
CHAPTER 11 

GRAVITATION 

11.1 HISTORICAL INTRODUCTION 

The motion of celestial bodies such as the moon, 
the earth, the planets etc. has been a subject of great 
interest for a long time. Famous Indian astronomer 
and mathematician, Aryabhat, studied these motions 
in great detail, most likely in the 5th century A.D., 
and wrote his conclusions in his book Aryabhatiya. He 
established that the earth revolves about its own axis 
and moves in a circular orbit about the sun, and that 
the moon moves in a circular orbit about the earth. 

About a thousand years after Aryabhat, the 
brilliant combination of Tycho Brahe (1546-1601) and 
Johnaase Kepler (1571-1630) studied the planetary 
motion in great detail. Kepler formulated his 
important findings in his three laws of planetary 
motion : 

1. All planets move in elliptical orbits with the sun 
at a focus. 

2. The radius vector from the sun to the planet 
sweeps equal area in equal time. 

3. The square of the time period of a planet is 
proportional to the cube of the semimajor axis of 
the ellipse. 

The year 1665 was very fruitful for Isaac Newton 
aged 23. He was forced to take rest at his home in 
Lincolnshire after his college at Cambridge was closed 
for an indefinite period due to plague. In this year, he 
performed brilliant theoretical and experimental tasks 
mainly in the field of mechanics and optics. In this 
same year he focused his attention on the motion of 
the moon about the earth. 

The moon makes a revolution about the earth in 

T = 27.3 days. The distance of the moon from the earth 

is R = 3.85 x 10 
5

km. The acceleration of the moon is, 
therefore, 

2 
a=w R  

4n 2  X (3.85 x 10 5  1(111)  
- 0 0027 m/s 2  • 

(27.3 days)2  

The first question before Newton was, that what 
is the force that produces this acceleration. The 
acceleration is towards the centre of the orbit, that is 
towards the centre of the earth. Hence the force must 
act towards the centre of the earth. A natural guess 
was that the earth is attracting the moon. The saying 
goes that Newton was sitting under an apple tree when 
an apple fell down from the tree on the earth. This 
sparked the idea that the earth attracts all bodies 
towards its centre. The next question was what is the 
law governing this force. 

Figure 11.1 

Newton had to make several daring assumptions 
which proved to be turning points in science and 
philosophy. He declared that the laws of nature are 
the same for earthly and celestial bodies. The force 
operating between the earth and an apple and that 
operating between the earth and the moon, must be 
governed by the same laws. This statement may look 
very obvious today but in the era before Newton, there 
was a general belief in the western countries that the 
earthly bodies are governed by certain rules and the 
heavenly bodies are governed by different rules. In 
particular, this heavenly structure was supposed to be 
so perfect that there could not be any change in the 
sky. This distinction was so sharp that when Tycho 
Brahe saw a new star in the sky, he did not believe 
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his eyes as there could be no change in the sky. So 
the Newton's declaration was indeed revolutionary. 

The acceleration of a body falling near the earth's 

surface is about 9.8 m/s 2. Thus, 

aappie 	9.8 m/s 
2  

2 
 -3600. 

amoon 0.0027 m/s 

Also, 
distance of the moon from the earth 
distance of the apple from the earth 

dmo,,,, 3.85 x 10 5  km  
dappie 	6400 km 

= 60. 
2 

aappie  [4.1 
dap/A. 

Newton guessed that the acceleration of a body 
towards the earth is inversely proportional to the 
square of the distance of the body from the centre of 
the earth. 

Thus, a ,x —
12  • , 

r 
Also, the force is mass times acceleration and so 

it is proportional to the mass of the body. 
Hence, 

F« m 
* 

r 

By the third law of motion, the force on a body due 
to the earth must be equal to the force on the earth 
due to the body. Therefore, this force should also be 
proportional to the mass of the earth. Thus, the force 
between the earth and a body is 

Mm F « 2  

or, 	 F = GMm 	 ... (11.1) 
r 

Newton further generalised the law by saying that 
not only the earth but all material bodies in the 
universe attract each other according to equation (11.1) 
with same value of G. The constant G is called 
universal constant of gravitation and its value is found 
to be 6.67 x 10 - 11  N-m /kg . Equation (11.1) is known 
as the universal law of gravitation. 

