
CHAPTER 14 

SOME MECHANICAL PROPERTIES 
OF MATTER 

14.1 MOLECULAR STRUCTURE OF A MATERIAL 

Matter is made of molecules and atoms. An 
atom is made of a nucleus and electrons. The nucleus 
contains positively charged protons and neutrons, 
collectively called nucleons. Nuclear forces operating 
between different nucleons are responsible for the 
structure of the nucleus. Electromagnetic forces 
operate between a pair of electrons and between an 
electron and the nucleus. These forces are responsible 
for the structure of an atom. The forces between 
different atoms are responsible for the structure of a 
molecule and the forces between the molcules are 
responsible for the structure of the material as seen 
by us. 

Interatomic and Intermolecular Forces 

The force between two atoms can be typically 
represented by the potential energy curve shown in 
figure (14.1). The horizontal axis represents the 
separation between the atoms. The zero of potential 
energy is taken when the atoms are widely separated 
(r = co) 

Figure 14.1 

As the separation between the atoms is decreased 
from a large value, the potential energy also decreases, 
becoming negative. This shows that the force between 
the atoms is attractive in this range. As the separation 
is decreased to a particular value ro, the potential 

energy is minimum. At this separation, the fore?, is 
zero and the atoms can stay in equilibrium. If the  

separation is further decreased, the potential energy 
increases. This means a repulsive force acts between 
the atoms at small separations. 

A polyatomic molecule is formed when the atoms 
are arranged in such a fashion that the total potential 
energy of the system is minimum. 

The force between two molecules has the same 
general nature as shown in figure (14.1). At large 
separation, the force between two molecules is weak 
and attractive. The force increases as the separation 
is decreased to a particular value and then decreases 
to zero at r = ro  . If the separation is further decreased, 
the force becomes repulsive. 

Bonds 

The atoms form molecules primarily due to the 
electrostatic interaction between the electrons and the 
nuclei. These interactions are described in terms of 
different kinds of bonds. We shall briefly discuss two 
important bonds that frequently occur in materials. 

Ionic Bond 

In an ionic bond two atoms come close to each 
other and an electron is completely transferred from 
one atom to the other. This leaves the first atom 
positively charged and the other one negatively 
charged. There is an electrostatic attraction between 
the ions which keeps them bound. For example, when 
a sodium atom comes close to a chlorine atom, an 
electron of the sodium atom is completely transferred 
to the chlorine atom. The positively charged sodium 
ion and the negatively charged chlorine ion attract 
each other to form an ionic bond resulting in sodium 
chloride molecule. 

Covalent Bond 

In many of the cases a complete transfer of electron 
from one atom to another does not take place to form 
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a bond. Rather, electrons from neighbouring atoms are 
made available for sharing between the atoms. Such 
bonds are called covalent bond. When two hydrogen 
atoms come close to each other, both the electrons are 
available to both the nuclei. In other words, each 
electron moves through the total space occupied by the 
two atoms. Each electron is pulled by both the nuclei. 
Chlorine molecule is also formed by this mechanism. 
Two chlorine atoms share a pair of electrons to form 
the bond. Another example of covalent bond is 
hydrogen chloride (HC1) molecule. 

Three States of Matter 

If two molecules are kept at a separation r = ro, 
they will stay in equilibrium. If they are slightly pulled 
apart so that r > 7-0  , an attractive farce will operate 
between them. If they are slightly pushed so that 
r < ro, a repulsive force will operate. Thus, if a molecule 
is slightly displaced from its equilibrium position, it 
will oscillate about its mean position. This is the 
situation in a solid. The molecules are close to each 
other, very nearly at the equilibrium separations. The 
amplitude of vibrations is very small and the molecules 
remain almost fixed at their positions. This explains 
why a solid has a fixed shape if no external forces act 
to deform it. 

In liquids, the average separation between the 
molecules is somewhat larger. The attractive force is 
weak and the molecules are more free to move inside 
the whole mass of the liquid. In gases, the separation 
is much larger and the molecular force is very weak. 

Solid State 

In solids, the intermolecular forces are so strong 
that the molecules or ions remain almost fixed at their 
equilibrium positions. Quite often these equilibrium 
positions have a very regular three-dimensional 
arrangement which we call crystal. The positions 
occupied by the molecules or the ions are called lattice 
points. Because of this long range ordering, the 
molecules or ions combine to form large rigid solids. 

The crystalline solids are divided into four 
categories depending on the nature of the bonding 
between the basic units. 

Molecular Solid 

In a molecular solid, the molecules are formed due 
to covalent bonds between the atoms. The bonding 
between the molecules depends on whether the 
molecules are polar or nonpolar as discussed below. If 
the centre of negative charge in a molecule coincides 
with the centre of the positive charge, the molecule is 
called nonpolar. Molecules of hydrogen, oxygen, 
chlorine etc. are of this type. Otherwise, the molecule  

is called a polar molecule. Water molecule is polar. The 
bond between polar molecules is called a dipole-dipole 
bond. The bond between nonpolar molecules is called 
a Van der Waals bond. Molecular solids are usually 
soft and have low melting point. They are poor 
conductors of electricity. 

Ionic Solid 

In an ionic solid, the lattice points are occupied by 
positive and negative ions. The electrostatic attraction 
between these ions binds the solid. These attraction 
forces are quite strong so that the material is usually 
hard and has fairly high melting point. They are poor 
conductor of electricity. 

Covalent Solid 

In a covalent solid, atoms are arranged in the 
crystalline form. The neighbouring atoms are bound 
by shared electrons. Such covalent bonds extend in 
space so as to form a large solid structure. Diamond, 
silicon etc. are examples of covalent solids. Each 
carbon atom is bonded to four neighbouring carbon 
atoms in a diamond structure. They are quite hard, 
have high melting point and are poor conductors of 
electricity. 

Metallic Solid 

In a metallic solid, positive ions are situated at the 
lattice points. These ions are formed by detaching one 
or more electrons from the constituent atoms. These 
electrons are highly mobile and move throughout the 
solid just like a gas. They are very good conductors of 
electricity. 

Amorphous or Glassy State 

There are several solids which do not exhibit a long 
range ordering. However, they still show a local 
ordering so that some molecules (say 4-5) are bonded 
together to form a structure. Such independent units 
are randomly arranged to form the extended solid. In 
this respect the amorphous solid is similar to a liquid 
which also lacks any long range ordering. However, 
the intermolecular forces in amorphous solids are 
much stronger than those in liquids. This prevents the 
amorphous solid to flow like a fluid. A typical example 
is glass made of silicon and oxygen together with some 
other elements like calcium and sodium. The structure 
contains strong Si - 0 - Si bonds, but the structure 
does not extend too far in space. 

The amorphous solids do not have a well-defined 
melting point. Different bonds have different strengths 
and as the material is heated the weaker bonds break 
earlier starting the melting process. The stronger 
bonds break at higher temperatures to complete the 
melting process. 
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14.2 ELASTICITY 

We have used the concept of a rigid solid body in 
which the distance between any two particles is always 
fixed. Real solid bodies do not exactly fulfil this 
condition. When external forces are applied, the body 
may get deformed. When deformed, internal forces 
develop which try to restore the body in its original 
shape. The extent, to which the shape of a body is 
restored when the deforming forces are removed, 
varies from material to material. The property to 
restore the natural shape or to oppose the deformation 
is called elasticity. If a body completely gains its 
natural shape after the removal of the deforming 
forces, it is called a perfectly elastic body. If a body 
remains in the deformed state and does not even 
partially regain its original shape after the removal of 
the deforming forces, it is called a perfectly inelastic 
or plastic body. Quite often, when the deforming forces 
are removed, the body partially regains the original 
shape. Such bodies are partially elastic. 

Microscopic Reason of Elasticity 

A solid body is composed of a great many molecules 
or atoms arranged in a particular fashion. Each 
molecule is acted upon by the forces due to the 
neighbouring molecules. The solid takes such a shape 
that each molecule finds itself in a position of stable 
equilibrium. When the body is deformed, the molecules 
are displaced from their original positions of stable 
equilibrium. The intermolecular distances change and 
restoring forces start acting on the molecules which 
drive them back to their original positions and the 
body takes its natural shape. 

One can compare this situation to a spring-mass 
system. Consider a particle connected to several 
particles through springs. If this particle is displaced 
a little, the springs exert a resultant force which tries 
to bring the particle towards its natural position. In 
fact, the particle will oscillate about this position. In 
due course, the oscillations will be damped out and the 
particle will regain its original position. 

14.3 STRESS 

Longitudinal and Shearing Stress 

1 
F 4— (;) 	 F 

Figure 14.2 

Consider a body (figure 14.2) on which several 
forces are acting. The resultant of these forces is zero  

so that the centre of mass remains at rest. Due to the 
forces, the body gets deformed and internal forces 
appear. Consider any cross-sectional area AS of the 
body. The parts of the body on the two sides of AS 
exert forces F, - F on each other. These internal forces 
F, - F appear because of the deformation. 

The force F may be resolved in two components, 
F„ normal to AS and Ft  tangential to AS. We define 
the normal stress or longitudinal stress over the area 
as 

rn =  .67§ 
Fn 	 ... (14.1) 

and the tangential stress or shearing stress over the 
area as 

rt = AS 
Ft 	

... (14.2) 

The longitudinal stress can be of two types. The 
two parts of the body on the two sides of AS may pull 
each other. The longitudinal stress is °then called the 
tensile stress. This is the case when a rod or a wire is 
stretched by equal and opposite forces (figure 14.3). In 
case of tensile stress in a wire or a rod, the force- Fn  
is just the tension. 

4_1 	
F÷F 

Tensile stress 	 Compressive stress 

Figure 14.3 

If the rod is pushed at the two ends with equal and 
opposite forces, it will be under compression. Taking 
any cross-section AS of the rod the two parts on the 
two sides push each other. The longitudinal stress is 
then called compressive stress. 

If the area is not specifically mentioned, a 
cross-section perpendicular to the length is assumed. 

Example 14.1 

A load of 4.0 kg is suspended from a ceiling through a 
steel wire of radius 2'0 mm. Find the tensile stress 
developed in the wire when equilibrium is achieved. Take 

g = 3'1n m /s 2. 

Solution : The tension in the wire is 

F = 4.0 x 3.17t N. 

The area of cross-section is 

A=1C r 2  = x (2.0 x 10 -3  In) 2  

= 4.0 x 10 -e  In 2  . 

Thus, the tensile stress developed 

Fi  

F„ 
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F 4.0 x 3.1 n 	2 

A 4.0nx 10-6  

3.1 x 10 6 N/m 2. 

Volume Stress 

Another type of stress occurs when a body is acted 
upon by forces acting everywhere on the surface in 
such a way that (a) the force at any point is normal 
to the surface and (b) the magnitude of the force on 
any small surface area is proportional to the area. This 
is the case when a small solid body is immersed in a 
fluid. If the pressure at the location of the solid is P, 
the force on any area AS is PAS directed 
perpendicularly to the area. The force per unit area is 
then called volume stress (figure 14.4). It is 

ru = -A 	 ... (14.3) 

which is same as the pressure. 

Figure 14.4 

14.4 STRAIN 

Associated with each type of stress defined above, 
there is a corresponding type of strain. 

Longitudinal Strain 

Consider a rod of length 1 being pulled by equal 
and opposite forces. The length of the rod increases 
from its natural value L to L + AL. The fractional 
change AL/L is called the longitudinal strain. 

Longitudinal strain = AL/L . ... (14.4) 

If the length increases from its natural length, the 
longitudinal strain is called tensile strain. If the length 
decreases from its natural length, the longitudinal 
strain is called compressive strain. 

Shearing. Strain 

This type of strain is produced when a shearing 
stress is present over a section. Consider a body with 
square cross-section and suppose forces parallel to the 
surfaces are applied as shown in figure (14.5). Note 
that the resultant of the four forces shown is zero as 
well as the total torque of the four forces is zero. 

(a) 

Figure 14.5 

This ensures that the body remains in 
translational and rotational equilibrium after the 
deformation. Because of the tangential forces parallel 
to the faces, these faces are displaced. The shape of 
the cross-section changes from a square to a 
parallelogram. In figure (14.5a) the dotted area 
represents the deformed cross-section. To measure-the 
deformation, we redraw the dotted area by rotating it 
a little so that one edge A'B' coincides with its 
undeformed position AB. The drawing is presented in 
part (b) of figure (14.5). 

We define the shearing strain as the displacement 
of a layer divided by its distance from the fixed layer. 
In the situation of figure (14.5), 

Shearing strain = DD'/DA = x/h 
Shearing strain is also called shear. 

Volume Strain 

When a body is subjected to a volume stress, its 
volume changes. The volume strain is defined as the 
fractional change in volume. If V is the volume of 
unstressed body and V+ AV is the volume when the 
volume stress exists, the volume strain is defined as 

Volume strain = AV/V. 

