength = 2.0 m. 
(c) The frequency = 25/n Hz. 
(d) The amplitude = 0.001 mm. 

8. A standing wave is produced on a string clamped at one 
end and free at the other. The length of the string 
(a) must be an integral multiple of V4 
(b) must be an integral multiple of V2 
(c) must be an integral multiple of X 
(d) may be an integral multiple of ?/2. 

9. Mark out the correct options. 
(a) The energy of any small part of a string remains 
constant in a travelling wave. 
(b) The energy of any small part of a string remains 
constant in a standing wave. 
(c) The energies of all the small parts of equal length 
are equal in a travelling wave. 
(d) The energies of all the small parts of equal length 
are equal in a standing wave. 

10. In a stationary wave, 
(a) all the particles of the medium vibrate in phase 
(b) all the antinodes vibrate in phase 
(c) the alternate antinodes vibrate in phase 
(d) all the particles between consecutive nodes vibrate 
in phase. 

EXERCISES 

1. A wave pulse passing on a string with a speed of 40 cm/s 
in the negative x-direction has its maximum at x = 0 at 
t = 0. Where will this maximum be located at t = 5 s ? 

2. The equation of a wave travelling on a string stretched 
along the X-axis is given by 

2 

y = A e ° 	. 

(a) Write the dimensions of A, a and T. (b) Find the 
wave speed. (c) In which direction is the wave.  
travelling ? (d) Where is the maximum of the pulse 
located at t T ? At t - 2 T ? 

3. Figure (15-E1) shows a wave pulse at t = 0. The plOse 
moves to the right with a speed of 10 cm/s. Sketch the 
shape of the string at t = 1 s, 2 s and 3 s. 

E3 
E 2  

10 	20 	30 	40 	50 x (in cm) 

Figure 15-E1 
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4. A pulse travelling on a string is represented by the 
function 

3 a 
y  (x - vt)2+ a 2 

where a = 5 mm and v = 20 cm/s. Sketch the shape of 
the string at t = 0, 1 s and 2 s. Take x = 0 in the middle 
of the string. 

5. The displacement of the particle at x = 0 of a stretched 
string carrying a wave in the positive x-direction is given 
by f(t) = A sin(t/7). The wave speed is v. Write the wave 
equation. 

6. A wave pulse is travelling on a string with a speed v 
towards the positive X-axis. The shape of the string at 
t = 0 is given by g(x) = A sin(x/a), where A and a are 
constants. 
(a) What are the dimensions ot A and a ? (b) Write the 
equation of the wave for a general time t, if the wave 
speed is v. 

7. A wave propagates on a string in the positive x-direction 
at a velocity v. The shape of the string at t = to  is given 
by g(x, to) = A sin(x/a) . Write the wave equation for a 
general time t. 

8. The equation of a wave travelling on a string is 

y = (0.10 mm) sin[(31.4 m -1)x + (314 s ')t]. 

(a) In which direction does the wave travel ? (b) Find 
the wave speed, the wavelength and the frequency of 
the wave. (c) What is the maximum displacement and 
the maximum speed of a portion of the string ? 

9. A wave travels along the positive x-direction with a 
speed of 20 m/s. The amplitude of the wave is 0'20 cm 
and the wavelength 2.0 cm. (a) Write a suitable wave 
equation which describes this wave. (b) What is the 
displacement and velocity of the particle at x = 2.0 cm at 
time t = 0 according to the wave equation written ? Can 
you get different values of this quantity if the wave 
equation is written in a different fashion ? 

10. A wave is described by the equation 

y (1.0 mm) sin 7C 
[  x 	 t 

2'0 cm 0'01 s) 

(a) Find the time period and the wavelength . (b) Write 
the equation for the velocity of the particles. Find the 
speed of the particle at x = 1'0 cm at time t = 0'01 s. 
(c) What are the speeds of the particles at x = 3'0 cm, 
5'0 cm and 7'0 cm at t 0'01 s ? (d) What are the speeds 
of the particles at x 1.0 cm at t = 0.011, 0'012, and 
0'013 s? 

11. A particle on a stretched string supporting a travelling 
wave, takes 5'0 ms to move from its mean position to 
the extreme position. The distance between two 
consecutive particles, which are at their mean positions, 
is 2.0 cm. Find the frequency, the wavelength and the 
wave speed. 

12. Figure (15-E2) shows a plot of the transverse 
displacements of the particles of a string at t = 0 through 
which a travelling wave is passing in the positive 
x-direction. The wave speed is 20 cm/s. Find (a) the 
amplitude, (b) the wavelength, (c) the wave number and 
(d) the frequency of the wave. 

Figure 15-E2 

13. A wave travelling on a string, at a speed of 10 m/s causes 
each particle of the string to oscillate with a time period 
of 20 ms. (a) What is the wavelength of the wave ? (b) If 
the displacement of a particle is 1.5 mm at a certain 
instant, what will be the displacement of a particle 10 
cm away from it at the same instant ? 

14. A steel wire of length 64 cm weighs 5 g. If it is stretched 
by a force of 8 N, what would be the speed of a 
transverse wave passing on it ? 

15. A string of length 20 cm and linear mass density 
0-40 g/cm is fixed at both ends and is kept under a 
tension of 16 N. A wave pulse is produced at t = 0 near 
an end as shown in figure (15-E3), which travels towards 
the other end. (a) When will the string have the shape 
shown in the figure again ? (b) Sketch the shape of the 
string at a time half of that found in part (a). 

Figure 15-E3 

16. A string of linear mass density 0'5 g/cm and a total 
length 30 cm is tied to a fixed wall at one end and to a 
frictionless ring at the other end (figure 15-E4). The ring 
can move on a vertical rod. A wave pulse is produced 
on the string which moves towards the ring at a speed 
of 20 cm/s. The pulse is symmetric about its maximum 
which is located at a distance of 20 cm from the end 
joined to the ring. (a) Assuming that the wave is 
reflected from the ends without loss of energy, find the 
time taken by the string to regain its shape. (b) The 
shape of the string changes periodically with time. Find 
this time period. (c) What is the tension in the string ? 