In this argument, the distance of the apple from 
the earth is taken to be equal to the radius of the 
earth. This means we have assumed that earth can be 
treated as a single particle placed at its centre. This 
is of course not obvious. Newton had spent several 
years to prove that indeed this can be done. A 
spherically symmetric body can be replaced by a point 
particle of equal mass placed at its centre for the  

purpose of calculating gravitational force. In the 
process he discovered the methods of calculus that we 
have already learnt in Chapter 2. There is evidence 
that quite a bit of differential calculus was known to 
the ancient Indian mathematicians but this literature 
was almost certainly not known to Newton or other 
scientists of those days. 

Example 11.1 

Two particles of masses 1.0 kg and 2.0 kg are placed at 
a separation of 50 cm. Assuming that the only forces 
acting on the particles are their mutual gravitation, find 
the initial accelerations of the two particles. 

Solution : The force of gravitation exerted by one particle 
on another is 

Gm int, 

r 2  

6.67x 10 -11 N-m 2 
 X (PO kg) x (2'0 kg) 

kg 

(0'5 m) 2  

= 5'3 x 10 - '° N. 

The acceleration of 1'0 kg particle is 

F 5.3x 10 -1°  N  
a1  m1 	1'0 kg 

= 5.3 x 10 -1°  mis 2. 

This acceleration is towards the 2.0 kg particle. The 
acceleration of the 2'0 kg particle is 

F 5'3 x 10 -1°  N  a = - 2
m2 	2'0 kg 

= 2.65 x 10 -1°  mis 2 . 

This acceleration is towards the 1.0 kg particle. 

11.2 MEASUREMENT OF GRAVITATIONAL 
CONSTANT G 

The gravitational constant G is a small quantity 
and its measurement needs very sensitive 
arrangement. The first important successful 
measurement of this quantity was made by Cavendish 
in 1736 about 71 years after the law was formulated. 

In this method, two small balls of equal mass are 
attached at the two ends of a light rod to form a 
dumb-bell. The rod is suspended vertically by a fine 
quartz wire. Two large spheres of equal mass are 
placed near the smaller spheres in such a way that all 
the four spheres are on a horizontal circle. The centre 
of the circle is at the middle point of the rod 
(figure 11.2). 

Thus, 
amoon 

F - 
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Figure 11.2 

Two larger spheres lie on the opposite sides of the 
smaller balls at equal distance. A small plane mirror 
is attached to the vertical wire. A light beam, incident 
-on the mirror, falls on a scale after reflection. If the 
wire rotates by an angle 0, the reflected beam rotates 
by 26 and the spot on the scale moves. By measuring 
this movement of the spot on the scale and the distance 
between the mirror and the scale, the angle of 
deviation can be calculated. When the heavy balls are 
placed close to the small balls, a torque acts on the 
dumb-bell to rotate it. As the dumb-bell rotates, the 
suspension wire gets twisted and produces a torque on 
the dumb-bell in opposite direction. This torque is 
proportional to the angle rotated. The dumb-bell stays 
in equilibrium where the two torques have equal 
magnitude. 

Let the mass of a heavy ball = M, 

the mass of a small ball = m, 

the distance between the centres of a heavy ball 
and the small ball placed close to it = r, 

the deflection of the dumb-bell as it comes to 
equilibrium = 0, 

the torsional constant of the suspension wire = k, 

the length of the rod = 1 and 

the distance between the scale and the mirror = D. 

The force acting on each of the small balls is 
M 

F = m  

Here we have used the fact that the gravitational 
force due to a uniform sphere is same as that due to 
a single particle of equal mass placed at the centre of 
the sphere. As the four balls are on the same 
horizontal circle 'and the heavy balls are placed close 
to the smaller balls, this force acts in a horizontal 
direction perpendicular to the length of the dumb-bell. 
The torque due to each of these gravitational forces 
about the suspension wire is F(V2). 

The total gravitational torque on the dumb-bell is, 
therefore, 

r = 2F(//2) 
= Fl . 

The opposing torque produced by the suspension 
wire is O. For rotational equilibrium, 

Fl= ite 
GMm1  

or, 	 - ke 
r  

kOr 2  
G = 0) Mml 

In an experiment, the heavy balls are placed close 
to the smaller balls as shown in the figure and the 
dumb-bell is allowed to settle down. The light beam is 
adjusted so that the beam reflected by the plane mirror 
falls on the scale. Now the heavy balls are shifted in 
such a way that they are placed on the same horizontal 
circle at same distance from the smaller balls but on 
the opposite side. In figure (11.3), the original positions 
of the heavy balls are shown by A, B and the shifted 
positions by A', B'. 