14.5 HOOKE'S LAW AND 
THE MODULII OF ELASTICITY 

If the deformation is small, the stress in a body is 
proportional to the corresponding strain. 

This fact is known as Hooke's law. Thus, if a rod 
is stretched by equal and opposite forces F each, a 
tensile stress F/A is produced in the rod where A is 
the area of cross-section. The length of the rod 
increases from its natural value L to L + AL. Tensile 
strain is AL/L. 

By Hooke's law, for small deformations, 

Tensile stress  
... 

Tensile strain - Y 
	(14.5) 

 

is a constant for the given material. This ratio of 
tensile stress over tensile strain is called Young's 
modulus for the material. In the situation described 
above. the Young's modulus is 
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F/A  FL Y - 	 ... (14.6) 
AL/L AAL 

If the rod is compressed, compressive stress and 
compressive strain appear. Their ratio Y is same as 
that for the tensile case. 

Example 14.2 

A load of 4'0 kg is suspended from a ceiling through a 
steel wire of length 20 m and radius 2.0 mm. It is found 
that the length of the wire increases by 0'031 mm 

as equilibrium is achieved. Find Young's modulus of steel. 
Take g = 3'1 n n)/s 2. 

Solution : The longitudinal stress - 
(4'0 kg) (3.1 itm/s 

rE(2.0 x 10 -3 m)

22)  

= 3.1 x 10 °N/m 2 . 

The longitudinal strain = 0
.31 x 10 -3 m  

2.0 m 

= 0.0155 x 10
.3 

 

3'1 x 10"°  N/m 2  
Thus, Y = 	 _ - 2.0 x 10 "N/m 2. 

0'0155 x 10 3  

The ratio of shearing stress over shearing strain 
is called the Shear modulus, Modulus of rigidity or 
Torsional modulus. In the situation of figure (14.5) the 
shear modulus is 

F/A  Fh 
= x/h Ax 

The ratio of volume stress over volume strain is 
called Bulk modulus. If P be the volume stress (same 

as pressure) and AV be the increase in volume, the 
Bulk modulus is defined as 

AV/V 

The minus sign makes B positive as volume actually 
decreases on applying pressure. Quite often, the 
change in volume is measured corresponding to a 
change in pressure. The bulk modulus is then defined 
as 

AP dP 
B - 	- V - • 

V/V 	dV 

Compressibility K is defined as the reciprocal of the 
bulk modulus. 

K _ _ 1 dV 
B 	dP 
	 ... (14.9) 

Yet another kind of modulus of elasticity is 
associated with the longitudinal stress and strain. 
When a rod or a wire is subjected to a tensile stress, 
its length increases in the direction of the tensile force. 
At the same time the length perpendicular to the  

tensile force decreases. For a cylindrical rod, the length 
increases and the diameter decreases when the rod is 
stretched (Figure 14.6). 

dT,Ad  

1+,11 

Figure 14.6 

The fractional change in the transverse length is 
proportional to the fractional change in the 
longitudinal length. The constant of proportionality is 
called Poisson's ratio. Thus, Poisson's ratio is 

Ad/d  
Q - 	 ... (14.10) 

AL/L 

The minus sign ensures that a is positive. Table 
(14.1) lists the elastic constants of some of the common 
materials. Table (14.2) lists compressibilities of some 
liquids. 

Table 14.1 : Elastic constants 

Material Young's Shear Bulk Poisson's 
Modulus Y Modulus q Modulus B ratio a 
10 11 N/m 2  10 11 N/Tin 2  10 11 N/m 2  

Aluminium 0.70 0.30 0.70 0.16 

Brass 0.91 0.36 0.61 0.26 

Copper 1.1 0.42 1.4 0.32 

Iron 1.9 0.70 1.0 0.27 

Steel 2.0 0.84 1.6 0.19 

Tungsten 3.6 1.5 2.0 0.20 

Table 14.2: Compressibilities of liquids 

Liquid Compressibility K 
10 " m 2/N 

Carbon disulphide 64 

Ethyl alcohol 110 

Glycerine 21 

Mercury 3.7 

Water 49 

14.6 RELATION BETWEEN LONGITUDINAL STRESS 
AND STRAIN 

For a small deformation, the longitudinal stress is 
proportional to the longitudinal strain. What happens 
if the deformation is not small ? The relation of stress 
and strain is much more complicated in such a case 
and the nature depends on the material under study. 
We describe here the behaviour for two representative 
materials, a metal wire and a rubber piece. 

... (14.7) 

B= ... (14.8) 
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Metal Wire 

Suppose a metal wire is stretched by equal forces 
at the ends so that its length increases from its natural 
value. Figure (14.7) shows qualitatively the relation 
between the stress and the strain as the deformation 
gradually increases. 

Figure 14.7 

When the strain is small (say < 0.01), the stress 
is proportional to the strain. This is the region where 
Hooke's law is valid and where Young's modulus is 
defined. The point a on the curve represents the 
proportional limit up to which stress and strain are 
proportional. 

If the strain is increased a little bit, the stress is 
not proportional to the strain. However, the wire still 
remains elastic. This means, if the stretching force is 
removed, the wire acquires its natural length. This 
behaviour is shown up to a point b on the curve known 
as the elastic limit or the yield point. If the wire is 
stretched beyond the elastic limit, the strain increases 
much more rapidly. If the stretching force is removed, 
the wire does not come back to its natural length. Some 
permanent increase in length takes place. In figure 
(14.7), we have shown this behaviour by the dashed 
line from c. The behaviour of the wire is now plastic. 
If the deformation is increased further, the wire breaks 
at a point d known as fracture point. The stress 
corresponding to this point is called breaking stress. 

If large deformation takes place between the 
elastic limit and the fracture point, the material is 
called ductile. If it breaks soon after the elastic limit 
is crossed, it is called brittle. 

Rubber 

A distinctly different stress-strain relation exists 
for vulcanized rubber, the behaviour is qualitatively 
shown in figure (14.8). The material remains elastic  

even when it is stretched to over several times its 
original length. In the case shown in figure (14.8), the 
length is increased to 8 times its natural length, even 
then if the stretching forces are removed, it will come 
back to its original length. 

2 
	

4 
	

6 
	

Strain 

Figure 14.8 

In this respect rubber is more elastic than a ductile 
metal like steel. However, the magnitude of stress for 
a given strain is much larger in steel than in rubber. 
This means large internal forces appear if the steel 
wire is deformed. In this sense, steel is more elastic 
than rubber. There are two important phenomena to 
note from figure (14.8). Firstly, in no part of this large 
deformation stress is proportional to strain. There is 
almost no region of proportionality. Secondly, when the 
deforming force is removed the original curve is not 
retraced although the sample finally acquires its 
natural length. The work done by the material in 
returning to its original shape is less than the work 
done by the deforming force when it was deformed. A 
particular amount of energy is, thus, absorbed by the 
material in the cycle which appears as heat. This 
phenomenon is called elastic hysteresis. 

Elastic hysteresis has an important application in 
shock absorbers. If a padding of vulcanized rubber is 
given between a vibrating system and say a flat board, 
the rubber is compressed and released in every cycle 
of vibration. As energy is absorbed in the rubber- in 
each cycle, only a part of the energy of vibrations is 
transmitted to the board. 

14.7 ELASTIC POTENTIAL ENERGY 
OF A STRAINED BODY 

When a body is in its natural shape, its potential 
energy corresponding to the molecular forces is 
minimum. We may take the potential energy in this 
state to be zero. When deformed, internal forces appear 
and work has to be done against these forces. Thus, 
the potential energy of the body is increased. This is 
called the elastic potential energy. We shall derive an 
expression for the increase in elastic potential energy 
when a wire is stretched from its natural length. 

Suppose a wire having natural length L and 
cross-sectional area A is fixed at one end and is stretched 
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1 
or, Potential energy = —2 

X stress X strain X volume. 

... (14.12) 

Example 14.3 

A steel wire of length 2.0 m is stretched through 2'0 mm. 
The cross-sectional area of the wire is 4.0 mm2 . Calculate 
the elastic potential energy stored in the wire in the 
stretched condition. Young's modulus of steel 
= 2'0 x 10  11 win  2.  

by an external force applied at the other end (figure 
14.9). The force is so adjusted that the wire is only 
slowly stretched. This ensures that at any time during 
the extension the external force equals the tension in 
the wire. When the extension is x,the wire is under a 
longitudinal stress F/A, where F is the tension at this 
time. The strain is x/L. 

If Young's modulus is Y, 

F/A _ y 
x/L 

AY 
or, 	 F = — x. 	 (i) 

The work done by the external force in a further 
extension dx is 

dW = F dx. 
Using (i), 

dW = AY x dx 

The total work by the external force in an 
extension 0 to l is 

AY vv=f —xdx 
0 

AY 7 2 
2L 

This work is stored into the wire as its elastic potential 
energy. 

Thus, the elastic potential energy of the stretched 
wire is, 

U= AY / 2 
2L 

This may be written as 

U= 	/ 

= —
1 

(maximum stretching force) (extension). 
2 

Equation (14.11) may also be written as 

U = [ Y )1- (AL)  

Solution : The strain in the wire 
Al 

= 2.0 m 
2.0 min - 10 

_3 
 

1  
The stress in the wire = Y x strain 

= 2.0 x 10"N/m 2 x 10 -3 = 2.0 x 10 8 N/m 2 .  

The volume of the wire = (4 x 10 -6  m 2) x (2.0 m) 

=8.0 x 10 -6 111' 3 . 
The elastic potential energy stored 

= 1  x stress X strain X volume 
2 

=x 2.0 x 10 8 N/m 2 x 10 -3 x 8.0 x 10 -6 m 3  
2 

= 0.8 J. 

14.8 DETERMINATION OF YOUNG'S MODULUS 
IN LABORATORY 

Figure (14.10) shows the experimental set up of a 
simple method to determine Young's modulus in a 
laboratory. A long wire A (say 2-3 m) is suspended from a 
fixed support. It carries a fixed graduated scale and 
below it a heavy fixed load. This load keeps the wire 
straight and free from kinks. The wire itself serves as a 
reference. The experimental wire B of almost equal length 
is also suspended from the same support close to the 
reference wire. A vernier scale is attached at the free 
end of the experimental wire. This vernier scale can slide 
against the main scale attached to the reference wire. 

wiiiii.../../h win r / /  

Figure 14.10 

... (14.11) 
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A hanger is attached at the lower end of the 
vernier scale. A number of slotted half kilogram or one 
kilogram weights may be slipped into the hanger. 

First of all, the radius of the experimental wire is 
measured at several places with a screw gauge. From 
the average radius r, the breaking weight is 
determined using the standard value of the breaking 
stress for the material. Half of this breaking weight is 
the permissible weight. 

Some initial load, say 1 kg or 2 kg, is kept on the 
hanger (this should be much smaller than the 
permissible weight). This keeps the experimental wire 
straight and kink-free. The reading of the main scale 
and vernier coincidence are noted. A known weight say 
1/2 kg or 1 kg is slipped into the hanger. The set up 
is left for about a minute so that' the elongation takes 
place fully. The readings,on the scale are noted. The 
difference of the scale readings gives the extension due 
to the extra weight put. The weight is gradually 
increased upto the permissible weight and every time 
the extension is noted. 

The experiment is repeated in reverse order 
decreasing the weight gradually in the same steps and 
everytime noting the extension. 

From the data, extension versus load curve is plotted. 
This curve should be a straight line passing through the 
origin (figure 14.11). The slope of this line gives 

tan° = 
Mg 

Load --■ 

Figure 14.11 

Now the stress 

stress = Mg 2. 
7C r 

and 	 strain = —
/ 

• 

Thus, 	Y - 
MgL 

- 	 
nr - 1 nr 2  tan@ 

All the quantities on the right hand side are known 
and hence Young's modulus Y may be calculated. 

14.9 SURFACE TENSION 

The properties of a surface are quite often 
markedly different from the properties of the bulk  

material. A molecule well inside a body is surrounded 
by similar particles from all sides. But a molecule on 
the surface has particles of one type on one side and 
of a different type on the other side. Figure (14.12) 
shows an example. A molecule of water well inside the 
bulk experiences forces from water molecules from all 
sides but a molecule at the surface interacts with air 
molecules from above and water molecules from below. 
This asymmetric force distribution is responsible for 
surface tension. 

Figure 14.12 

By a surface we shall mean a layer approximately 
10-15 molecular diameters. The force between two 
molecules decreases as the separation between them 
increases. The force becomes negligible if the 
separation exceeds 10-15 molecular diameters. Thus, 
if we go 10-15 molecular diameters deep, a molecule 
finds equal forces from all directions. 

Figure 14.13 

Let F be the common magnitude of the forces 
exerted on each other by the two parts of the surface 
across a line of length 1. We define the surface tension 
S of the liquid as 

S = F/1 	 ... (14.13) 

The SI unit of surface tension is N/m. 