20cm 

Figure 15-E4 

17. Two wires of different densities but same area of cross-
section are soldered together at one end and are 
stretched to a tension T. The velocity of a transverse 



wave in the first wire is double of that in the second 	24. 
wire. Find the ratio of the density of the first wire to 
that of the second wire. 

18. A transverse wave described by 

y = (0'02 m) sin[(1'0 m 	x + (30 s -1)t] 

propagates on a stretched string having a linear mass 
density of 1'2 x 10 .4  kg/m. Find the tension in the string. 

19. A travelling wave is produced on a long horizontal string 
by vibrating an end up and down sinusoidally. The 
amplitude of vibration is 1.0 cm and the displacement 
becomes zero 200 times per second. The linear mass 
density of the string is 0'10 kg/m and it is kept under 
a tension of 90 N. (a) Find the speed and the wavelength 
of the wave. (b) Assume that the wave moves in the 
positive x-direction and at t = 0, the end x = 0 is at its 
positive extreme position. Write the wave equation. (c) 
Find the velocity and acceleration of the particle at 
x - 50 cm at time t = 10 ms. 

20. A string of length 40 cm and weighing 10 g is attached 
to a spring at one end and to a fixed wall at the other 
end. The spring has a spring constant of 160 N/m and 
is stretched by 1.0 cm. If a wave pulse is produced on 
the string near the wall, how much time will it take to 
reach the spring ? 

21. Two blocks each having a mass of 3.2 kg are connected 
by a wire CD and the system is suspended from the 
ceiling by another wire AB (figure 15-E5). The linear 
mass delity of the wire AB is 10 g/m and that of CD 
is 8 g/m. Find the speed of a transverse wave pulse 
produced in AB and in CD. 

25.  

26.  

27.  

22. In the arrangement shown in figure (15-E6), the string 
has a mass of 4.5 g. How much time will it take for a 
transverse disturbance produced at the floor to reach the 
pulley ? Take g = 10 iris 2. 

Wave Motion and Waves on a String 
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A heavy ball is suspended from the ceiling of a motor 
car through a light string. A transverse pulse travels at 
a speed of 60 cm/s on the string when the car is at rest 
and 62 cm/s when the car accelerates on a horizontal 
road. Find the acceleration of the car. Take 
g -10 MiS 2. 

A circular loop of string rotates about its axis on a 
frictionless horizontal plane at a uniform rate so that 
the tangential speed of any particle of the string is v. If 
a small transverse disturbance is produced at. a point of 
the loop, with what speed (relative to the string) will 
this disturbance travel on the string ? 
A heavy but uniform rope of length L is suspended from 
a ceiling. (a) Write the velocity of a transverse wave 
travelling on the string as a function of the distance from 
the lower end. (b) If the rope is given a sudden sideways 
jerk at the bottom, how long will it take for the pulse 
to reach the ceiling ? (c) A particle is dropped from the 
ceiling at the instant the bottom end is given the jerk. 
Where will the particle meet the pulse ? 
Two long strings A and B, each having linear mass 
density 1'2 x 10 2  kg/m, are stretched by different 
tensions 4'8 N and 7'5 N respectively and are kept 
parallel to each other with their left ends at x = 0. Wave 
pulses are produced on the strings at the left ends at 
t = 0 on string A and at t = 20 ms on string B. When and 
where will the pulse on B overtake that on A ? 
A transverse wave of amplitude 0'50 mm and frequency 
100 Hz is produced on a wire stretched to a tension of 
100 N. If the wave speed is 100 m/s, what average power 
is the source transmitting to the wire ? 

A 200 Hz wave with amplitude 1 mm travels on a long 
string of linear mass density 6 g/m kept under a tension of 
60 N. (a) Find the average power transmitted across a given 
point on the string. (b) Find the total energy associated with 
the wave in a 2.0 m long portion of the sring. 

30. A tuning fork of frequency 440 Hz is attached to a long 
string of linear mass density 0'01 kg/m kept under a 
tension of 49 N. The fork produces transverse waves of 
amplitude 0.50 mm on the string. (a) Find the wave 
speed and the wavelength of the waves. (b) Find the 
maximum speed and acceleration of a particle of the 
string. (c) At what average rate is the tuning fork 
transmitting energy to the string ? 

31. Two waves, travelling in the same direction through the 
same region, have equal frequencies, wavelengths and 
amplitudes. If the amplitude of each wave is 4 mm and 
the phase difference between the waves is 90°, what is 
the resultant amplitude ? 

32. Figure (15-E7) shows two wave pulses at t = 0 
travelling on a string in opposite directions with the same 

29. 
A 

B 

ii

ii C 

D 

Figure 15-E5 

Figure 15-E6 4 

2 
23. A 4.0 kg block is suspended from the ceiling of an 

elevator through a, string having a linear mass density 2 6 	10 

of 19'2 x 10 -3  kg/m. Find the speed (with respect to the -2 
1— 

string) with which a wave pulse can proceed on the -4 

string if the elevator accelerates up at the rate of 
2.0 zn/s 2. 	Take g =la m/s 2. Figure 15-E7 

114 x(mm) 
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wave speed 50 cm/s. Sketch the shape of the string at 
t = 4 ms, 6 ms, 8 ms, and 12 ms. 

33. Two waves, each having a frequency of 100 Hz and a 
wavelength of 2.0 cm, are travelling in the same 
direction on a string. What is the phase difference 
between the waves (a) if the second wave was produced 
0'015 s later than the first one at the same place, (b) if 
the two waves were produced at the same instant but 
the first one was produced a distance 4'0 cm behind the 
second one?(c) If each of the waves has an amplitude of 
2'0 mm, what would be the amplitudes of the resultant 
waves in part (a) and (b)? 

34. If the speed of a transverse wave on a stretched string 
of length 1 m is 60 m/s, what is the fundamental 
frequency of vibration ? 

35. A wire of length 2'00 m is stretched to a tension of 
160 N. If the fundamental frequency of vibration is 
100 Hz, find its linear mass density. 

36. A steel wire of mass 4.0 g and length 80 cm is fixed at 
the two ends. The tension in the wire is 50 N. Find the 
frequency and wavelength of the fourth harmonic of the 
fundamental. 

37. A piano wire weighing,  6'00 g and having a length of 
90.0 cm emits a fundamental frequency corresponding 
to the "Middle C" (v - 261'63 Hz). Find the tension in 
the wire. 