Figure 11.3 

As the heavy balls are shifted to the new position, 
the dumb-bell rotates. If it was settled previously at 
an angle 0 deviated from the mean position, it will now 
settle at the same angle 0 on the other side. Thus, the 
total deflection of the dumb-bell due to the change in 
the positions of the heavy balls is 20. The reflected 
light beam deviates by an angle of 40. 

Figure 11.4 

If the linear displacement of the light spot is d, we 
have (figure 11.4) 

40 = 

or, 	
= 4D 
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Substituting in (i), 

kdr 2  

G - 
4MmID 

All the quantities on the right hand side are 
experimentally known and hence the value of G may 
be calculated. 

11.3 GRAVITATIONAL POTENTIAL ENERGY 

The concept of potential energy of a system was 
introduced in Chapter-8. The potential energy of a 
system corresponding to a conservative force was 
defined as 

Uf - Ui = - f F . dr. 

The change in potential energy is equal to the 
negative of the work done by the internal forces. We 
also calculated the change in gravitational potential 
energy of the earth-particle system when the particle 
was raised through a small height over earth's surface. 
In this case the force mg may be treated as constant 
and the change in potential energy is 

U f - = mgh 

where the symbols have their usual meanings. We now 
derive the general expression for the change in 
gravitational potential energy of a two-particle system. 

Let a particle of mass m1  be kept fixed at a point 
A (figure 11.5) and another particle of mass m2  is taken 
from a point B to a point C. Initially, the distance 
between the particles is AB = r1  and finally it becomes 
AC = r2. We have to calculate the change in potential 
energy of the system of the two particles as the 
distance changes from r1  to r2. 

r 

r, 
A 0- 

Figure 11.5 

Consider a small displacement when the distance 
between the particles changes from r to r + dr. In the 
figure, this corresponds to the second particle going 
from D to E. 

The force on the second particle is 

Gmi  m2  
F - 	2 along DA . 

r  

The work done by the gravitational force in the 
displacement is 

dW - 
Gmi 

2m2 
 

dr . 
r  

The increase in potential energy of the two particle 
system during this displacement is 

dU = - dW - 
Gmi

2 	
m2 

dr. 

The increase in potential energy as the distance 
between the particles changes from r1  to r2  is 

U(r2) - U(79= f dU 
r2  -f Gm2m2 

 dr = Gmi m2 f -- 
1  

2- dr 
ri  

il r2  
= Gini M2 — 

r 

= Gmi  m2 [1 1 — - 
r2
--] • 

We choose the potential energy of the two-particle 
system to be zero when the distance between them is 
infinity. This means that we choose U(oo) = 0. By (11.2) 
the potential energy U(r), when the separation 
between the particles is r, is 

U(r) = U(r) - U(oo) 

= Gm1m2[-
1 
 -11= 

Gmim2 
r 

The gravitational potential energy of a two particle 
system is 

U(r) - 
r 

where m1  and m2  are the masses of the particles, r is 
the separation between the particles and the potential 
energy is chosen to be zero when the separation is 
infinite. 

We have proved this result by assuming that one 
of the particles is kept at rest and the other is 
displaced. However, as the potential energy depends 
only on the separation and not on the location of the 
particles, equation (11.3) is general. 

Equation (11.3) gives the potential energy of a pair 
of particles. If there are three particles A, B and C, 
there are three pairs AB, AC and BC. The potential 
energy of the three-particle system is equal to the sum 
of the potential energies of the three pairs. For an N-
particle system there are N(N - 1)/2 pairs and the 
potential energy is calculated for each pair and added 
to get the total potential energy of the system. 

• 	 
B 
	r2  

dr 

0-- -0- 
D E 

... (11.2) 

Gm1  m2  
(11.3) 
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Example 11.2 

Find the work done in bringing three particles, each 
having a mass of 100 g, from large distances to the 
vertices of an equilateral triangle of side 20 cm. 