Imagine a line AB drawn on the surface of a liquid 
(figure 14.13). The line divides the surface in two parts, 
surface on one side and the surface on the other side 
of the line. Let us call them surface to the left of the 
line and surface to the right of the line. It is found 
that the two parts of the surface pull each other with 

due to the weight Mg at the end is a force proportional to the length of the line AB. These 
forces of pull are perpendicular to the line separating 
the two parts and are tangential to the surface. In this 
respect the surface of the liquid behaves like a 
stretched rubber sheet. The rubber sheet which is 
stretched from all sides is in the state of tension. Any 
part of the sheet pulls the adjacent part towards itself. 



Some Mechanical Properties of Matter 	 285 

Example 14.4 

Water is kept in a beaker of radius 5.0 cm. Consider a 
diameter of the beaker on the surface of the water. Find 
the force by which the surface on one side of the diameter 
pulls the surface on the other side. Surface tension of 
water = 0'075 N/m. 

Solution : The length of the diameter is 

/ = 2r 10 cm 

= 0.1 m. 
The surface tension is S = F/1 . Thus, 

F S1 
= (0'075 N/m) x (0.1 m) = 7.5 x 10 -3  N. 

The fact that a liquid surface has the property of 
surface tension can be demonstrated by a number of 
simple experiments. 

(a) Take a ring of wire and dip it in soap solution. 
When the ring is taken out, a soap film bounded by 
the ring is formed. Now take a loop of thread, wet it 
and place it gently on the soap film. The loop stays on 
the film in an irregular fashion as it is placed. Now 
prick a hole in the film inside the loop with a needle. 
The thread is radially pulled by the film surface 
outside and it takes a circular shape (figure 14.14). 

Figure 14.14 

Before the pricking, there were surfaces both 
inside and outside the thread loop. Taking any small 
part of the thread, surfaces on both sides pulled it and 
the net force was zero. The thread could remain in any 
shape. Once the surface inside was punctured, the 
outside surface pulled the thread to take the circular 
shape. 

Figure 14.15 

(b) Take a U-shaped frame of wire on which a light 
wire can slide (figure 14.15). Dip the frame in a soap 
solution and take it out. A soap film is formed between  

the frame and the sliding wire. If the frame is kept in 
a horizontal position and the friction is negligible, the 
sliding wire quickly slides towards the closing arm of 
the frame. This shows that the soap surface in contact 
with the wire pulls it parallel to the surface. If , the 
frame is kept vertical with the sliding wire at the lower 
pbsition, one can hang some weight from it to keep it 
in equilibrium. The force due to surface tension by the 
surface in contact with the sliding wire balances the 
weight. 

Tendency to Decrease the Surface Area 

The property of surface tension may also be 
described in terms of the tendency of a liquid to 
decrease its surface area. Because of the existence of 
forces across any line in the surface, the surface tends 
to shrink whenever it gets a chance .to do so. The two 
demonstrations described above may help us in 
understanding the relation between the force of surface 
tension and the tendency to shrink the surface. 

In the first example, the soap film is pricked in 
the middle. The remaining surface readjusts its shape 
so that a circular part bounded by the thread loop is 
excluded. The loop has a fixed length and the largest 
area that can be formed with a fixed periphery is a 
circle. This ensures that the surface of the soap 
solution takes the minimum possible area. 

In the second example, the wire can slide on the 
frame. When kept in horizontal position, the wire 
slides to the closing arm of the U-shaped frame so that 
the surface shrinks. 

There are numerous examples which illustrate 
that the surface of a liquid tries to make its area 
minimum. When a painting brush is inside a liquid, 
the bristles of the brush wave freely. When the brush 
is taken out of the liquid, surfaces are formed between 
the bristles. To minimise the area of these surfaces, 
they stick together. 

A small drop of liquid takes a nearly spherical 
shape. This is because, for a given volume, the sphere 
assume the smallest surface area. Because of gravity 
there is some deviation from the spherical shape but 
for small drops this may be neglected. 

Table (14.3)gives the values of surface tension of 
some liquids. 

Table 14.3: Surface tension 

Liquid Surface 
tension Wm 

Liquid Surface 
Tension N/m 

Mercury 0.465 Glycerine 0.063 

Water 0.075 Carbon tetra 
chloride 

0.027 

Soap solution 0.030 Ethyl alcohol 0.022 
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14.10 SURFACE ENERGY 

We have seen that a molecule well within the 
volume of a liquid is surrounded by the similar liquid 
molecules from all sides and hence there is no 
resultant force on it (figure 14.12). On the other hand, 
a molecule in the surface is surrounded by similar 
liquid molecules only on one side of the surface while 
on the other side it may be surrounded by air 
molecules or the molecules of the vapour of the liquid 
etc. These vapours having much less density exert only 
a small force. Thus, there is a resultant inward force 
on a molecule in the surface. This force tries to pull 
the molecule into the liquid. Thus, the surface layer 
remains in microscopic turbulence. Molecules are 
pulled back from the surface layer to the bulk and new 
molecules from the bulk go to the surface to fill the 
empty space. 

When a molecule is taken from the inside to the 
surface layer, work is done against the inward 
resultant force while moving up in the layer. The 
potential energy is increased due to this work. A 
molecule in the surface has greater potential energy 
than a molecule well inside the liquid. The extra 
energy that a \ surface layer has is called the surface 
energy. The surface energy is related to the surface 
tension as discussed below. 

Consider a U-shaped frame with a sliding wire on 
its arm. Suppose it is dipped in a soap solution, taken 
out and placed in a horizontal position (figure 14.16). 

  

 

• 
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Figure 14.16 

The soap film that is formed may look quite thin, 
but on the molecular scale its thickness is not small. 
It may have several hundred thousands molecular 
layers. So it has two surfaces enclosing a bulk of soap 
solution. Both the surfaces are in contact with the 
sliding wire and hence exert forces of surface tension 
on it. If S be the surface tension of the solution and 1 
be the length of the sliding wire, each surface will pull 
the wire parallel to itself with a force Sl. The net force 
of pull F on the wire due to both the surfaces is 

F = 2 S1 . 

One has to apply an external force equal and opposite 
to F so as to keep the wire in equilibrium. 

Now suppose the wire is slowly pulled out by the 
external force through a distance x so that the area of 
the frame is increased by lx. As there are two surfaces  

of the solution, a new surface area 21x is created. The 
liquid from the inside is brought to create the new 
surface. 

The work done by the external force in the 
displacement is 

W = F x = 281 x = S (21x) . 
As there is no change in kinetic energy, the work 

done by the external force is stored as the potential 
energy of the new surface. 

The increase in surface energy is 

U = W = S (2/x). 
U 

-
s  

(2/x)  

U 
or, 	 = 0. 

We see that the surface tension of a liquid is equal to 
the surface energy per unit surface area. 

In this interpretation, the SI unit of surface 
tension may be written as2J/m 

2
.It may be verified that 

N/m is equivalent to J/m . 

Example 14.5 

A water drop of radius 10-2 m is broken into 1000 equal 
droplets. Calculate the gain in surface energy. Surface 
tension of water is 0'075 N/m. 

Solution : The volume of the original drop is 

V= —4 n R 3 
where R= 10 -2 m, 

3 

If r is the radius of each broken droplet, the volume is 
also 

V= 1000 x —
4 

n r 
3 

Thus, 	1000 r 3 =R 3  
or, 	 r R/10 . 

The surface area of the original drop is A, = 4nR 2  and 
the surface area of the 1000 droplets is 

A2 =1000 x 4 Er 2 =40 TER 2. 

The increase in area is 

AA A, -A, = 40 TER 2  - 4 itR 36 nR 2. 

The gain in surface energy is 

AU = (AA) S = 36 TER 2S 

= 36 x 3'14 x (10 -4  111 2) X (0'075 N/m) 

= 8.5 x 10 -4 J. 

14.11 EXCESS PRESSURE INSIDE A DROP 

Let us consider a spherical drop of liquid of radius 
R (figure 14.17). If the drop is small, the effect of 
gravity may be neglected and the shape may be 
assumed to be spherical. 

Thus, 

... (14.14) 
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Figure 14.17 

Imagine a diametric cross-section ABCD of the 
drop which divides the drop in two hemispheres. The 
surfaces of the two hemispheres touch each other along 
the periphery ABCDA. Each hemispherical surface 
pulls the other hemispherical surface due to the 
surface tension. 

Consider the equilibrium of the hemispherical 
surface ABCDE. Forces acting on this surface are 

(i) F1, due to the surface tension of the surface 
ABCDG in contact, 

(ii) F2, due to the air outside the surface ABCDE 
and 

(iii) F3, due to the liquid inside the surface ABCDE. 

A 

Figure 14.18 

The force due to surface tension acts on the points 
of the periphery ABCDA. The force on any small part 
dl of this periphery is S dl (figure 14.18) and acts 
parallel to the symmetry axis OX. The resultant of all 
these forces due to surface tension is 

F1  = 2nRS 

along OX. 
Now consider the forces due to the air outside the 

surface ABCDE. Consider a small part AS of the 
surface as shown in figure (14.19). 

A 

C 

Figure 14.19 

If the pressure just outside the surface is P1, the 
force on this surface AS is P1AS along the radial 
direction. By symmetry, the resultant of all such forces 
acting on different parts of the hemispherical surface 
must be along OX. 

If the radius through AS makes an angle 0 with 
OX, the component of P1AS along OX will be 
P1AS cosO. If we project the area AS on the diametric 
plane ABCD, the area of projection will be AS cosh. 
Thus, we can write, 

component of P1AS along OX 

= P1  (projection of AS on the plane ABCD). 

When components of all the forces P1AS on different 
AS are added, we get the resultant force due to the 
air outside the hemispherical surface. This resultant 
is then 

F2  = P, (Projection of the, hemispherical surface 
ABCDE on the plane ABCD). 

The projection of the hemispherical surface on the 
plane ABCD is the circular disc ABCD itself, having 

an area nR 2. Thus, 

F2 =P1 nR2. 

Similarly, the resultant force on this surface due 

to the liquid inside is F3 = P2 • nR 2, where P2 is the 
pressure just inside the surface. This force will be in 
the direction OX 

For equilibrium of the hemispherical surface 
ABCDE we should have, 

F1 + F2 = F3 

or, 	2nRS + PircR 2  = P2rcR 2  
or, 	 P2 - = 2S/R . 	(14.15) 

The pressure inside the surface is greater than the 
pressure outside the surface by an amount 2S/R. 

In the case of a drop, there is liquid on the concave 
side of the surface and air on the convex side. The 
pressure on the concave side is greater than the 
pressure on the convex side. This result is true in all 
cases. If we have an air bubble inside a liquid (figure 
14.20), a single surface is formed. There is air on the 
concave side and liquid on the convex side. The 
pressure in the concave side (that is in the air) is 
greater than the pressure in the convex side (that is 
in the liquid) by an amount 2S/R. 

P1  

0 
Figure 14.20 

PZ 
	2S 
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Example 14.6 	  

Find the excess pressure inside a mercury drop of 
radius 2'0 mm. The surface tension of mercury 
= 0'464 N/m. 

Solution : The excess pressure inside the drop is 
P,- P, = 2S/R 

2 x 0464 N/m  464 N/m 2.  
2.0x 10 -3  m 

14.12 EXCESS PRESSURE IN A SOAP BUBBLE 

Soap bubbles can be blown by dipping one end of 
a glass tube in a soap solution for a short time and 
then blowing air in it from the other end. Such a 
bubble has a small thickness and there is air both 
inside the bubble and outside the bubble. The 
thickness of the bubble may look small to eye but it 
still has hundreds of thousands of molecular layers. So 
it has two surface layers, one towards the outside air 
and the other towards the enclosed air. Between these 
two surface layers there is bulk soap solution. 

density of the liquid. Surface tension of soap solution 
= 0'03 N/m. 

Solution : The excess pressure inside a soap bubble is 

AP= 4S/R= 
4 x 0'03 N/m  - 16 win 2. 
7'5 x 10 -3 m 

The pressure due to 0'02 cm of the liquid column is 

AP = hpg 

= (0'02 x 10 -2  In) p (9.8 m/s 2). 

Thus, 16 N/m 2  (0'02 x 10 -2  m) p (9.8 m/s 2) 

or, 	p = 8.2 x 10 3  kg/m 3. 

14.13 CONTACT ANGLE 

When a liquid surface touches a solid surface, the 
shape of the liquid surface near the contact is generally 
curved. When a glass plate is immersed in water, the 
surface near the plate becomes concave as if the water 
is pulled up by the plate (figure 14.22). On the other 
hand, if a glass plate is immersed in mercury, the 
surface is depressed near the plate. 