38. A sonometer wire having a length of 1'50 m between 
the bridges vibrates in its second harmonic in resonance 
with a tuning fork of frequency 256 Hz. What is the 
speed of the transverse wave on the wire ? 

39. The length of the wire shown in figure (15-E8) between 
the pulleys is 1'5 m and its mass is 12'0 g. Find the 
frequency of vibration with which the wire vibrates in 
two loops leaving the middle point of the wire between 
the pulleys at rest. 

Figure 15-E8 

40. A one metre long stretched string having a mass of 40 g 
is attached to a tuning fork. The fork vibrates at 128 Hz 
in a direction perpendicular to the string. What should 
be the tension in the string if it is to vibrate in four 
loops ? 

41. A wire, fixed at both ends is seen to vibrate at a resonant 
frequency of 240 Hz and also at 320 Hz. (a) What could 
be the maximum value of the fundamental frequency ? 
(b) If transverse waves can travel on this string at a 
speed of 40 m/s, what is its length ? 

42. A string, fixed at both ends, vibrates in a resonant mode 
with a separation of 2'0 cm between the consecutive 
nodes. For the next higher resonant frequency, this 
separation is reduced to 1'6 cm. Find the length of the 
string. 

43. A 660 Hz tuning fork sets up vibration in a string 
clamped at both ends. The wave speed for a transverse 

wave on this string -is 220 m/s and the string vibrates 
in three loops. (a) Find the length of the string. (b) If 
the maximum amplitude of a particle is 0.5 cm, write a 
suitable equation describing the motion. 

44. A particular guitar wire is 30'0 cm long and vibrates at 
a frequency of 196 Hz when no finger is placed on it. 
The next higher notes on the scale are 220 Hz, 247 Hz, 
262 Hz and 294 Hz. How far from the end of the string 
must the finger be placed to play these notes ? 

45. A steel wire fixed at both ends has a fundamental 
frequency of 200 Hz. A person can hear sound of 
maximum frequency 14 kHz. What is the highest 
harmonic that can be played on this string which is 
audible to the person ? 

46. Three resonant frequencies of a string are 90, 150 and 
210 Hz. (a) Find the highest possible fundamental 
frequency of vibration of this string. (b) Which harmonics 
of the fundamental are the given frequencies ? (c) Which 
overtones are these frequencies. (d) If the length of the 
string is 80 cm, what would be the speed of a transverse 
wave on this string ? 

47. Two wires are kept tight between the same pair of 
supports. The tensions in the wires are in the ratio 2 : 1, 
the radii are in the ratio 3 : 1 and the densities are in 
the ratio 1 :2. Find the ratio of their fundamental 
frequencies. 

48. A uniform horizontal rod of length 40 cm and mass 
1.2 kg is supported by two identical wires as shown in 
figure (15-E9). Where should a mass of 4.8 kg be placed 
on the rod so that the same tuning fork may excite the 
wire on left into its fundamental vibrations and that on 
right into its first overtone ? Take g = 10 m/s 2. 

40cm 

Figure 15-E9 

49. Figure (15-E10) shows an aluminium wire of length 
60 cm joined to a steel wire of length 80 cm and 
stretched between two fixed supports. The tension 
produced is 40 N. The cross-sectional area of the steel 
wire is 1'0 mm 2  and that of the aluminium wire is 
3.0 mm 2 . What could be the minimum frequency of a 
tuning fork which can produce standing waves in the 
system with the joint as a node ? The density of 
aluminium is 2'6 g/cm 3  and that of steel is 7'8 g/cm3. 

80cm 

Steel 

Figure 15-E10 

50. A string of length L fixed at both ends vibrates in its 
fundamental mode at a frequency v and a maximum 
amplitude A. (a) Find the wavelength and the wave 
number k. (b) Take the origin at one end of the string 
and the X-axis along the string. Take the Y-axis along 

60cm 
4 	 1 

Aluminium 
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the direction of the displacement. Take t = 0 at the 
instant when the middle point of the string passes 
through its mean position and is going towards the 
positive y-directian. Write the equation describing the 
standing wave:  

51. A 2 in long string fixed at both ends is set into vibrations 
in its first overtone. The wave speed on the string is 
200 m/s and thee amplitude is 0.5 cm. (a) Find the 
wavelength and the frequency. (b) Write the equation 
giving the displacement of different points as a function 
of time. Choose the X-axis along the string with the 
origin at one end and t = 0 at the instant when the point 
x = 50 cm has reached its maximum displacement. 

52. The equation for the vibration of a string, fixed at both 
ends vibrating in its third harmonic, is given by 

y = (0'4 cm) sin[(0.314 cm -1) x] cos[(600n s 	. 

(a) What is the frequency of vibration ? (b) What are the 
positions of the nodes ? (c) What is the length of the 
string ? (d) What is the wavelength and the speed of two 
travelling waves that can interfere to give this 
vibration ? 

53. The equation of a standing wave, produced on a string 
fixed at both ends, is 

y = (0.4 cm) sin[(0.314 cm - 1) x] cos[(600n s -1)t]. 

What could be the smallest length of the string ? 
54. A 40 cm wire having a mass of 3'2 g is stretched between 

two fixed supports 40'05 cm apart. In its fundamental 
mode, the wire vibrates at 220 Hz. If the area of 
cross-section of the wire is 1.0 mm 2, find its Young's 
modulus. 

55. Figure (15-E11) shows a string stretched by a block 
going over a pulley . The string vibrates in its tenth 
harmonic in unison with a particular tuning fork. When 
a beaker containing water is brought under the block so 
that the block is completely dipped into the beaker, the 
string vibrates in its eleventh harmonic. Find the 
density of the material of the block. 

Figure 15-E11 

56. A 2'00 m long rope, having a mass of 80 g, is fixed at 
one end and is tied to a light string at the other end. 
The tension in the string is 256 N. (a) Find the 
frequencies of the fundamental and the first two 
overtones. (b) Find the wavelength in the fundamental 
and the first two overtones. 