Solution : When the separations are large, the 
gravitational potential energy is zero. When the particles 
are brought at the vertices of the triangle ABC, three 
pairs AB, BC and CA are formed. The potential energy 
of each pair is - Gm , m,/ r and hence the total potential 

energy becomes 

[ 
Gm ,m2] 

U = 3 x 

=- 1.0 x 10 -"J. 

The work done by the gravitational forces is 

W = - U = 1.0 x 10 -11 J. If the particles are brought by 
some external agency without changing the kinetic 
energy, the work done by the external agency is equal 

to the change in potential energy = - 1.0 x 10 -11 J. 

11.4 GRAVITATIONAL POTENTIAL 

Suppose a particle of mass m is taken from a point 
A to a point B while keeping all other masses fixed. 
Let UA and UB denote the gravitational potential 
energy when the mass m is at point A and point B 
respectively. 

We define the "change in potential" Vg VA  
between the two points as 

- 

	

Vg - VA 
- Ug UA 	

... (11.4) 

The equation defines only the change in potential. 
We can choose any point to have zero potential. Such 
a point is called a reference point. If A be the reference 
point, VA = 0 and 

Vg - 	
Tit 

UA 	
... (11.5) 

Thus, gravitational potential at a point is equal to 
the change in potential energy per unit mass, as the 
mass is brought from the reference point to the given 
point. If the particle is slowly brought without 
increasing the kinetic energy, the work done by the 
external agent equals the change in potential energy. 
Thus, the potential at a point may also be defined as 
the work done per unit mass by an external agent in 
bringing a particle slowly from the reference point to 
the given point. Generally the reference point is chosen 
at infinity so that the potential at infinity is zero. 

The ST unit of gravitational potential is J/kg.  

11.5 CALCULATION OF GRAVITATIONAL 
POTENTIAL 

(A) Potential due to a Point Mass 

Suppose a particle of mass M is kept at a point A 
(figure 11.6) and we have to calculate the potential at 
a point P at a distance r away from A. The reference 
point is at infinity. 

r 
M. 	 

A 

Figure 11.6 

From equation (11.5), the potential at the point 
P is 

V(r) - 
U(r) - U(00) 

m 

But U(r) - U(03) - GMm  
r 

so that 

... (11.6) 

The gravitational potential due to a point mass M 

at a distance r is - 
GM 

r 

(B) Potential due to a Uniform Ring at a Point on its 
Axis 

Let the mass of the ring be M and its radius be a. 
We have to calculate the gravitational potential at a 
point P on the axis of the ring (figure 11.7). The centre 
is at 0 and OP = r. 

Figure 11.7 

Consider any small part of the ring of mass dm. 

The point P is at a distance z = 11  a 2  r 2  from dm. 

The potential at P due to dm is 

dV = 
dG m 	G dm  

a  2 + r  2 

The potential V due to the whole ring is obtained 
by summing the contributions from all the parts. As 
the potential is a scalar quantity, we have 

V = - GM 
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V = f dV 
r  G dm  
J 
	a 2  + r 2  

G  r dm  
)/ a 2  r2 j  

GM  .. (11.7) 
✓

a 	2 + r  2 

In terms of the distance z between the point P and 
any point of the ring, the expression for the potential 
is given by 

V = -GM 
z 
	 ... (11.8) 

(C) Potential due to a Uniform Thin Spherical Shell 

Let the mass of the given spherical shell be M and 
the radius a. We have to calculate the potential due 
to this shell at a point P. The centre of the shell is at 
0 and OP = r (figure 11.8). 

ade 

Let the distance of any point of the ring from P be 
AP = z. From the triangle OAP, 

2 	2 	2 z = a + r - 2ar cos() 

or, 	2z dz = 2ar sine de 

z dz 
or, 	sine de = 

ar 
Thus, the mass of the ring is 

dm = —
2 

sine de = —r  z dz. 2ar 
As the distance of any point of the ring from P is 

z, the potential at P due to the ring is 

dV - G dm  

GM _ 	dz  
2ar 

As we vary 0 from 0 to 1L, the rings formed on the 
shell cover up the whole shell. The potential due to 
the whole shell is obtained by integrating dV within 
the limits 0 = 0 to 0 = n. 