O 
. PI  

Figure 14.22 

Figure 14.21 

Let the pressure of the air outside the bubble be 
P1, that within the soap solution be P' and that in the 
air inside the bubble be P2. Looking at the outer 
surface, the solution is on the concave side of the 
surface, hence 

P' - Pi = 2S/R 

where R is the radius of the bubble. As the thickness 
of the bubble is small on a macroscopic scale, the 
difference in the radii of the two surfaces will be 
negligible. 

Similarly, looking at the inner surface, the air is 
on the concave side of the surface, hence 

P2 - P = 2S/R. 

Adding the two equations, 

P2 - P1 = 4S/R. 	... (14.16) 

The pressure inside a bubble is greater than the 
pressure outside by an amount 4S/R. 

Example 14.7 

A 0'02 cm liquid column balances the excess pressure 
inside a soap bubble of radius 7'5 mm. Determine the 

The angle between the tangent planes at the solid 
surface and the liquid surface at the contact is called 
the contact angle. In this the tangent plane to the solid 
surface is to be drawn towards the liquid and the 
tangent plane to the liquid is to be drawn away from 
the solid. Figure (14.22) shows the construction of 
contact angle. For the liquid that rises along the solid 
surface, the contact angle is smaller than 90°. For the 
liquid that is depressed along the solid surface, the 
contact angle is greater than 90°. Table (14.4) gives 
the contact angles for some of the pairs of solids and 
liquids. 

Table 14.4: Contact angles 

Substance Contact 
angle 

Substance Contact 
angle 

Water with glass 

Murcury with 
glass 

0 

140° 

Water with 
paraffin 

Methylene iodide 
with glass 

107° 

29° 

Let us now see why the liquid surface bends near 
the contact with a solid. A liquid in equilibrium cannot 
sustain tangential stress. The resultant force on any 
small part of the surface layer must be perpendicular 
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to the surface there. Consider a small part of the liquid 
surface near its contact with the solid (figure 14.23). 

Figure 14.23 

The forces acting on this part are 

(a) F., attraction due to the molecules of the solid 
surface near it, 

(b) F1, the force due to the liquid molecules near 
this part, and 

(c) W, the weight of the part considered. 
The force between the molecules of the same 

material is known as cohesive force and the force 
between the molecules of different kinds of material is 
called adhesive force. Here F, is adhesive force and 
F1  is cohesive force. 

As is clear from the figure, the adhesive force F, 
is perpendicular to the solid surface and is into the 
solid. The cohesive force F1  is in the liquid, its direction 
and magnitude depends on the shape of the liquid 
surface as this determines the distribution of the 
molecules attracting the part considered. Of course, 
F, and F1  depend on the nature of the substances 
especially on their densities. 

The direction of the resultant of F., F1  and W 
decides the shape of the surface near the contact. The 
liquid rests in such a way that the surface is 
perpendicular to this resultant. If the resultant passes 
through the solid (figure 14.23a), the surface is concave 
upward and the liquid rises along the solid. If the 
resultant passes through the liquid (figure 14.23b), the 
surface is convex upward and the liquid is depressed 
near the solid. 

If a solid surface is just dipped in liquid (figure 
14.24) so that it is not projected out, the force F, will 
not be perpendicular to the solid. The actual angle 
between the solid surface and the liquid surface may 
be different from the standard contact angle for the 
pair. 

Figure 14.24 

14.14 RISE OF LIQUID IN A CAPILLARY TUBE 

When one end of a tube of small radius (known as 
a capillary tube) is dipped into a liquid, the liquid rises 
or is depressed in the tube. If the contact angle is less 
than 90°, the liquid rises. If it is greater than 90°; it 
is depressed. 

Suppose a tube of radius r is dipped into a liquid 
of surface tension S and density p. Let the angle of 
contact between the solid and the liquid be 0. If the 
radius of the tube is small, the surface in the tube is 
nearly spherical. Figure (14.25) shows the situation. 

Sdl cose 

Figure 14.25 

Consider the equilibrium of the part of liquid 
raised in the tube. In figure (14.25) this liquid is 
contained in the volume ABEF. Forces on this part of 
the liquid are 

(a) F1, by the surface of the tube on the surface 
ABCD of the liquid, 

(b) Fz  due to the pressure of the air above the 
surface ABCD, 

(c) F3,  due to the pressure of the liquid below EF 
and 

(d) the weight W of the liquid ABEF. 
ABCD is the surface of the liquid inside the 

capillary tube. It meets the wall of the tube along a 
circle of radius r. The angle made by the liquid surface 
with the surface of the tube is equal to the contact 
angle 0. 

Consider a small part dl of the periphery 2nr along 
which the surface of the liquid and the tube meet. The 
liquid surface across this pulls the tube surface by a 
force S dl tangentially along the liquid surface. From 
Newton's third law, the tube surface across this small 
part pulls the liquid surface by an equal force S dl in 
opposite direction. The vertical component of this force 
is S dl cose. The total force exerted on the liquid 
surface by the tube surface across the contact circle is 

F1 = f S dl cos() 

= S cose f dl 

27cr S cose 
	

(i) 

(a) 
	

(b) 
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The horizontal component Sdl sine adds to zero 
when summed over the entire periphery. 

The force F2 due to the pressure of the air outside 

the surface ABCD is P.7C r 2  where P is the atmospheric 
pressure. (This result was derived for hemispherical 
surface while deducing the excess pressure inside a 
drop. Same derivation works here.) 

This force acts vertically downward. The presure 
at EF is equal to the atmospheric pressure P. This is 
because EF is in the same horizontal plane as the free 
surface outside the tube and the pressure there is P. 
The force due to the liquid below EF is, therefore, 

Pn r 2  in vertically upward direction. 

Thus, F2 and F3 cancel each other and the force 

= 2nr S cos() balances the weight W in equilibrium. 
If the height raised in the tube is h and if we neglect 
the weight of the liquid contained in the meniscus,the 
volume of the liquid raised is it r 'h. The weight of this 
part is then 

W = r 2hpg. 

Thus, it r 2hpg = 2nr S cosh 

so that 	h - 2S cose 
 

rpg 

We see that the height raised is inversely proportional 
to the radius of the capillary. If the contact angle 6 is 
greater than 90°, the term cos() is negative and hence 
h is negative. The expression then gives the depression 
of the liquid in the tube. 

The correction clue to the weight of the liquid 
contained in the meniscus can be easily made if the 
contact angle is zero. This is the case with water rising 
in a glass capillary. The meniscus is then 
hemispherical (Figure 14.26). 

I— r —I  

Figure 14.26 

The volume of the shaded part is 

(n r 2)r - I{ 1  n r3)= n r 3. 
2 3 	3 

The weight of the liquid contained in the meniscus 

is -1 IC r 3pg. Equation (ii) is then replaced by 

n r 2hpg + 	r 3pg 	r S 

or, 	 h = 
2S r 

- 
rpg 3 

Example 14.8 

A capillary tube of radius 0.20 mm is dipped vertically 
in water. Find the height of the water column raised in 
the tube. Surface tension of water - 0.075 N/m and 
density of water = 1000 kg/m 3. Take g - 10 mis 2. 

Solution : We have, 

h 
2S cos° 

rpg 

2 x 0.075 N/m x 1  
(0'20 x 10 -3m) X (1000 kg/m 3) (10 m/s 2) 

= 0'075 m = 7'5 cm. 

Tube of Insufficient Length 

Equation (14.17) or (14.18) gives the height raised 
in a capillary tube. If the tube is of a length less than 
h, the liquid does not overflow. The angle made by the 
liquid surface with the tube changes in such a way 
that the force 27crS cos0 equals the weight of the liquid 
raised. 

14.15 VISCOSITY 

When a layer of a fluid slips or tends to slip on 
another layer in contact, the two layers exert 
tangential forces on each other. The directions are such 
that the relative motion between the layers is opposed. 
This property of a fluid to oppose relative motion 
between its layers is called viscosity. The forces 
between the layers opposing relative motion between 
them are known as the forces of viscosity. Thus, 
viscosity may be thought of as the internal friction of 
a fluid in motion, 

If a solid surface is kept in contact with a fluid 
and is moved, forces of viscosity appear between the 
solid surface and the fluid layer in contact. The fluid 
in contact is dragged with the solid. If the viscosity is 
sufficient, the layer moves with the solid and there is 
no relative slipping. When a boat moves slowly on the 
water of a calm river, the water in contact with the 
boat is dragged with it, whereas the water in contact 
with the, bed of the river remains at rest. Velocities of 
different layers are different. Let v be the velocity of 
the layer at a distance z from the bed and v + du be 
the velocity at a distance z + dz. (figure 14.27). 

z 

dz i •—■ v+dv 
v 

Figure 14.27 

(ii) 

... (14.17) 

(14,18) 
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Thus, the velocity differs by du in going through a 
distance dz perpendicular to it. The quantity dv/dz is 
called the velocity gradient. 

The force of viscosity between two layers of a fluid 
is proportional to the velocity gradient in the direction 
perpendicular to the layers. Also the force is 
proportional to the area of the layer. 

Thus, if F is the force exerted by a layer of area 
A on a layer in contact, 

F ec A and F pc du/dz 
or, 	F = - q A dv/dz. 	... (14.19) 

The negative sign is included as the force is 
frictional in nature and opposes relative motion. The 
constant of proportionality q is called the coefficient of 
viscosity. 

The SI unit of viscosity can be easily worked out 
from equation (14.19). It is N-s/

2
n2. However, the 

corresponding CGS unit dyne-s/cm is in common use 
and is called a poise in honour of the French scientist 
Poiseuille. We have 

1 poise = 0.1 N-Wm 2.  

Dimensions of the Coefficient of Viscosity 

Writing dimensions of different variables in 
equation (14.19), 

MLT -2  = [n] L2  • /II 

LT -2  
[n] = 

M
2  -1 

L T 

[n] = ML-1T -1. 	... (14.20) 

The coefficient of viscosity strongly depends on 
temperature. Table (14.5)gives the values for some of 
the commom fluids. 

Table 14.5 : Coefficient of viscosity 

formula for the rate of flow of viscous fluid through a 
cylindrical tube. We shall try to obtain the formula 
using dimensional analysis. 

Suppose a fluid having coefficient of viscosity q and 
density p is flowing through a cylindrical tube of radius 
r and length 1. Let P be the pressure difference in the 
liquid at the two ends. It is found that the volume of 
the liquid flowing per unit time through the tube 
depends on the pressure gradient P/1, the coefficient 
of viscosity q and the radius r. If V be the volume 
flowing in time t, we guess that 

V (11 a  
b c — = k — i r 	 (i) t 

where k is a dimensionless constant. 
Taking dimensions, 

or, 	L3T -1  = M 
a+bL-24--b+cT-21-6. 

Equating the exponents of M, L and T we get, 
0 = a + b 
3 = - 2a - b + c 

- 1= 2a - b. 
Solving these equations, 

a = 1, b - 1 and c = 4. 
Thus, 

Pr 4  
t 

—k 

T1 1  
The dimensionless constant k is equal to n/8 and 

hence the rate of flow is 

V 7cPr 4  
t = 8q1 

This is Poiseuille's formula. 

pr, 

or, 

... (14.21) 

Temperature 
	Viscosity of 	Viscosity of 

	
Viscosity of 

°C 
	

castor oil, 	water, centi- 	air, micro- 
poise 	poise 	poise 

0 

20 

40 

60 

100 

53 

9'86 

2'31 

0'80 

0'30 

0'17 

P792 

P005 

0'656 

0'469 

0'357 

0'284 

171 

181 

190 

200 

209 

218 

14.16 FLOW THROUGH A NARROW TUBE : 
POISEUILLE'S EQUATION 

Suppose a fluid flows through a narrow tube in 
steady flow. Because of viscosity, the layer in contact 
with the wall of the tube remains at rest and the layers 
away from the wall move fast. Poiseuille derived a  

14.17 STOKES' LAW 

When a solid body moves through a fluid, the fluid 
in contact with the solid is dragged with it. Relative 
velocities are established between the layers of the 
fluid near the solid so that the viscous forces start 
operating. The fluid exerts viscous force on the solid 
to oppose the motion of the solid. The magnitude of 
the viscous force depends on the shape and size of the 
solid body, its speed and the coefficient of viscosity of 
the fluid. 

Suppose a spherical body of radius r moves at a 
speed v through a fluid of viscosity q. The viscous force 
F acting on the body depends on r, v and q. Assuming 
that the force is proportional to various powers of these 
quantities, we can •obtain the dependence through 
dimensional analysis. 
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Let 	 F=kr
a b  n 	 (i) 

where k is a dimensionless constant. Taking 
dimensions on both sides, 

MLT -  2  = k (Ur -1)1)  (ML-1T - 1) c. 

Comparing the exponents of M, L and T. 

1 = c 

1 =a+b- c 

- 2 = - b - c. 