57. A heavy string is tied at one end to a movable support 
and to a light thread at the other end as shown in figure 
(15-E12). The thread goes over a fixed pulley and 
supports a weight to produce a tension. The lowest 
frequency with which the heavy string resonates is 
120 Hz. If the movable support is pushed to the right 
by 10 cm so that the joint is placed on the pulley, what 
will be the minimum frequency at which the heavy string 
can resonate ? 

10cm 

777=7;in=f1 
Figure 15-E12 
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10. (a) 20 ms, 4.0 cm 	(b) zero 	 33. (a) 3n 	 (b) 4n 	(c) zero, 4.0 mm 
(c) zero 	 (d) 9'7 cm/s, 18 cm/s, 25 cm/s 	34. 30 Hz 

11. 50 Hz, 4.0 cm, 2.0 m/s 	 35. 1'00 g/m 

12. (a) 1.0 mm (b) 4 cm (c) 1.6 cm-1 	(d) 5 Hz 	36. 250 Hz, 40 cm 

13. (a) 20 cm 	 (b) - 1'5 mm 	
37. 1480 N 
38. 384 m/s 

14. 32 m/s 39. 70 Hz 
15. (a) 0'02 s 40. 164 N 
16. (a) 2 s 	(b) 3 s 	 (c) 2 x 10-3N 	41. (a) 80 Hz 	(b) 25 cm 
17. 0.25 	 42. 8'0 cm 
18. 0'108 N 	 43. (a) 50 cm 
19. (a) 30 m/s, 30 cm 	 (b) (0.5 cm) sin[(0.06n cm-1)x] x cos[(1320n s -1)t] 

(b) y = (1.0 cm) cos 2n [ 	x 	t
30 cm 0.01 s] 
	 44. 26'7 cm, 23'8 cm, 22'4 cm and 20'0 cm 

45. 70 
(c) - 5.4 m/s, 2.0 km/s 2 	 46. (a) 30 Hz 	 (b) 3rd, 5th and 7th. 

20. 0'05 s 	 (c) 2nd, 4th and 6th 	(d) 48 m/s 
21. 79 m/s and 63 m/s 	 47. 2 : 3 
22. 0'02 s 	 48. 5 cm from the left end 
23. 50 m/s 	 49. 180 Hz 

24. 3.7 m/s 2 	
50, (a) 2L, it /L 	(b) y = A sin(nx/L) sin(2nvt) 

25. v 	 51. (a) 2 m, 100 Hz 

26. (a) a'Y 	 (b) ✓ 	4 L/g 	 (b) (0.5 cm) sin[(nm -1) x] cos[(200n s - ')t] 
52. (a) 300 Hz 	 (b) 0, 10 cm, 20 cm, 30 cm 

(c) at a distance 4' from the bottom 	 (c) 30 cm 	 (d) 20 cm, 60 m/s 

27. at t= 100 ms at x = 2'0 m 	
53. 10 cm 

28. 49 mW 	 54. 1'98 x 10 11 N/m 3  

29. (a) 0'47 W 	(b) 9'4 mJ 	 55. 5.8 x 10 3  kg/m 3  
30. (a) 70 m/s, 16 cm (b) 1'4 m/s, 3.8 km/s (c) 0'67 W 	56. (a) 10 Hz, 30 Hz, 50 Hz (b) 8'00 m, 2'67 m, 1'60 m 

31. 4/2 mm 	 57. 240 Hz 

0 
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SOLUTIONS TO CONCEPTS
CHAPTER 15

1. v = 40 cm/sec
As velocity of a wave is constant location of maximum after 5 sec 
= 40  5 = 200 cm along negative x-axis.

2. Given y = 
2[(x / a) (t / T)]Ae 

a) [A] = [M0L1T0], [T] = [M0L0T1]
[a] = [M0L1T0]

b) Wave speed, v = /T = a/T [Wave length  = a]
c) If y = f(t – x/v)  wave is traveling in positive direction

and if y = f( t + x/v)  wave is traveling in negative direction

So, y = 
2[(x / a) (t / T)]Ae  = 

2x
(1/ T) t

a / TAe
    

= 

2x
(1/ T) t

vAe
    

i.e. y = f{t + (x / v)}
d) Wave speed, v = a/T

 Max. of pulse at t = T is (a/T)  T = a (negative x-axis)
Max. of pulse at t = 2T = (a/T)  2T = 2a (along negative x-axis)
So, the wave travels in negative x-direction.

3. At t = 1 sec, s1 = vt = 10  1 = 10 cm
t = 2 sec, s2 = vt = 10  2 = 20 cm
t = 3 sec, s3 = vt = 10  3 = 30 cm

4. The pulse is given by, y = [(a3) / {(x – vt)2 + a2}]
a = 5 mm = 0.5 cm, v = 20 cm/s
At t = 0s, y = a3 / (x2 + a2)
The graph between y and x can be plotted by taking different values of x.
(left as exercise for the student)
similarly, at t = 1 s, y = a3 / {(x – v)2 + a2}
and at t = 2 s, y = a3 / {(x – 2v)2 + a2}

5. At x = 0, f(t) = a sin (t/T)
Wave speed = v
  = wavelength = vT (T = Time period)
So, general equation of wave
Y = A sin [(t/T) – (x/vT)] [because y = f((t/T) – (x/))

6. At t = 0, g(x) = A sin (x/a)
a) [M0L1T0] = [L]

a = [M0L1T0] = [L] 
b) Wave speed = v

 Time period, T = a/v (a = wave length = )
 General equation of wave
y = A sin {(x/a) – t/(a/v)}

= A sin {(x – vt) / a}
7. At t = t0, g(x, t0) = A sin (x/a) …(1)

For a wave traveling in the positive x-direction, the general equation is given by

y = 
x t

f
a T

  
 

Putting t = –t0 and comparing with equation (1), we get
 g(x, 0) = A sin {(x/a) + (t0/T)}
 g(x, t) = A sin {(x/a) + (t0/T) – (t/T)}

x

y

JEEMAIN.GURU
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As T = a/v (a = wave length, v = speed of the wave)

 y = 0tx t
A sin

a (a / v) (a / v)
   
 

= 0x v(t t)
A sin

a

  
 
 

 y = 0x v(t t )
A sin

a

  
  

8. The equation of the wave is given by
y = (0.1 mm) sin [(31.4 m–1)x +(314 s–1)t] y = r sin {(2x / )} + t)
a) Negative x-direction
b) k = 31.4 m–1

 2/ = 31.4   = 2/31.4 = 0.2 mt = 20 cm
Again,  = 314 s–1

 2f = 314  f = 314 / 2 = 314 / (2  (3/14)} = 50 sec–1

 wave speed, v = f = 20  50 = 1000 cm/s
c) Max. displacement = 0.10 mm
 Max. velocity = a = 0.1  10–1  314 = 3.14 cm/sec.