Case I : P is outside the shell (r > a) 

As figure (11.8) shows, when 0 = 0, the distance 
z = AP = r - a. When 0 = It, it is z = r + a. Thus, as 0 
varies from 0 to rt, the distance z varies from r - a to 
r + a. Thus, 

r + a 

V= f dV - -GM 
2ar f dz  

r - a 

Figure 11.8 

Let us draw a radius OA making an angle 0 with 
OP. Let us rotate this radius about OP keeping the 
angle AOP fixed at value 0. The point A traces a circle 
on the surface of the shell. Let us now consider another 
radius at an angle e + de and likewise rotate it about 
OP. Another circle is traced on the surface of the shell. 
The part of the shell included between these two circles 
(shown shaded in the figure) may be treated as a ring. 

The radius of this ring is a sin0 and hence the 
perimeter is 2n a sine. The width of the ring is a de. 
The area of the ring is 

(2x a sine) (ade) 

= 2n a 2sin0 de. 
The total area of the shell is 4n a 2. As the shell is 

uniform, the mass of the ring enclosed is 

dm - 
4 a 	

2 
2  (2na sine de) 

n  

M 
= 	sine de . 

__GM r,  a  
2ar 

[z] 
 a 

GM  
2ar 

[(r + a) - (r - a)] 

GM 	
... (11.9) 

To calculate the potential at an external point, a 
uniform spherical shell may be treated as a point 
particle of equal mass placed at its centre. 

Case II : P is inside the shell (r < a) 

In this case when 0 = 0, the distance z = AP 
= a - r and when 0 = it it is z = a + r (figure 11.9). Thus, 
as 0 varies from 0 to 7c, the distance z varies from 
a - r to a + r. Thus, the potential due to the shell is 

V = f dV 

2ar L a- r 
rzi  a r 

GM =  2ar [(a + r) - (a - r)] 

GM 	
... (11.10) 

= - 

= _ 
r 

a 



(D) Potential due to a Uniform Solid Sphere 

P 

Figure 11.11 
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A 
(0=7) 

A 
0=0) 

Figure 11.9 

This does not depend on r. Thus, the potential due 
to a uniform spherical shell is constant throughout the 
cavity of the sliol 1. 

Figure 11.10 

Figure (11.10) shows graphically the variation of 
potential with the distance from the centre of the shell. 

Example 11.3 

A particle of mass M is placed at the centre of a uniform 
spherical shell of equal mass and radius a. Find the 
gravitational potential at a point P at a distance a/2 
from the centre. 

Solution : The gravitational potential at the point P due 
to the particle at the centre is 

GM 2GM 
a/2 — a 

The potential at P due to the shell is 

V 
a 

The net potential at P is V, + V2  = 
3GM  

a 

The situation is shown in figure (11.11). Let the 
mass of the sphere be M and its radius a. We have to  

calculate the gravitational potential at a point P. Let 
OP = r. 

Let us draw two spheres of radii x and x + dx 
concentric with the given sphere. These two spheres 

enclose a thin spherical shell of volume 4 It x 2dx. The 

volume of the given sphere is -4 
n a 3. As the sphere is 

3 
uniform, the mass of the shell is 

3M 
dm = 	4n x

2  dx = 	x 2  dx. 

3 	
a 4 

na 
3 

The potential due to this shell at the point P is 
- G dm 	 G dm  

dV - 	if x < r and dV = 	if x > r. 
r 	 x 

Case I : Potential at an external point 

Suppose the point P is outside the sphere (figure 
11.11). The potential at P due to the shell considered is 

G dm  dV - 

Thus, the potential due to the whole sphere is 

V =5 dV = - —
G r din 
r 

... (11.11) 

The gravitational potential due to a uniform sphere 
at an external point is same as that due to a single 
particle of equal mass placed at its centre. 

Case II : Potential at an internal point 

Let us divide the sphere in two parts by imagining 
a concentric spherical surface passing through P. The 
inner part has a mass 

	

M 	 4 	3 Mr ''  
M - 	

3
x itr =4

3
n a 

Figure 11.12 

The potential at P due to this inner part is by 
equation (11.11) 

V, - 

GMr 
2 

 

3 	 (i) 
a 

a 
0 

-GM/a 

GM r  

3 
a 

GM' 



GMr 
2 

3GM  2 2 

a

- 	

3 	2a
3 (a - r ) 

▪ - GM (3a 2  - r 2). 
2a 3  

At the centre of the sphere the potential is 

... (11.12) 

2 
- 3GM [x 

a 3  

- 3GM  2 2 

2a
3 (a - r ). 