Solving these equations, a = 1, b = 1 and c = 1. 

Thus, by (i),F = k r v 9. 

The dimensionless constant k equals 6m , so that 
the equation becomes 

F = 6 it r v. 	... (14.22) 

This equation is known as Stokes' law. 

Example 14.9 

An air bubble of diameter 2 mm rises steadily through 
a solution of density 1750 kg/m 3  at the rate of 0'35 cm/s. 
Calculate the coefficient of viscosity of the solution. The 
density of air is negligible. 

Solution : The force of buoyancy B is equal to the weight 
of the displaced liquid. Thus, 

4 B 	r 3  ag. 

This force is upward. The viscous force acting downward 
is 

F = 6 7i rirv. 

The weight of the air bubble may be neglected as the 
density of air is small. For uniform velocity, 

F = B 

or, 6 n rim - —
3 

n r 3  ag 4 

2r 2ag  
or, 	 9v 

or, 	- 
2 x (1 x 10 3  M) 2  x (1750 kg/m 3) (9.8 mis 2) 

9 x (0'35 x 10 -2  M/S) 

11 poise. 

This appears to be a highly viscous liquid. 

14.18 TERMINAL VELOCITY 

The viscous force on a solid moving through a fluid 
is proportional to its velocity. When a solid is dropped 
in a fluid, the forces acting on it are 

(a) weight W acting vertically downward, 

(b) the viscous force F acting vertically upward 
and 

(c) the buoyancy force B acting vertically upward. 

The weight W and the buoyancy B are constant but 
the force F is proportional to the velocity v. Initially,  

the velocity and hence the viscous force F is zero and 
the solid is accelerated due to the force W - B. Because 
of the acceleration,the velocity increases. Accordingly, 
the viscous force also increases. At a certain instant 
the viscous force becomes equal to W - B. The net force 
then becomes zero and the solid falls with constant 
velocity. This constant velocity is known as the 
terminal velocity. 

Consider a spherical body falling through a 
liquid. Suppose the density of the body = p, density of 
the liquid = a, radius of the sphere = r and the 
terminal velocity = vo  . The viscous force is 

F = 67c rirvo. 

The weight 	W =  n r Pg 3 

and the buoyancy force B =
3 
 r 3

o-g• 

We have 
4 3 

6m ry 0  = W - B = —
3 

nr pg - -
4 rcr o-g 
3 

2 r  2(p - o-)g 
vo - 	9  n  

14.19 MEASURING COEFFICIENT OF VISCOSITY 
BY STOKES' METHOD 

Viscosity of a liquid may be determined by 
measuring the terminal velocity of a solid sphere in it. 
Figure (14.28) shows the apparatus. A test tube A 
contains the experimental liquid and is fitted into a 
water bath B. A thermometer T measures the 
temperature of the bath. A tube C is fitted in the cork 
of the test tube A. There are three equidistant marks 
P, Q and R on the test tube well below the tube C. 

c 

- P 

— @ 

— it 

A = 
	

B 

Figure 14.28 

A spherical metal ball is dropped in the tube C. 
The time interval taken by the ball to pass through 
the length PQ and through the length QR are noted 
with the help of a stop watch. If these two are not 

or, ... (14.23) 
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equal, a smaller metal ball is tried. The process is 
repeated till the two time intervals are the same. In 
this case the ball has achieved its terminal velocity 
before passing through the mark P. The radius of the 
ball is determined by a screw guage. Its mass in is 
determined by weighing it. The length PQ = QR is 
measured with a scale. 

Let r = radius of the spherical ball 
m = mass of the ball 

t = time interval in passing through the length 
PQ or QR 

d = length PQ = QR 
q = coefficient of viscosity of the liquid 

and a = density of the liquid. 

The density of the solid is 

terminal velocity is vo  = d/t. Using equation (14.23), 

1   9 d/t 
2 (p - a)gr  

2 

This method is useful for a highly viscous liquid such 
as Castor oil. 

14.20 CRITICAL VELOCITY AND 
REYNOLDS NUMBER 

When a fluid flows in a tube with a small velocity, 
the flow is steady. As the velocity is gradually 
increased, at one stage the flow becomes turbulent. 
The largest velocity which allows a steady flow is 
called the critical velocity. 

Whether the flow will be steady or turbulent 
mainly depends on the density, velocity and the 
coefficient of viscosity of the fluid as well as the 
diameter of the tube through which the fluid is flowing. 
The quantity 

N  = 12 	
... (14.24) 

is called the Reynolds number and plays a key role in 
determining the nature of flow. It is found that if the 
Reynolds number is less than 2000, the flow is steady. 
If it is greater than 3000, the flow is turbulent. If it 
is between 2000 and 3000, the flow is unstable. In this 
case it may be steady and may suddenly change to 
turbulent or it may be turbulent and may suddenly 
change to steady. 

m 
4 	3 
—
3 

IC r 
and the 

Worked Out Examples 

1 One end of a wire 2 m long and 0.2 cm 2  in cross-section 
is fixed in a ceiling and a load of 4.8 kg is attached to 
the free end. Find the extension of the wire. Young's 
modulus of steel = 2'0 x 10 

11 Nim  2.  Take g = 10 m/s 2. 

Solution : We have 
stress  T/A Y - 
strain l/L 

with symbols having their usual meanings. The 
extension is 

TL l= 
AY 

 

As the load is in equilibrium after the extension, the 
tension in the wire is equal to the weight of the load 

= 4'8 kg x 10 m/s 2  = 48 N. 

Thus 1 	 (48 N) (2 m)  - 
' 	(0.2 x 10 -4 m 2) x (2.0 x 10 11  N/m 2) 

= 2.4 x 10 5  In. 

2. One end of a nylon rope of length 4.5 m and diameter 
6 mm is fixed to a tree-limb. A monkey weighing 100 N 
jumps to catch the free end and stays there. Find the 
elongation of the rope and the corresponding change in 
the diameter. Young's modulus of nylon = 4.8 x 10 "N/m2  
and Poisson's ratio of nylon = 0'2. 

Solution : As the monkey stays in equilibrium, the tension 
in the rope equals the weight of the monkey. Hence, 

y stress  T/A 
strain l/L 

TL 
I= AY 

 

or, elongation - 
(itx9x 10 -8 m)x (4.8 x 10 I1

Nfin 

= 3'32 x 10 -5 m. 
Ad/d (Ad)L 

Again, Poisson's ratio = 
l/L 	ld 

or, 	02- 	Ad x 4'5 m  
(3'32 x 10m) x (6 x 10 3 m) 

0.2 x 6 x 3'32 x 10 -8 m  or, 	Ad 
4.5 

- 8.8 x 10 -9 m. 

3. Two blocks of masses 1 kg and 2 kg are connected by a 
metal wire going over a smooth pulley as shown in figure 
(14-W1). The breaking stress of the metal is 
2 x 10 9  N/m 2. What should be the minimum radius of 
the wire used if it is not to break ? Take g = 10 m/s 2  

or, 

(100 N) x (4.5 m) 



1 kg 

Figure 14-W2 

Ti = 10 N 

Stress = 10 N/0.005 cm 2  

=2 x 10 7 N/m 2. 

Thus 
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Solution : The stress in the wire = 	
Tension  

Area of cross-section 
To avoid breaking, this stress should not exceed the 
breaking stress. 
Let the tension in the wire be T. The equations of motion 
of the two blocks are, 

T — 10 N = (1 kg) a 

and 	 20 N — T = (2 kg) a. 

Eliminating a from these equations, 

T= (40/3) N. 

The stress — (40/3)N 2  
7E r 

If the minimum radius needed to avoid breaking is r, 

N (40/3)N 
2 x 10 	2  — 

	

m 	It r 2  

Solving this, 

r = 4.6 x 10 -5 m. 

4. Two wires of equal cross-section but one made of steel 
and the other of copper, are joined end to end. When the 
combination is kept under tension, the elongations in the 
two wires are found to be equal. Find the ratio of the 
lengths of the two wires. Young's modulus of steel 
= 2.0 x 1011 N/m 2 and that of copper = 1.1 x 1011  N/m 2. 

Solution : As the cross-sections of the wires are equal and 
same tension exists in both, the stresses developed are 
equal. Let the original lengths of the steel wire and the 
copper wire be L5  and L, respectively and the elongation 

in each wire be 1. 

I 	 stress _ 	t 	
(i) 

Ls  2.0 x 10 11  N/m 2  

and 
stress  • 

Lc  1.1 x 10 11  Nlin 2  

Dividing (ii) by (i), 

Ls ILe = 2.0/ 1-1 = 20 : 11. 

5. Find the decrease in the volume of a sample of water 

from the following data. Initial volume -= 1000 cm 3, 

initial pressure = 10 5  N/m 2, final pressure = 10 6  N/m 2, 
compressibility of water = 50 x 10 -11 N -1m 2. 

Solution : The change in pressure 
= AP = 10 6 Nym  2 _ 10  5 Nini  2 

= 9 x 10 5  N/m 2. 

	

Compressibility — 	
1 	AVIV  

Bulk modulus 	AP 

or 	50 x 10 -11  N -1m 2  = 	
AV  

(10-3  M 3) X (9 x 10 5  N/m 2) 

or, 	AV= — 50 x 10 -11  x 10-8  x 9 x 10 5 m 3  

=— 4.5 x 10 -7 m 3 =— 0.45 cm 3. 

Thus the decrease in volume is 0.45 cm 3.  

6. One end of a metal wire is fixed to a ceiling and a load 
of 2 kg hangs from the other end. A similar wire is 
attached to the bottom of the load and another load of 
1 kg hangs from this lower wire. Find the longitudinal 
strain in both the wires. Area of cross-section of each wire 
is 0'005 cm 2  and Young's modulus of the metal is 
2.0 x 10 N/m 2. Take g = 10 m/s 2. 

Solution : The situation is described in figure (14-W2). As 
the 1 kg mass is in equilibrium, the tension in the lower 
wire equals the weight of the load. 

stress 2 x 10 N/m  2 
Longitudinal strain = 	 —10 -4. 

Y 	2 x 10 11  N/m 2  

Considering the equilibrium of the upper block, we can 
write, 

T,.= 20 N + T,. or, T2 = 30 N. 

Stress = 30 N/0.005 cm 2  

= 6 x 10 7  Nina 2. 

Longitudinal strain = 6 x 10 
	

3 x 10-4  . 
2 x 10 

 
11 N/m2 

N/m 

Figure 14-W3 

Solution t The block R will descend vertically and the 

blocks P and Q will move on the frictionless horizontal 

table. Let the common magnitude of the acceleration be 

a. Let the tensions in the wires A and B be 

T, and T, respectively. 

Writing the equations of motion of the blocks P, Q and 

R, we get, 

TA = (3 kg) a 	 (i) 

(ii) 	
7. Each of the three blocks P, Q and R shown in figure 

(14-W3) has a mass of 3 kg. Each of the wires A and B 
has cross-sectional area 0005 cm 2  and Young's modulus 

2 x 10 11  N/m 2. Neglect friction. Find the longitudinal 
strain developed in each of the wires. Take g = 10 m/s 2. 



(ii) force is T - W towards the centre. As the block is going 
in a circle, the net force towards the centre should be 

mu 2/r with usual symbols. Thus, 

T - W = mv 2/r 

or, 	 T = W + mv 2/r 

(1 kg) (2 m/s) 2  
= 10 N + 	 30 N. 

0.2 m 

(iii)  

Elongation in the element is given by 

elongation = original length x stress/Y 

T dx (L W dx   
AY 	LAY 

L 

The total elongation 
0 

2 L  
=

LAY 
14:- [Lx - 	= 
 2 	2A Y 

r  (L - x)W dx 
J LAY 
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T, - T, = (3 kg) a 

and (3 kg) g - TB  = (3 kg) a . 

By (i) and (ii), 
Til  - 2 T, . 

By (i) and (iii), 

TA + = (3 kg) g = 30 N 

3 TA = 30 N 

or, 	T, = 10 N and TB  = 20 N 

L 
Longitudinal strainongitudinal stress  

Youngs modulus 

Strain in wire A = 10 N/0.005 cm 
2

- 10 -4  
2x 10 " N/m 2  

20 N/0.005 cm 2  
and strain in wire B 	 2 x 10 - 4. 

2 x 10 " N/m 2  

8. A wire of area of cross-section 3.0 mm 2  and natural 
length 50 cm is fixed at one end and a mass of 2.1 kg is 
hung from the other end. Find the elastic potential 
energy stored in the wire in steady state. Young's modulus 
of the material of the wire = 1.9 x 10 " N/m 2. Take 
g= 10 m/s 2. 

Solution : The volume of the wire is 

V= (3.0 nun 2) (50 cm) 

- (3'0 x 10 -6 m 2) (0'50 m) = 1-5 x 10 -6 m 3. 