9. Wave speed, v = 20 m/s
A = 0.20 cm

  = 2 cm
a) Equation of wave along the x-axis

y = A sin (kx – wt)
 k = 2/ = 2/2 =  cm–1

T = /v = 2/2000 = 1/1000 sec = 10–3 sec
  = 2/T = 2  10–3 sec–1

So, the wave equation is,
 y = (0.2 cm)sin[( cm–1)x – (2  103 sec–1)t]
b) At x = 2 cm, and t = 0,
 y = (0.2 cm) sin (/2) = 0
 v = r cos x = 0.2  2000   cos 2 = 400 

= 400  (3.14) = 1256 cm/s
= 400  cm/s = 4 m/s

10. Y = (1 mm) sin 
x t

2cm 0.01sec
   

a) T = 2  0.01 = 0.02 sec = 20 ms
 = 2  2 = 4 cm

b) v = dy/dt = d/dt [sin 2 (x/4 – t/0.02)] = –cos2 {x/4) – (t/0.02)}  1/(0.02)
 v = –50 cos 2 {(x/4) – (t/0.02)}
at x = 1 and t = 0.01 sec, v = –50 cos 2* [(1/4) – (1/2)] = 0

c) i) at x = 3 cm, t = 0.01 sec
v = –50 cos 2 (3/4 – ½) = 0

ii) at x = 5 cm, t = 0.01 sec, v = 0 (putting the values)
iii) at x = 7 cm, t = 0.01 sec, v = 0

at x = 1 cm and t = 0.011 sec
v = –50 cos 2 {(1/4) – (0.011/0.02)} = –50 cos (3/5) = –9.7 cm/sec

(similarly the other two can be calculated)
11. Time period, T = 4  5 ms = 20  10–3 = 2  10–2 s

 = 2  2 cm = 4 cm
frequency, f = 1/T = 1/(2  10–2) = 50 s–1 = 50 Hz
Wave speed = f = 4  50 m/s = 2000 m/s = 2 m/s
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12. Given that, v = 200 m/s
a) Amplitude, A = 1 mm
b) Wave length,  = 4 cm
c) wave number, n = 2/ = (2  3.14)/4 = 1.57 cm–1 (wave number = k)
d) frequency, f = 1/T = (26/)/20 = 20/4 = 5 Hz

(where time period T = /v)
13. Wave speed = v = 10 m/sec

Time period = T = 20 ms = 20  10–3 = 2  10–2 sec
a) wave length,  = vT = 10  2  10–2 = 0.2 m = 20 cm
b) wave length,  = 20 cm
 phase diffn = (2/) x = (2 / 20)  10 =  rad
 y1 = a sin (t – kx)    1.5 = a sin (t – kx)
So, the displacement of the particle at a distance x = 10 cm.

[ = 
2 x 2 10

20

 
  


] is given by

y2 = a sin (t – kx + )  –a sin(t – kx) = –1.5 mm
 displacement = –1.5 mm

14. mass = 5 g, length l = 64 cm
 mass per unit length = m = 5/64 g/cm
 Tension, T = 8N = 8  105 dyne

V = 5(T /m) (8 10 64) / 5 3200    cm/s = 32 m/s

15.

a) Velocity of the wave, v = 5(T /m) (16 10 ) / 0.4 2000   cm/sec

 Time taken to reach to the other end = 20/2000 = 0.01 sec
Time taken to see the pulse again in the original position = 0.01  2 = 0.02 sec
b) At t = 0.01 s, there will be a ‘though’ at the right end as it is reflected.

16. The crest reflects as a crest here, as the wire is traveling from denser to rarer medium. 
 phase change = 0
a) To again original shape distance travelled by the wave S = 20 + 20 = 40 cm.

Wave speed, v = 20 m/s  time = s/v = 40/20 = 2 sec
b) The wave regains its shape, after traveling a periodic distance = 230 = 60 cm

 Time period = 60/20 = 3 sec.
c) Frequency, n = (1/3 sec–1)

n = (1/2l) (T /m) m = mass per unit length = 0.5 g/cm

 1/3 = 1/(2  30) (T / 0.5)

 T = 400  0.5 = 200 dyne = 2  10–3 Newton.
17. Let v1 = velocity in the 1st string

 v1 = 1(T /m )

Because m1 = mass per unit length = (1a1l1 / l1) = 1a1 where a1 = Area of cross section

 v1 = 1 1(T / a ) …(1)

Let v2 = velocity in the second string

 v2 = 2(T /m )

 v2 = 2 2(T / a ) …(2)

Given that, v1 = 2v2

 1 1(T / a ) = 2 2 2(T / a )  (T/a11) = 4(T/a22)

 1/2 = 1/4  1 : 2 = 1 : 4 (because a1 = a2)

20 cm

30 cm
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18. m = mass per unit length = 1.2  10–4 kg/mt
Y = (0.02m) sin [(1.0 m–1)x + (30 s–1)t]
Here, k = 1 m–1 = 2/
 = 30 s–1 = 2f
 velocity of the wave in the stretched string
v = f = /k = 30/I = 30 m/s

 v = T /m  430 (T /1.2) 10 N)
 T = 10.8  10–2 N  T = 1.08  10–1 Newton.