2 a  

210 	 Concepts of Physics 

To get the potential at P due to the outer part of 
the sphere, we divide this part in concentric shells. 
The mass of the shell between radii x and x + dx is 

3Mx 2dx  
dm - 

4 
	4 n x 

2dx 
3 	 a 3   

3
n a 

The potential at P due to this shell is, 

- G em 	GM 
3 —F xdx • 

a 

The potential due to the outer part is 
a 

3 
V2  - 	GM  x dx 

a 

By (i) and (ii),the total potential at P is 

V = + V2 

3 
V = -GM  

2a 

11.6 GRAVITATIONAL FIELD 

We have been saying all through that a body A 
exerts a force of gravitation on another body B kept 
at a distance. This is called action at a distance 
viewpoint. However, this viewpoint creates certain 
problems when one deals with objects separated by 
large distances. It is now assumed that a body can not 
directly interact with another body kept at a distance. 
The force between two objects is seen to be a two-step 
process. 

In the first step, it is assumed that the body A 
creates a gravitational field in the space around it. The 
field has its own existence and has energy and 
momentum. This field has a definite direction at each 
point of the space and its intensity varies from point 
to point. 

In the second step, it is assumed that when a body 
B is placed in a gravitational field, this field exerts a 
force on it. The direction and the intensity of the field 
is defined in terms of the force it exerts on a body 
placed in it. We define the intensity of gravitational 
field E at a point by the equation  

... (11.13) 

where F is the force exerted by the field on a body of 
mass m placed in the field. Quite often the intensity 
of gravitational field is abbreviated as gravitational 
field. Its SI unit is N/kg. 

Gravitational field adds according to the rules of 
vector addition. If El  is the field due to a source S1  

and E2 is the field at' the same point due to another 
source S2, the resultant field when both the sources 

are present is E1  + B2. 

If a mass m is placed close to the surface of the 
earth, the force on it is mg. We say that the earth has 
set up a gravitational field and this field exerts a force 
on the mass. The intensity of the field is 

F mg E= — = — = g . 
m m 

Thus, the intensity of the gravitational field near 
the surface of the earth is equal to the acceleration 
due to gravity. It should be clearly understood that the 
intensity of the gravitational field and the acceleration 
due to gravity are two separate physical quantities 
having equal magnitudes and directions. 

Example 11.4 

A particle of mass 50 g experiences a gravitational force 
of 2.0 N when placed at a particular point. Find the 
gravitational field at that point. 

Solution : The gravitational field has a magnitude 

F 	2.0 N  
- 40 N/kg . 

m (50 x 10 kg) 	• 

This field is along the direction of the force. 

11,7 RELATION BETWEEN GRAVITATIONAL 
FIELD AND POTENTIAL 

Suppose the gravitational field at a point r due to 
a given mass distribution is E. By definition (equation 
11.13), the force on a particle of mass m when it is at 
r is 

F = mE. 
As the particle is displaced from r to r + dr the 

work done by the gravitational force on it is 

dW = F . dr 

= m E . dr. 
The change in potential energy during this 
displacement is 

dU = - dW = - mE . dr. 
The change in potential is, by equation (11.4), 

= F — 
m 



K ]
x 

= [-2x  2 = 
K 

2x  2 

co 
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dV
dU  = — = - E . dr. 

Integrating between r, and r2  

;2 

	

V(r2)- V(ri)= - r E 	... (11.15) 
-1. 
r, 

If r, is taken at the reference point, V(ri) = 0. The 
potential V(r) at any point r is, therefore, 

r 

	

V(r)= - f E .

- 

 dr 	... (11.16) 

ro  

where 7-0  denotes the reference point. 

If we work in Cartesian coordinates, we can write 

E = i Ex  +1E), + 1 Ex  

and 	 = rdx + 	+ dz 

so that 

E.  

Equation (11.14) may be written as 

dV= - Ex  cLx - Ey dy - Ez  dz. 

If y and z remain constant, dy = dz = 0 . 
E  _ av 

ax 

	

Similarly, E = - 	and E = - -a±7  • Y 	ay 	 aZ 

The symbol means partial differentiation with 

respect to x treating y and z to be constants. Similarly 
a 

az for ay — and  • 

If the field is known, the potential may be obtained 
by integrating the field according to equation (11.16) 
and if the potential is known, the field may be obtained 
by differentiating the potential according to equation 
(11.17). 