Tension in the wire is 

T = mg 

=(2.1 kg) (10 m/s 2) = 21 N. 

The stress = T/A 

21N  = 	x 10 6 N/m 2. 
3.0 mm 2  

The strain - stress/Y 

7.0 x 10 6 N/m 2  
- 3 7 x 10 -6. 

1'9 x 10 "N/m 2  

The elastic potential energy of the wire is 

1 U 
2 
 (stress) (strain) (volume) 

2 
1 	N/m'2 

= (7.0 x 10 	) (3.7 x 10 -6)(1'5 x 10 -6  m 3) 

=1.9x 10-4 J. 

9. A' block of weight 10 N is fastened ,to one end of a wire 
of cross-sectional area 3 mm 2  and is rotated in a vertical 
circle of radius 20 cm. The speed of the block at the 
bottom of the circle is 2 m/s. Find the elongation of the 
wire when the block is at the bottom of the circle. Young's 
modulus of the material of the wire = 2 x 10 " N/m 2. 

Solution : Forces acting on the block are (a) the tension T 
and (b) the weight W. At the lowest point, the resultant 

We have 

or, 

30 N x (20 cm)  
(3 x 10 -6m 2) x (2 x 10 11  N/m 2) 

= 5 x 10 -6 x 20 cm = 10 -3cm. 

10. A uniform heavy rod of weight W, cross-sectional area A 
and length L is hanging from a fixed support. Young's 
modulus of the material of the rod is Y. Neglect the 
lateral contraction. Find the elongation of the rod. 

Solution : Consider a small length dx of the rod at a 
distance x from the fixed end. The part below this small 
element has length L - x. The tension T of the rod at 
the element equals the weight of the rod below it. 

T = (L x)—
L 

• 

Figure 14-W4 

11. There is an air bubble of radius 1.0 mm in a liquid of 
surface tension 0'075 N/m and density 1000 kg/m 3. The 
bubble is at a depth of 10 cm belcw the free surface. By 
what amount is the pressure inside the bubble greater 

than the atmospheric pressure ? Take g = 9.8 m/s 2. 

Y 
l/L 

TL 
= Ay 
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Solution : 

.Po 

h 
.P 

( •Pi 

Solution : We have, 

h 2 
S cost)  
rpg 

2 S cost)  
or, 	r - 

hpg 

2 x(7.5 x 10 -2  N/m) x 1 

 

    

Figure 14-W5 

Let the atmospheric pressure be Po. The pressure of the 
liquid just outside the bubble is (figure 14-W5) 

P = Po  + hpg. 

The pressure inside the bubble is 

P' P +
2 S 
—
r 

Po + hpg+ 2 S  —
r 

or, 

2 x 0.075 N/m 
P' -P = (10 cm) (1000 kg/m 3) (9.8 m/s 2) + 

10 x 10-3 
M 

- 980 N/m 2  + 150 N/m 2  

= 1130 Pa. 

12. A light wire AB of length 10 cm can slide on a vertical 
frame as shown in figure (14-W6). There is a film of soap 
solution trapped between the frame and the wire. Find 
the load W that should be suspended from the wire to 
keep it in equilibrium. Neglect friction. Surface tension 
of soap solution = 25 dyne/cm. Take g = 10 m/s 2. 

Figure 14-W6 

Solution : Soap solution film will be formed on both sides 
of the frame. Each film is in contact with the wire along 
a distance of 10 cm. The force exerted by the film on 
the wire 

= 2 x (10 cm) x (25 dyne/cm) 

=500 dyne = 5 x 10 -3 N. 

This force acts vertically upward and should be balanced 
by the load. Hence the load that should be suspended is 

5 x 10 -3N. The mass of the 	load 	should be 
5 x 10 3 N  5 x 10-4  kg 0.5 g. 
10 m/s 

13. The lower end of a capillary tube is dipped into water 
and it is seen that the water rises through 7'5 cm in the 
capillary. Find the radius of the capillary. Surface 
tension of water = 7'5 x 10 2  Wm. Contact angle between 
water and glass = 0°. Take g - 10 m/s 2. 

(0'075 m) x (1000 kg/m 3) x (10 m/s 2) 

= 2 x 10 -' m = 0.2 mm. 

14. Two mercury drops each of radius r merge to form a 
bigger drop. Calculate the surface energy released. 

Solution : 

Surface area of one-  drop before merging = 4nr 

Total surface area of both the drops 	= 8nr 2. 

Hence, the surface energy before merging = Eirtr 2S. 

When the drops merge, the volume of the bigger drop 

	

4 	8 
It 

3 
. = 2 x — 3 = — r 

	

3 	3 

If the radius of this new drop is R, 

	

4 	3 8 	3 
R = n r 

or, 	 R = 21/3T 

or, 	 4n R 2  = 4 x 2 2/3  X n r 2. 

Hence, the surface energy = 4 x 2 2/3 x rc r 2S. 

The released surface energy = 8n r 2S - 4 x 2 2/3  n r 2S 

= 1'65 r 2S. 

15. A large wooden plate of area 10 m 2  floating on the 
surface of a river is made to move horizontally with a 
speed of 2 m/s by applying a tangential force. If the river 
is 1 m deep and the water in contact with the bed is 
stationary, find the tangential force needed to keep the 
plate moving. Coefficient of viscosity of water at the 
temperature of the river = 10 -2 poise. 

Solution : The velocity decreases from 2 m/s to zero in '1 
of perpendicular length. Hence, velocity gradient 

= dv/dx 2 s 

Now, 	
dv/dx 
F/A  

or 	10-3 	 -F  
m 2  (10 m 2) (2 s ) 

or, 	 F = 0'02 N. 

16. The velocity of water in a river is 18 km/hr near the 
surface. If the river is 5 m deep, find the shearing stress 
between the horizontal layers of water. The coefficient of 
viscosity of water =10 -2  poise. 
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Solution : The velocity gradient in vertical direction is 

dv _ 18km/hr
_10 s I. 

dx 5 m 

The magnitude of the force of viscosity is 

du 
F = II A (Tx  - 

The  shearing stress is 

d 	_ 
F/A = --d-

u
x  = (10 

2 
 poise) (1'0 s ) = 10 3 N 2  

17. Find the terminal velocity of a rain drop of radius 
0.01 mm. The coefficient of viscosity of air is 1.8 X 10 -5  

N-WM 2  and its density is 1.2 kg/m 3. Density of water 
= 1000 kg/m 3. Take g = 10 m/s 2. 

Solution : The forces on the rain drop are 

4 
(a) the weight -5- it r 3p g downward,  

(b) the force of buoyancy -
4 

it r
3 crg upward, 

3 

(c) the force of viscosity Gralry upward. 

Here p is the density of water and a is the density of 
air. At terminal velocity the net force is zero. As the 
density of air is much smaller than the density of water, 
the force of buoyancy may be neglected. 

Thus, at terminal velocity 

 
6nn ry = nr 3  pg 

2 r 2 p g 
or, 	v - 

91.1 

2 x (0'01 mm) 2  X (1000 kg/m 3) (10 m/s 2) 
9 x (1.8 x 10 -3 N-s/m 2) 

--- 1.2 cm/s. 

0 

QUESTIONS FOR SHORT ANSWER 

1. The ratio stress/strain remains constant for small 
deformation of a metal wire. When the deformation is 
made larger, will this ratio increase or decrease ? 

2. When a block of mass M is suspended by a long wire of 
length L, the elastic potential energy stored in the wire 

is -
2 
1  x stress x strain x volume. Show that it is equal to 

1 -
2 

Mgl, where 1 is the extension. The loss in gravitational 

potential energy of the Mass-earth system is Mgl. Where 
1 

does the remaining -
2 

Mgl energy go ? 

3. When the skeleton of an elephant and the skeleton of a 
mouse are prepared in the same size, the bones of the 
elephant are shown thicker than those of the mouse. 
Explain why the bones of an elephant are thicker than 
proportionate. The bones are expected to withstand the 
stress due to the weight of the animal. 

4. The yield point of a typical solid is about 1%. Suppose 
you are lying horizontally and two persons are pulling 
your hands and two person are pulling your legs along 
your own length. How much will be the increase in your 
length if the strain is 1% ? Do you think your yield point 
is 1% or, much less than that ? 

5. When rubber sheets are used in a shock absorber, what 
happens to the energy of vibration ? 

6. If a compressed spring is dissolved in acid, what happens 
to the elastic potential energy of the spring ? 

7. A steel blade placed gently on the surface of water floats 
on it. If the same blade is kept well inside the water, it 
sinks. Explain. 

8. When some wax is rubbed on a cloth, it becomes 
waterproof. Explain. 

9. The contact angle between pure water and pure silver 
is 90°. If a capillary tube made of silver is dipped at one 
end in pure water, will the water rise in the capillary ? 

10. It is said that a liquid rises or is depressed in a capillary 
due to the surface tension. If a liquid neither rises nor 
depresses in a capillary, can we conclude that the surface 
tension of the liquid is zero ? 

11. The contact angle between water and glass is 0°. When 
water is poured in a glass to the maximum of its 
capacity, the water surface is convex upward. The angle 
of contact in such a situation is more than 90°. Explain. 

12. A uniform vertical tube of circular cross-section contains 
a liquid. The contact angle is 90°. Consider a diameter 
of the tube lying in the surface of the liquid. The surface 
to the right of this diameter pulls the surface on the left 
of it. What keeps the surface on the left in equilibrium ? 

13. When a glass capillary tube is dipped at one end in 
water, water rises in the tube. The gravitational 
potential energy is thus increased. Is it a violation of 
conservation of energy ? 

14. If a mosquito is dipped into water and released, it is not 
able to fly till it is dry again. Explain. 

15. The force of surface tension acts tangentially to the 
surface whereas the force due to air pressure acts 
perpendicularly on the surface. How is then the force 
due to excess pressure inside a bubble balanced by the 
force due to the surface tension ? 

16. When the size of a soap bubble is increased by pushing 
more air in it, the surface area increases. Does it mean 
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that the average separation between the surface 
molecules is increased ? 

17. Frictional force between solids operates even when they 
do not move with respect to each other. Do we have 
viscous force acting between two layers even if there is 
no relative motion ? 

18. Water near the bed of a deep river is quiet while that 
near the surface flows. Give reasons. 

19. If water in one flask and castor oil in other are violently 
shaken and kept on a table, which will come to rest 
earlier ? 

OBJECTIVE I 

1. A rope 1 cm in diameter breaks if the tension in it 
exceeds 500 N. The maximum tension that may be given 
to a similar rope of diameter 2 cm is 
(a) 500 N 	(b) 250 N 	(c) 1000 N 	(d) 2000 N. 

2. The breaking stress of a wire depends on 
(a) material of the wire (b) length of the wire 
(c) radius of the wire 	(d) shape of the cross-section. 

3. A wire can sustain the weight of 20 kg before breaking. 
If the wire is cut into two equal parts, each part can 
sustain a weight of 
(a) 10 kg 	(b) 20 kg 	(c) 40 kg 	(d) 80 kg. 

4. Two wires A and B are made of same material. The wire 
A has a length 1 and diameter r while the wire B has a 
length 21 and diameter r/2. If the two wires are stretched 
by the same force, the elongation in A divided by the 
elongation in B is 
(a) 1/8 	(b) 	 (c) 4 	(d) 8. 

5. A wire elongates by 1.0 mm when a load W is hanged 
from it. If this wire goes over a pulley and two weights 
W each are hung at the two ends, the elongation of 
the wire will be 
(a) 0.5 m 	(b) 1.0 mm 	(c) 2.0 mm (d) 4.0 mm. 

6. A heavy uniform rod is hanging vertically from a fixed 
support. It is stretched by its own weight. The diameter 
of the rod is 
(a) smallest at the top and gradually increases down the 
rod 
(b) largest at the top and gradually decreases down the 
rod 
(c) uniform everywhere 
(d) maximum in the middle. 

7. When a metal wire is stretched by a load, the fractional 
change in its volume V/V is proportional to 

2 
Al 	( A/1 

(a) — 	
(b)  [T 	

(c) 	(d) none of these. 

8. The length of a metal wire is 1, when the tension in it 
is T, and is 12 when the tension is T9. The natural length 
of the wire is 

- 1  T T  , 2 	21  
(c) 

/ 	
(d) 

1,7; 12T1  

T, - T, 	T2  4-  T, 

9. A heavy mass is attached to a thin wire and is whirled 
in a vertical circle. The wire is most likely to break 
(a) when the mass is at the highest point 
(b) when the mass is at the lowest point  

(c) when the wire is horizontal 
(d) at an angle of cos - '(1/3) from the upward vertical. 

10. When a metal wire elongates by hanging a load on it, 
the gravitational potential energy is decreased. 
(a) This energy completely appears as the increased 
kinetic energy of the block. 
(b) This energy completely appears as the increased 
elastic potential energy of the wire. 
(c) This energy completely appears as heat. 
(d) None of these. 