19. Amplitude, A = 1 cm, Tension T = 90 N
Frequency, f = 200/2 = 100 Hz
Mass per unit length, m = 0.1 kg/mt

a)  V = T /m = 30 m/s
 = V/f = 30/100 = 0.3 m = 30 cm

b) The wave equation y = (1 cm) cos 2 (t/0.01 s) – (x/30 cm)
[because at x = 0, displacement is maximum]

c) y = 1 cos 2(x/30 – t/0.01)
 v = dy/dt = (1/0.01)2sin 2 {(x/30) – (t/0.01)}
a = dv/dt = – {42 / (0.01)2} cos 2 {(x/30) – (t/0.01)}
When, x = 50 cm, t = 10 ms = 10  10–3 s
x = (2 / 0.01) sin 2 {(5/3) – (0.01/0.01)}

= (p/0.01) sin (2  2 / 3) = (1/0.01) sin (4/3) = –200  sin (/3) = –200 x ( 3 / 2)

= 544 cm/s = 5.4 m/s
Similarly
a = {42 / (0.01)2} cos 2 {(5/3) – 1}
= 42  104  ½  2  105 cm/s2  2 km/s2

20. l = 40 cm, mass = 10 g
 mass per unit length, m = 10 / 40 = 1/4 (g/cm)
spring constant K = 160 N/m
deflection = x = 1 cm = 0.01 m
 T = kx = 160  0.01 = 1.6 N = 16  104 dyne

Again v = (T /m) = 4(16 10 /(1/ 4) = 8  102 cm/s = 800 cm/s

 Time taken by the pulse to reach the spring
t = 40/800 = 1/20 = 0/05 sec.

21. m1 = m2 = 3.2 kg
mass per unit length of AB = 10 g/mt = 0.01 kg.mt
mass per unit length of CD = 8 g/mt = 0.008 kg/mt
for the string CD, T = 3.2  g

 v = (T /m) = 3(3.2 10) / 0.008 (32 10 ) / 8   = 2 10 10 = 20  3.14 = 63 m/s

for the string AB, T = 2  3.2 g = 6.4  g = 64 N

 v = (T /m) = (64 / 0.01) 6400 = 80 m/s

22. Total length of string 2 + 0.25 = 2.25 mt

Mass per unit length m = 
34.5 10

2.25


= 2  10–3 kg/m

T = 2g = 20 N

Wave speed, v = (T /m) = 3 420 /(2 10 ) 10  = 102 m/s = 100 m/s

Time taken to reach the pully, t = (s/v) = 2/100 = 0.02 sec.
23. m = 19.2  10–3 kg/m

from the freebody diagram,
T – 4g – 4a = 0
 T = 4(a + g) = 48 N

wave speed, v = (T /m) = 50 m/s

D
C

B
A

m2

m1

2mt

2g

T

25 cm

2kg

4a

a = 2 m/s2

4 kg

4g
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24. Let M = mass of the heavy ball 
(m = mass per unit length)

Wave speed, v1 = (T /m) = (Mg/m) (because T = Mg)

 60 = (Mg/m)  Mg/ m = 602 …(1)

From the freebody diagram (2),

v2 = (T '/m)

 v2 = 
2 2 1/ 4

1/ 2

[(Ma) (Mg) ]

m


(because T’ = 2 2(Ma) (Mg) )

 62 = 
2 2 1/ 4

1/ 2

[(Ma) (Mg) ]

m




2 2(Ma) (Mg)

m


= 622 …(2)

Eq(1) + Eq(2)  (Mg/m)  [m / 2 2(Ma) (Mg) ] = 3600 / 3844

 g / 2 2(a g ) = 0.936  g2 / (a2 + g2) = 0.876

 (a2 + 100) 0.876 = 100
 a2  0.876 = 100 – 87.6 = 12.4
 a2 = 12.4 / 0.876 = 14.15  a = 3.76 m/s2

 Accen of the car = 3.7 m/s2

25. m = mass per unit length of the string
R = Radius of the loop
 = angular velocity, V = linear velocity of the string
Consider one half of the string as shown in figure.
The half loop experiences cetrifugal force at every point, away from 
centre, which is balanced by tension 2T.
Consider an element of angular part d at angle . Consider another 
element symmetric to this centrifugal force experienced by the element 
= (mRd)2R.
(…Length of element = Rd, mass = mRd)
Resolving into rectangular components net force on the two symmetric elements,
DF = 2mR2 d2 sin  [horizontal components cancels each other]

So, total F = 
/ 2

2 2

0

2mR sin d


   = 2mR22 [– cos]  2mR22

Again, 2T = 2mR22  T = mR22

Velocity of transverse vibration V = T /m = R = V
So, the speed of the disturbance will be V.

26. a) m  mass per unit of length of string
consider an element at distance ‘x’ from lower end.
Here wt acting down ward = (mx)g = Tension in the string of upper part

Velocity of transverse vibration = v = T /m = (mgx /m) (gx)

b) For small displacement dx, dt = dx / (gx)

Total time T = 
L

0

dx / gx (4L / g)
c) Suppose after time ‘t’ from start the pulse meet the particle at distance y from lower end.

t = 
y

0

dx / gx (4y / g)
 Distance travelled by the particle in this time is (L – y)

Mg 
(Rest)

T

a

Mg 
(Motion)

T

Ma



T

(mRd)w2R



T

c

d

y

L-y

A

B

TA

TB

x

4xl
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 S – ut + 1/2 gt2

 L – y (1/2)g  2{ (4y / g) } {u = 0}

 L – y = 2y  3y = L
 y = L/3. So, the particle meet at distance L/3 from lower end.

27. mA = 1.2  10–2 kg/m, TA = 4.8 N

 VA = T /m = 20 m/s

mB = 1.2  10–2 kg/m, TB = 7.5 N

 VB = T /m = 25 m/s
t = 0 in string A
t1 = 0 + 20 ms = 20  10–3 = 0.02 sec
In 0.02 sec A has travelled 20  0.02 = 0.4 mt
Relative speed between A and B = 25 – 20 = 5 m/s
Time taken for B for overtake A = s/v = 0.4/5 = 0.08 sec

28. r = 0.5 mm = 0.5  10–3 mt
f = 100 Hz, T = 100 N
v = 100 m/s

v = T /m  v2 = (T/m)  m = (T/v2) = 0.01 kg/m

Pave = 22 mvr2f2

= 2(3.14)2(0.01)  100  (0.5  10–3)2  (100)2  49  10–3 watt = 49 mW.
29. A = 1 mm = 10–3 m, m = 6 g/m = 6  10–3 kg/m

T = 60 N, f = 200 Hz

 V = T /m = 100 m/s

a) Paverage = 22 mv A2f2 = 0.47 W
b) Length of the string is 2 m. So, t = 2/100 = 0.02 sec.