11. By a surface of a liquid we mean 
(a) a geometrical plane like x = 0 
(b) all molecules exposed to the atmosphere 
(c) a layer of thickness of the order of 10 -8 m 

(d) a layer of thickness of the order of 10 -4  m. 

12 An ice cube is suspended in vacuum in a gravity-free 
hall. As the ice melts it 
(a) will retain its cubical shape 
(b) will change its shape to spherical 
(c) will fall down on the floor of the hall 
(d) will fly up. 

13. When water droplets merge to form a bigger drop 
(a) energy is liberated 	 (b) energy is absorbed 
(c) energy is neither liberated nor absobred 
(d) energy may either be liberated or absorbed 
depending on the nature of the liquid. 

14. The dimension ML-  T -2  can correspond to 
(a) moment of a force 	(b) surface tension 
(c) modulus of elasticity 	(d) coefficient of viscosity. 

15. Air is pushed into a soap , bubble of radius r to double 
its radius. If the surface tension of the soap solution is 
S, the work done in the process is 
(a) 8 TL r 2S 	(b) 12 it r 2S 	(c) 16 it r 2S (d) 24 n r 2S. 

16. If more air is pushed in a soap bubble, the pressure in 
it 
(a) decreases 	 (b) increases 
(c) remains same 	 (d) becomes zero. 

17. If two soap bubbles of different radii are connected by 
a tube, 
(a) air flows from bigger bubble to the smaller bubble 
till the sizes become equal 
(b) air flows from bigger bubble to the smaller bubble 
till the sizes are interchanged 
(c) air flows from the smaller bubble to the bigger 
(d) there lis no flow of air. 

11
—

+ 12 
(a) — (b) [FT 

2 
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18. Figure (14-Q1) shows a capillary tube of radius r dipped 
into water. If the atmospheric pressure is 130  , the 
pressure at point A is 

2 S 	 2 	S 	 4 S 
(a) Po 	(b) Po i 	(c) Po - 	(d) Por • 

A 

Figure 14-Q1 

19. The excess pressure inside a soap bubble is twice the 
excess pressure inside a second soap bubble. The volume 
of the first bubble is n times the volume of the second 
where n is 
(a) 4 	(b) 2 	(c) 1 	(d) 0125. 

20. Which of the following graphs may represent the relation 
between the capillary rise h and the radius r of the 
capillary ? 

Figure 14-Q2 

21. Water rises in a vertical capillary tube upto a length of 
10 cm. If the tube is inclined at 45°, the length of water 
risen in the tube will be 
(a) 10 cm 
	

(b) 10✓2 cm 
(c) 10/✓2 cm 
	

(d) none of these. 

22. A 20 cm long capillary tube is dipped in water. The 
water rises up to 8 cm. If the entire arrangement is put 
in a freely falling elevator, the length of water column 
in the capillary tube will be 
(a) 8 cm 	(b) 6 cm 	(c) 10 cm 	(d) 20 cm. 

23. Viscosity is a property of 
(a) liquids only 	 (b) solids only 
(c) solids and liquids only (d) liquids and gases only. 

24. The force of viscosity is 
(a) electromagnetic (b) gravitational (c) nuclear (d) weak. 

25. The viscous force acting between two layers of a liquid 

is given by —

F 

= - q —
du 

This F/A may be called 
A 	dz 

(a) pressure 	 (b) longitudinal stress 
(c) tangential stress 	 (d) volume stress. 

26. A raindrop falls near the surface of the earth with 
almost uniform velocity because 
(a) its weight is negligible 
(b) the force of surface tension balances its weight 
(c) the force of viscosity of air balances its weight 
(d) the drops are charged and atmospheric electric field 
balances its weight. 

27. A piece of wood is taken deep inside a long column of 
water and released. It will move up 
(a) with a constant upward acceleration 
(b) with a decreasing upward acceleration 
(c) with a deceleration 
(d) with a uniform velocity. 

28. A solid sphere falls with a terminal velocity of 20 m/s 
in air. If it is allowed to fall in vacuum, 
(a) terminal velocity will be 20 m/s 
(b) terminal velocity will be less than 20 m/s 
(c) terminal velocity will be more than 20 m/s 
(d) there will be no terminal velocity. 

29. A spherical ball is dropped in a long column of a viscous 
liquid. The speed of the ball as a function of time may 
be best represented by the graph 
(a) A 	(b) B 	(c) C 

	
(d) D. 

Figure 14-Q3 

OBJECTIVE II 

1. A student plots a graph from his readings on the 
determination of Young's modulus of a metal wire but 
forgets to put the labels (figure 14-Q4). The quantities 
on X and Y-axes may be respectively 
(a) weight hung and length increased 
(b) stress applied and length increased 
(c) stress applied and strain developed 
(d) length increased and the weight hung. 

Y 

Figure 14-Q4  

2. The properties of a surface are different from those of 
the bulk liquid because the surface molecules 
(a) are smaller than other molelcules 
(b) acquire charge due to collision from air molecules 
(c) find different type of molecules in their range of 
influence 
(d) feel a net force in one direction. 

3. The rise of a liquid in a capillary tube depends on 
(a) the material 	(b) the length 
(c) the outer radius 	(d) the inner radius of the tube. 

4. The contact angle between as solid and a liquid is a 
property of 
(a) the material of the solid 
(b) the material of the liquid 
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(c) the shape of the solid 
(d) the mass of the solid. 

5. A liquid is contained in a vertical tube of semicircular 
cross-section (figure 14-Q5). The contact angle is zero. 
The forces of surface tension on the curved part and on 
the flat part are in ratio 
(a) 1 : 1 	(b) 1 : 2 	(c) : 2 	(d) 2 : n. 

Figure 14-Q5  

6. When a capillary tube is dipped into a liquid, the liquid 
neither rises nor falls in the capillary. 
(a) The surface tension of the liquid must be zero. 
(b) The contact angle must be 90°. 
(c) The surface tension may be zero. 
(d) The contact angle may be 90°. 

7. A solid sphere moves at a terminal velocity of 20 m/s in 
air at a place where g = 9'8 m/s 2. The sphere is taken in 
a gravity free hall having air at the same pressure and 
pushed down at a speed of 20 m/s. 
(a) Its initial acceleration will be 9.8 m/s2  downward. 
(b) Its initial acceleration will be 9.8 m/s2  upward. 
(c) The magnitude of acceleration will decrease as the 
time passes. 
(d) It will eventually stop. 

EXERCISES 

1. A load of 10 kg is suspended by a metal wire 3 m long 
and having a cross-sectional area 4 mm2. Find (a) the 
stress (b) the strain and (c) the elongation. Young's 
modulus of the metal is 2.0 x 10 " N/m 2. 

2. A vertical metal cylinder of radius 2 cm and length 2 m 
is fixed at the lower end and a load of 100 kg is put on 
it. Find (a) the stress (b) the strain and (c) the 
compression of the cylinder. Young's modulus of the 
metal = 2 x 10 11  N/m 2. 

3. The elastic limit of steel is 8 x 10 8  N/m 2  and its Young's 
modulus 2 x 10 11 N/m 2. Find the maximum elongation 
of a half-meter steel wire that can be given without 
exceeding the elastic limit. 

4. A steel wire and a copper wire of equal length and equal 
cross-sectional area are joined end to end and the 
combination is subjected to a tension. Find the ratio of 
(a) the stresses developed in the two wires and (b) the 
strains developed. Y of steel = 2 x 10 11  N/m 2. Y of copper 
= l'3 X 10 11  N/m2. 

5. In figure (14-E1) the upper wire is made of steel and 
the lower of copper. The wires have equal cross-section. 
Find the ratio of the longitudinal strains developed in 
the two wires. 

same material which has a breaking stress of 
8 x 10 8  N/m 2. The area of cross-section of the upper wire 
is 0'006 cm 2  and that of the lower wire is 0'003 cm 2. 
The mass m, = 10 kg, m2  = 20 kg and the hanger is 
light. (a) Find the maximum load that can be put on the 
hanger without breaking a wire. Which wire will break 
first if the load is increased ? (b) Repeat the above part 
if m, = 10 kg and m2  = 36 kg. 

7. Two persons pull a rope towards themselves. Each 
person exerts a force of 100 N on the rope. Find the 
Young's modulus of the material of the rope if it extends 
in length by 1 cm. Original length of the rope = 2 m and 
the area of cross-section = 2 cm 2. 

8. A steel rod of cross-sectional area 4 cm 2  and length 2 m 
shrinks by 0.1 cm as the temperature decreases in night. 
If the rod is clamped at both ends during the day hours, 
find the tension developed in it during night hours. 
Young's modulus of steel = 1.9 x 10 'I  N/m 2. 

9. Consider the situation shown in figure (14-E3). The force 
F is equal to the m2  g/2. If the area of cross-section of 
the string is A and its Young's modulus Y, find the strain 
developed in it. The string is light and there is no friction 
anywhere. 

Figure 14-E1 

6. The two wires shown in figure (14-E2) are made of the 

Figure 14-E2  

Figure 14-E3 

10. A sphere of mass 20 kg is suspended by a metal wire 
of unstretched length 4 m and diameter 1 mm. When in 
equilibrium, there is a clear gap of 2 mm between the 
sphere and the floor. The sphere is gently pushed aside 
so that the wire makes an angle 0 with the vertical and 
is released. Find the maximum value of 0 so that the 
sphere does not rub the floor. Young's modulus of the 
metal of the wire is 2'0 x 1011 N/m2.  

Make appropriate 
approximations. 
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11. A steel wire of original length 1 m and cross-sectional 
area 4'00 mm 2  is clamped at the two ends so that it lies 
horizontally and without tension. If a load of 2'16 kg is 
suspended from the middle point of the wire, what would 
be its vertical depression ? 

Y of the steel = 2.0 x 
10 

 u N/m 
2  

Take g = 10 m/s 2. 

12. A copper wire of cross-sectional area 0'01 cm 2  is under 
a tension of 20 N. Find the decrease in the 
cross-sectional area. Young's modulus of copper 
= 1.1 x 10 11  N/m 2  and Poisson's ratio = 0'32. 

[Hint : 
AA 
- = 2 

Or] 
-

r A 
13. Find the increase in pressure required to decrease the 

volume of a water sample by 0'01%. Bulk modulus of 
water = 2.1 x 10 9  N/m 2. 

14. Estimate the change in the density of water in ocean at 
a depth of 400 m below the surface. The density of water 
at the surface = 1030 kg/m 3  and the bulk modulus of 
water = 2 x 10 9  N/m 2. 

15. A steel plate of face-area 4 cm 2  and thickness 0.5 cm is 
fixed rigidly at the lower surface. A tangential force of 
10 N is applied on the upper surface. Find the lateral 
displacement of the upper surface with respect to the 
lower surface. Rigidity modulus of steel 
= 8.4 X 10 1°  N/m 2. 

16. A 5.0 cm long straight piece of thread is kept on the 
surface of water. Find the force with which the surface 
on one side of the thread pulls it. Surface tension of 
water = 0'076 N/m. 

17. Find the excess pressure inside (a) a drop of mercury of 
radius 2 mm (b) a soap bubble of radius 4 mm and (c) an 
air bubble of radius 4 mm formed inside a tank of water. 
Surface tension of mercury, soap solution and water are 
0'465 N/m, 0'03 N/m and 0.076N/m respectively. 

18. Consider a small surface area of 1 mm 2  at the top of a 
mercury drop of radius 4.0 mm. Find the force exerted 
on this area (a) by the air above it (b) by the mercury 
below it and (c) by the mercury surface in contact with 
it. Atmospheric pressure = 1.0 x 10 5  Pa and surface 
tension of mercury = 0'465 N/m. Neglect the effect of 
gravity. Assume all numbers to be exact. 

19. The capillaries shown in figure (14-E4) have inner radii 
0.5 mm, 1.0 mm and 1.5 mm respectively. The liquid in 
the beaker is water. Find the heights of water level in 
the capillaries. The surface tension of water is 
7'5 x 10 -2  N/m. 

Figure 14-E4 

20. The lower end of a capillary tube is immersed in 
mercury. The level of mercury in the tube is found to be 
2 cm below the outer level. If the same tube is immersed 
in water, upto what height will the water rise in the 
capillary ? 

21. A barometer is constructed with its tube having radius 
1.0 mm. Assume that the surface of mercury in the tube 
is spherical in shape. If the atmospheric pressure is 
equal to 76 cm of mercury, what will be the height raised 
in the barometer tube. The contact angle of mercury with 
glass = 135° and surface tension of mercury = 0'465 N/m. 
Density of mercury = 13600 kg/m 3. 

22. A capillary tube of radius 0.50 mm is dipped vertically 
in a pot of water. Find the difference between the 
pressure of the water in the tube 5.0 cm below the 
surface and the atmospheric pressure. Surface tension 
of water = 0'075 N/m. 

23. Find the surface energy of water kept in a cylindrical 
vessel of radius 6'0 cm. Surface tension of water 
= 0'075 J/m 2. 

24. A drop of mercury of radius 2 mm is split into 8 identical 
droplets. Find the increase in surface energy. Surface 
tension of mercury = 0'465 J/m 2. 

25. A capillary tube of radius 1 mm is kept vertical with 
the lower end in water. (a) Find the height of water 
raised in the capillary. (b) If the length of the capillary 
tube is half the answer of part (a), find the angle 0 made 
by the water surface in the capillary with the wall. 

26. The lower end of a capillary tube of radius 1 ram is 
dipped vertically into mercury. (a) Find the depression 
of mercury column in the capillary. (b) If the length 
dipped inside is half the answer of part (a), find the 
angle made by the mercury surface at the end of the 
capillary with the vertical. Surface tension of mercury 
= 0'465 N/m and the contact angle of mercury with glass 
= 135°. 

27. Two large glass plates are placed vertically and parallel 
to each other inside a tank of water with separation 
between the plates equal to 1 mm. Find the rise of water 
in the space between the plates. Surface tension of water 
= 0'075 N/m. 

28. Consider an ice cube of edge 1'0 cm kept in a gravity 
free hall. Find the surface area of the water when the 
ice melts. Neglect the difference in densities of ice and 
water. 

29. A wire forming a loop is dipped into soap solution and 
taken out so that a film of soap solution is formed. A 
loop of 6'28 cm long thread is gently put on the film and 
the film is pricked with a needle inside the loop. The 
thread loop takes the shape of a circle. Find the tension 
in the thread. Surface tension of soap solution 
= 0'030 N/m. 

30. A metal sphere of radius 1 mm and mass 50 mg falls 
vertically in glycerine. Find (a) the viscous force exerted 
by the glycerine on the sphere when the speed of the 
sphere is 1 cm/s, (b) the hydrostatic force exerted by the 
glycerine on the sphere and (c) the terminal velocity with 
which the sphere will move down without acceleration. 
Density of glycerine = 1260 kg/m 3  and its coefficient of 
viscosity at room temperature = 8.0 poise. 

31. Estimate the speed of vertically falling raindrops from 
the following data. Radius of the drops = 0.02 cm, 
viscosity of air = 1.8 x 10 -4  poise, g = 9.9 m/s 2  and 
density of water = 1000 kg/m 3. 

A B 
	

C 
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32. Water flows at a speed of 6 cm/s through a tube of radius 	termperature is 0.01 poise. Calculate the Reynolds 
1 cm. Coefficient of viscosity of water at room 	number. Is it a steady flow ? 

0 

ANSWERS 

OBJECTIVE I 10. 36.4° 

1. (d) 2. (a) 3. (b) 4. (a) 5. (b) 6. (a) 11. 1.5 cm 
7. (a) 8. (c) 9. (b) 10. (d) 11. (c) 12. (b) 12. 1.164 x 10 6 cm 2  

13. (a) 14. (c) 15. (d) 16. (a) 17. (c) 18. (c) 
19. (d) 20. (c) 21. (b) 22. (d) 23. (d) 24. (a) 6 N/m 2  13. 2.1 x 10 

25. (c) 26. (c) 27. (b) 28. (d) 29. (b) 14. 2 kg/m 

15. 1.5 x 10 -9 m 

3. (a), (b), (d) 
6. (c), (d) 

(c) 3.75 x 10-4 m 

(c) 8 x 10-6 m 

1. (a) 2.5 x 10 7  N/m 2 	(b) 1.25 x 10 -4  

2. (a) 7.96 x 10 5  N/m 2  (b) 4 x 10 -6  

3..2 mm 

4. (a) 1 (b) 
strain in copper wire 20 

- 
strain in steel wire 	13 

5. 
strain in copper wire 

 - 1 54 
strain in steel wire 

6. (a) 14 kg, lower 	(b) 2 kg, upper 

7. 1 x 10 8  N/m2  

8. 3.8 x 10 4 N 

m2g(2 m1  + m2) 
9.  

2 AY(mi  

16. 3.8 x 10-3 N 

17. (a) 465 N/m 2 	 (b) 30 N/m 2  

(c) 38 N/m 2  
18. (a) 0.1 N 	 (b) 0.10023 N 

(c) 0-00023 N 
19. 3 cm in A, 1.5 cm in B, 1 cm in C 
20. 5.73 cm 
21. 75.5 cm 

22. 190 N/m 2  

23. 8.5 x 10 -4 J 

24. 23.41.1. J 

25. (a) 1.5 cm 	(b) 60° 
26. (a) 5.34 mm 	(b) 112° 
27. 1.5 cm 

28. (36 701/3  cm 2  

29. 3 x 10 -4 N 

30. (a) 1.5 x 10 -4 N (b) 5.2 x 10 -5 N (c) 2.9 cm/s 
31. 5 m/s 
32. 120, yes. 

OBJECTIVE II 

1. all 
	

2. (c), (d) 
4. (a), (b) 
	

5. (c) 
7. (b), (c), (d) 

EXERCISES 

0 
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SOLUTIONS TO CONCEPTS
CHAPTER 14

1. F = mg

Stress = 
F

A

Strain = 
L

L



Y = 
FL L F

A L L YA


 


2.  = stress = mg/A

e = strain = /Y

Compression L = eL

3. y = 
F L FL

L
A L AY

  


4. Lsteel = Lcu and Asteel = Acu

a) gcu

cu g

AFStress of cu

Stress of st A F
 = cu

st

F
1

F


b) Strain = st st cu cu

st st cu cu

F L A YLst

lcu A Y F I


 


( Lcu = Ist ; Acu = Ast)

5.
st st

L F

L AY

   
 

cu cu

L F

L AY

   
 

cu cu
cu st

st st

AY Ystrain steel wire F
( A A )

Strain om copper wire AY F Y
   

6. Stress in lower rod = 1 1

1 1

T m g g

A A

 
  w = 14 kg

Stress in upper rod = 2 2 1

u u

T m g m g wg

A A

 
  w = .18 kg

For same stress, the max load that can be put is 14 kg. If the load is increased the lower wire will break 
first.

1 1

1 1

T m g g

A A

 
 = 8  108  w = 14 kg

2 2 1

u u

T m g m g g

A A

  
 = 8  108  0 = 2 kg

The maximum load that can be put is 2 kg. Upper wire will break first if load is increased.

7.
F L

Y
A L




8.
F L

Y
A L





YA L

F
L




9. m2g – T = m2a …(1)

and T – F = m1a …(2)

 a = 2

1 2

m g F

m m



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From equation (1) and (2), we get 2

1 2

m g

2(m m )

Again, T = F + m1a

 2 2
1

1 2

m g m g
T m

2 2(m m )
 




2
2 1 2

1 2

m g 2m m g

2(m m )




Now Y = 
FL L F

A L L AY


 




2
2 1 2 2 2 1

1 2 1 2

(m 2m m )g m g(m 2m )L

L 2(m m )AY 2AY(m m )

 
 

 

10. At equilibrium  T = mg

When it moves to an angle , and released, the tension the T at lowest point is 

 T = mg + 
2mv

r

The change in tension is due to centrifugal force T = 
2mv

r
…(1)

 Again, by work energy principle,

 21
mv

2
– 0 = mgr(1 – cos)

 v2 = 2gr (1 – cos) …(2)

So, 
m[2gr(1 cos )]

T 2mg(1 cos )
r

 
    

 F = T

 F = 
YA L

L


= 2mg – 2mg cos   2mg cos  = 2mg –

YA L

L



= cos  = 1 –
YA L

L(2mg)




11. From figure cos  = 
2 2

x

x l
= 

1/ 22

2

x x
1

l l


 
 

 

= x / l … (1)

Increase in length L = (AC + CB) – AB 

Here, AC = (l2 + x2)1/2

So, L = 2(l2 + x2)1/2 – 100 …(2)

Y = 
F l

A l
…(3)

From equation (1), (2) and (3) and the freebody diagram,

2l cos = mg.

12. Y = 
FL

A L


L F

L Ay




 = 
D /D

L /L





D L

D L

 


Again, 
A 2 r

A r

 



2 r

A
r


  

m1

m2

m2g

a

T 

T 

a
F



BA

T T

l l

T x

mg
C

L L
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13. B = 
Pv

v
 P = 

v
B

v

 
 
 

14. 0
0 d

m m

V V
  

so, d 0

0 d

V

V





…(1)

vol.strain = 0 d

0

V V

V



B = 0

0 d 0

gh

(V V ) / V




 1 – d

0

V

V
= 0gh

B



 0

0

ghvD
1

v B

   
 

…(2)

Putting value of (2) in equation (1), we get

d

0 0

1

1 gh /B




  
 d 0

0

1

(1 gh /B)
  

 

15.
F

A
 


Lateral displacement = l.

16. F = T l

17. a) Hg2T
P

r
 b) g4T

P
r

 c) g2T
P

r


18. a) F = P0A

b) Pressure = P0 + (2T/r)

F = PA = (P0 + (2T/r)A

c) P = 2T/r

F = PA = 
2T

A
r

19. a) A
A

2Tcos
h

r g




 
b) B

B

2Tcos
h

r g





c) C

C

2Tcos
h

r g






20. Hg Hg
Hg

Hg

2T cos
h

r g






2T cos
h

r g
 








where, the symbols have their usual meanings.

Hg

Hg Hg Hg

h T cos

h T cos
  



 
  

 

21.
2Tcos

h
r g






22. P = 
2T

r
P = F/r

23. A = r2

24. 3 34 4
R r 8

3 3
   

 r = R/2 = 2

Increase in surface energy = TA – TA
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25. h = 
2Tcos

r g




, h = 
2Tcos

r g




 cos  = 
h r g

2T

 

So,  = cos–1 (1/2) = 60°.

26. a) h = 
2Tcos

r g




b) T  2r cos  = r2h    g

  cos  = 
hr g

2T




27. T(2l) = [1  (10–3)  h]g

28. Surface area = 4r2

29. The length of small element = r d 
dF = T  r d 
considering symmetric elements, 

dFy = 2T rd . sin [dFx = 0]

so, F = 
/ 2

0

2Tr sin d


  = / 2
02Tr[cos ] = T  2 r

Tension  2T1 = T  2r  T1 = Tr
30. a) Viscous force = 6rv

b) Hydrostatic force = B = 34
r g

3
   
 

c) 6 rv + 34
r g

3
    
 

= mg

v = 
22 r ( )g

9

  



3

2

m
g

(4 / 3) r2
r

9 n

    

31. To find the terminal velocity of rain drops, the forces acting on the drop are,

i) The weight (4/3) r3 g downward.

ii) Force of buoyancy (4/3) r3 g upward.

iii) Force of viscosity 6  r v upward.

Because,  of air is very small, the force of buoyancy may be neglected.

Thus, 

6  r v = 24
r g

3
   
 

or v = 
22r g

9






32. v = 
R

D




 R = 
v D


   

JEEMAIN.GURU

	Front Cover
	Back Cover
	Title Page
	Copyright
	FOREWORD
	PREFACE
	ACKNOWLEDGEMENTS
	TO THE STUDENTS
	Table of Contents
	CHAPTER 1

INTRODUCTION TO PHYSICS
	CHAPTER 2

PHYSICS AND MATHEMATICS
	CHAPTER 3  REST AND MOTION: KINEMATICS
	CHAPTER 4

THE FORCES
	CHAPTER 5

NEWTON'S LAWS OF MOTION
	CHAPTER 6

FRICTION
	CHAPTER 7

CIRCULAR MOTION
	CHAPTER 8

WORK AND ENERGY
	CHAPTER 9

CENTRE OF MASS, LINEAR

MOMENTUM, COLLISION
	CHAPTER 10

ROTATIONAL MECHANICS
	CHAPTER 11

GRAVITATION
	CHAPTER 12

SIMPLE HARMONIC MOTION
	CHAPTER 13

FLUID MECHANICS
	CHAPTER 14  SOME MECHANICAL PROPERTIES OF MATTER
	CHAPTER 15

WAVE MOTION AND WAVES

ON A STRING
	CHAPTER 16

SOUND WAVES
	CHAPTER 17

LIGHT WAVES
	CHAPTER 18

GEOMETRICAL OPTICS
	CHAPTER 19

OPTICAL INSTRUMENTS
	CHAPTER 20

DISPERSION AND SPECTRA
	CHAFFER 21

SPEED OF LIGHT
	CHAPTER 22

PHOTOMETRY
	APPENDIX A

Units and Dimensions of Physical Quantities
	APPENDIX B

Universal Constants (as revised in 1986)
	INDEX
	Solutions To Concepts Of Physics
	Microsoft Word - Document1
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47