Energy = 22 mvf2A2t = 9.46 mJ.
30. f = 440 Hz, m = 0.01 kg/m, T = 49 N, r = 0.5  10–3 m

a) v = T /m = 70 m/s

b) v = f   = v/f = 16 cm
c) Paverage = 22 mvr2f2 = 0.67 W.

31. Phase difference  = /2
f and  are same. So,  is same.
y1 = r sin wt, y2 = rsin(wt + /2)
From the principle of superposition
y = y1 + y2      = r sin wt + r sin (wt + /2)

= r[sin wt + sin(wt + /2)]
= r[2sin{(wt + wt + /2)/2} cos {(wt – wt – /2)/2}]

 y = 2r sin (wt + /4) cos (–/4)

Resultant amplitude = 2 r = 4 2 mm (because r = 4 mm)
32. The distance travelled by the pulses are shown below.

t = 4 ms = 4  10–3 s s = vt = 50  10  4  10–3 = 2 mm
t = 8 ms = 8  10–3 s s = vt = 50  10  8  10–3 = 4 mm
t = 6 ms = 6  10–3 s s = 3 mm
t = 12 ms = 12  10–3 s s = 50  10  12  10–3 = 6 mm
The shape of the string at different times are shown in the figure.

33. f = 100 Hz,  = 2 cm = 2  10–2 m
 wave speed, v = f = 2 m/s
a) in 0.015 sec 1st wave has travelled

x = 0.015  2 = 0.03 m = path diffn

 corresponding phase difference,  = 2x/ = {2 / (2  10–2)}  0.03 = 3.
b) Path different x = 4 cm = 0.04 m

2 6
10 14
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  = (2/)x = {(2/2  10–2)  0.04} = 4.
c) The waves have same frequency, same wavelength and same amplitude.

Let, y1 = r sin wt, y2 = r sin (wt + )
 y = y1 + y2 = r[sin wt + (wt + )]
= 2r sin (wt + /2) cos (/2)

 resultant amplitude = 2r cos /2
So, when  = 3, r = 2  10–3 m
Rres = 2  (2  10–3) cos (3/2) = 0
Again, when  = 4, Rres = 2  (2  10–3) cos (4/2) = 4 mm.

34. l = 1 m, V = 60 m/s
 fundamental frequency, f0 = V/2l = 30 sec–1 = 30 Hz.

35. l = 2m, f0 = 100 Hz, T = 160 N

f0 = 1/ 2l (T /m)

 m = 1 g/m. So, the linear mass density is 1 g/m.
36. m = (4/80) g/ cm = 0.005 kg/m

T = 50 N, l = 80 cm = 0.8 m

v = (T /m) = 100 m/s

fundamental frequency f0 = 1/ 2l (T /m) = 62.5 Hz

First harmonic = 62.5 Hz
f4 = frequency of fourth harmonic = 4f0 = F3 = 250 Hz
V = f4 4  4 = (v/f4) = 40 cm.

37. l = 90 cm = 0.9 m
m = (6/90) g/cm = (6/900) kg/mt
f = 261.63 Hz

f = 1/ 2l (T /m)  T = 1478.52 N = 1480 N.

38. First harmonic be f0, second harmonic be f1
 f1 = 2f0
 f0 = f1/2
f1 = 256 Hz
 1st harmonic or fundamental frequency
f0 = f1/2 = 256 / 2 = 128 Hz
/2 = 1.5 m   = 3m (when fundamental wave is produced)
 Wave speed = V = f0Ql = 384 m/s.

39. l = 1.5 m, mass – 12 g
 m = 12/1.5 g/m = 8  10–3 kg/m
T = 9  g = 90 N

 = 1.5 m, f1 = 2/2l T /m
[for, second harmonic two loops are produced]
f1 = 2f0  70 Hz.

40. A string of mass 40 g is attached to the tuning fork
m = (40  10–3) kg/m
The fork vibrates with f = 128 Hz
 = 0.5 m
v = f = 128  0.5 = 64 m/s

v = T /m  T = v2m = 163.84 N  164 N.
41. This wire makes a resonant frequency of 240 Hz and 320 Hz.

The fundamental frequency of the wire must be divisible by both 240 Hz and 320 Hz.
a) So, the maximum value of fundamental frequency is 80 Hz.
b) Wave speed, v = 40 m/s
 80 = (1/2l)  40  0.25 m.

1.5 cm

9 kg 9 kg

l
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42. Let there be ‘n’ loops in the 1st case
 length of the wire, l = (n1)/2 [1 = 2  2 = 4 cm]
So there are (n + 1) loops with the 2nd case
 length of the wire, l = {(n+1)2/2 [ = 2  1.6 = 3.2 cm]

 n1/2 = 2(n 1)

2

 

 n  4 = (n + 1) (3.2)  n = 4
 length of the string, l = (n1)/2 = 8 cm.

43. Frequency of the tuning fork, f = 660 Hz
Wave speed, v = 220 m/s   = v/f = 1/3 m
No.of loops = 3
a) So, f = (3/2l)v  l = 50 cm
b) The equation of resultant stationary wave is given by 

y = 2A cos (2x/Ql) sin (2vt/)
 y = (0.5 cm) cos (0.06  cm–1) sin (1320 s–1t)

44. l1 = 30 cm = 0.3 m
f1 = 196 Hz, f2 = 220 Hz
We know f  (1/l) (as V is constant for a medium)

 1 2

2 1

f l

f l
  l2 = 26.7 cm

Again f3 = 247 Hz

 3 1

1 3

f l

f l
 

3

0.3

l

 l3 = 0.224 m = 22.4 cm and l3 = 20 cm
45. Fundamental frequency f1 = 200 Hz

Let l4 Hz be nth harmonic
 F2/F1 = 14000/200
 NF1/F1 = 70  N = 70
 The highest harmonic audible is 70th harmonic.

46. The resonant frequencies of a string are
f1 = 90 Hz, f2 = 150 Hz, f3 = 120 Hz
a) The highest possible fundamental frequency of the string is f = 30 Hz

[because f1, f2 and f3 are integral multiple of 30 Hz]
b) The frequencies are f1 = 3f, f2 = 5f, f3 = 7f

So, f1, f2 and f3 are 3rd harmonic, 5th harmonic and 7th harmonic respectively.
c) The frequencies in the string are f, 2f, 3f, 4f, 5f, ……….

So, 3f = 2nd overtone and 3rd harmonic
5f = 4th overtone and 5th harmonic
7f = 6th overtone and 7th harmonic

d) length of the string is l = 80 cm
 f1 = (3/2l)v (v = velocity of the wave)
 90 = {3/(280)}  K
 K = (90  2  80) / 3 = 4800 cm/s = 48 m/s.

47. Frequency f = 1
1

1 1 1

T1 T 1
f

lD l D
 

 
2

2
2 2 2

T1
f

l n
 



Given that, T1/T2 = 2, r1 / r2 = 3 = D1/D2

1

2

1

2






So, 1 2 2 1 2

2 1 1 2 1

f l D T

f l D T





(l1 = l2 = length of string)

 f1 : f2 = 2 : 3

l

2 cm

l

1.6 cm

l
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48. Length of the rod = L = 40 cm = 0.4 m
Mass of the rod m = 1.2 kg
Let the 4.8 kg mass be placed at a distance
‘x’ from the left end.
Given that, fl = 2fr

 l rT T1 2

2l m 2l m


 l

r

T

T
= 2  l

r

T

T
= 4 …(1)

From the freebody diagram,
Tl + Tr = 60 N
 4Tr +Tr = 60 N
 Tr = 12 N and Tl = 48 N
Now taking moment about point A,
Tr  (0.4) = 48x + 12 (0.2)  x = 5 cm
So, the mass should be placed at a distance 5 cm from the left end.

49. s = 7.8 g/cm3 , A = 2.6 g/cm3

ms = s As = 7.8  10–2 g/cm (m = mass per unit length)
mA = A AA = 2.6  10–2  3 g/cm = 7.8  10–3 kg/m
A node is always placed in the joint. Since aluminium and steel rod has 
same mass per unit length, velocity of wave in both of them is same.

 v = T /m  500/7 m/x
For minimum frequency there would be maximum wavelength for maximum wavelength minimum no of 
loops are to be produced.
 maximum distance of a loop = 20 cm
 wavelength =  = 2  20 = 40 cm = 0.4 m
 f = v/ = 180 Hz.

50. Fundamental frequency 

V = 1/2l T /m  T /m = v2l [ T /m = velocity of wave]

a) wavelength,  = velocity / frequency = v2l / v = 2l
and wave number = K = 2/ = 2/2l = /l

b) Therefore, equation of the stationary wave is
 y = A cos (2x/) sin (2Vt / L)

   = A cos (2x / 2l) sin (2Vt / 2L)
v = V/2L [because v = (v/2l)]

51. V = 200 m/s, 2A = 0.5 m
a) The string is vibrating in its 1st overtone

  = 1 = 2m
 f = v/ = 100 Hz

b) The stationary wave equation is given by

y = 2A 
2 x 2 Vt

cos sin
 
 

= (0.5 cm) cos [(m–1)x] sin [(200 s–1)t]
52. The stationary wave equation is given by 

y = (0.4 cm) sin [(0.314 cm – 1)x] cos [(6.00 s–1)t]
a)  = 600   2f = 600   f = 300 Hz

wavelength,  = 2/0.314 = (2  3.14) / 0.314 = 20 cm
b) Therefore nodes are located at, 0, 10 cm, 20 cm, 30 cm
c) Length of the string = 3/2 = 3  20/2 = 30 cm
d) y = 0.4 sin (0.314 x) cos (600 t)  0.4 sin {(/10)x} cos (600 t)
 since,  and v are the wavelength and velocity of the waves that interfere to give this vibration  = 20 
cm
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v= /k = 6000 cm/sec = 60 m/s
53. The equation of the standing wave is given by 

y = (0.4 cm) sin [(0.314 cm–1)x] cos  [(6.00 s–1)t]
 k = 0.314 = /10
 2/ = /10   = 20 cm
for smallest length of the string, as wavelength remains constant, the string 
should vibrate in fundamental frequency 
 l = /2 = 20 cm / 2 = 10 cm

54. L = 40 cm = 0.4 m, mass = 3.2 kg = 3.2  10–3 kg
 mass per unit length, m = (3.2)/(0.4) = 8  10–3 kg/m
change in length, L = 40.05 – 40 = 0.05  10–2 m
strain = L/L = 0.125  10–2 m
f = 220 Hz

f = 
3

1 T 1 T

2l' m 2 (0.4005) 8 10


 
 T = 248.19 N

Strain = 248.19/1 mm2 = 248.19  106

Y = stress / strain = 1.985  1011 N/m2

55. Let,   density of the block
Weight  Vg where V = volume of block
The same turning fork resonates with the string in the two cases

f10 = w wT Vg ( )Vg10 11

2l m 2l m

    


As the f of tuning fork is same,

w
10 11

( )Vg10 Vg 11
f f

2l m 2l m

  
  

 w10 1 100

11 m 121

    
  


(because, w = 1 gm/cc)

 100 = 121  – 121  5.8  103 kg/m3

56. l = length of rope = 2 m
M = mass = 80 gm = 0.8 kg
mass per unit length = m = 0.08/2 = 0.04 kg/m
Tension T = 256 N

Velocity, V = T /m = 80 m/s
For fundamental frequency,
l = /4   = 4l = 8 m
 f = 80/8 = 10 Hz
a) Therefore, the frequency of 1st two overtones are

1st overtone = 3f = 30 Hz
2nd overtone = 5f = 50 Hz

b) 1 = 4l = 8 m
1 = V/ f1 = 2.67 m
2 = V/f2 = 1.6 mt

so, the wavelengths are 8 m, 2.67 m and 1.6 m respectively.
57. Initially because the end A is free, an antinode will be formed.

So, l = Ql1 / 4
Again, if the movable support is pushed to right by 10 m, so that the joint is placed on the pulley, a node 
will be formed there.
So, l = 2 / 2
Since, the tension remains same in both the cases, velocity remains same.
As the wavelength is reduced by half, the frequency will become twice as that of 120 Hz   i.e. 240 Hz.

  

L

L 

string 

rope 

l = /4 

Initial position

Final position
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