Example 11.5 

The gravitational field due to a mass distribution is 
given by E = K/x 3  in X-direction. Taking the 
gravitational potential to be zero at infinity, find its value 
at a distance x. 

Solution : The potential at a distance x is 

V(x) = - f E dx = - f dx 

	

03 	 00  

Example 11.6 

The gravitational potential due to a mass distribution is 

V = 	A 	Find the gravitational field. 
x + a 

Solution : 	V= 	
A 	

A(x z +  a 2)  - 1/2

2  x + a 

If the gravitational field is E, 

aV 
Ex  = - 	= - A[- •](x 2  + a 2)-3/2(2x) 

Ax 
(x 2  + a 2) 3/2  

Ey = 
av 

=0 and E 
ay 	z 

_ 
az 
aV 0 • 

The gravitational field is (x 	2 + a  2)3/2 in the x-direction. 

11.8 CALCULATION OF GRAVITATIONAL FIELD 

(A) Field due to a Point Mass 

r 

0 
	 E4-- 

F 

Figure 11.13 

Suppose a particle of mass M is placed at a point 0 
(figure 11.13) and a second particle of mass m is placed 
at a point P. Let OP = r. The mass M creates a field 
E at the site of mass m and this field exerts a force 

F= mE 

on the mass. m. But the force F on the mass m- due to 
the mass M is 

F 
G 

-
Mm  

2 
r 

acting along PO .

• 

 Thus,the gravitational field at P is 

G 
E -

M 
	 ... (11.18) 
r 

along PO .

• 

 If 0 is taken as the origin, the position 
vector of mass m is r = OP . Equation (11.18) may be 
rewritten in vector form as 

... (11.19) 

where e,. is the unit vector along r. 

(B) Field due to a Uniform Circular Ring at a Point 
on its Axis 

Figure (11.14) shows a uniform circular ring of 
radius a and mass M. Let P be a point on its axis at 

Thus, ... (11.17) 

GM 
- 2 er 

r 



From (i), E - 
2GMr [  	1 

a  
2 	.v 2 	2 

r +x 
0 

a 
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a distance r from the centre. We have to obtain the 
gravitational field at P due to the ring. By symmetry 
the field must be towards the centre that is along 
--> 

PO. 

A 

Figure 11.14 

Consider any particle of mass dm on the ring, say 
at point A. The  distance of this particle from P is 

2 
AP = z = "Va 

2 
 + r . The gravitatidnal field at P due to 

--> 
dm is along PA and its magnitude is 

dE - 
Z 2  

The component along PO is 

dE cosa -
G d

2
m 

 COSOG 
z 

The net gravitational field at P due to the ring is 
E  r G dm 	G cosa  

cosa - 	f dm — 2 	 2 

GMr. 
2 	2 3/2 

(a + r ) 

The field is directed towards the centre of the ring. 

(C) Field due to a Uniform Disc at a Point on its Axis 

The situation is shown in figure (11.15). Let the 
mass of the disc be M and its radius be a. Let 0 be 
the centre of the disc and P be a point on its axis at 
a distance r from the centre. We have to find the 
gravitational field at P due to the disc. 

Figure 11.15 

Let us draw a circle of radius x with the centre at 
0. We draw another concentric circle of radius 
x + dx. The part of the disc enclosed between these two 
circles can be treated as a uniform ring of radius x. 
The point P is on its axis at a distance r from the 
centre. The area of this ring is 271 x dx. The area of  

the whole disc is it a 2 . As the disc is uniform, the mass 
of this ring is 

dm - 	2 27c x dx 
n a 

2M x dx 
2 a 

The gravitational field at P due to thp ring is, by 
equation (11.20), 

G (2Mx dx " r  

2 
a 

dE - 	2 	2 3/2  (r + x ) 

2GMr x dx 
2 	2 3/2 

	

2 	 • 

	

a 	(r + x ) 

As x varies from 0 to a, the rings cover up the 
whole disc. The field due to each of these rings is in 
the same direction PO. Thus, the net field due to the 
whole disc is along PO and its magnitude is 

a 
E  f 2GMr x dx  

jo 
2 	2 3/2 

a 
2  

(r + x ) 
a 

2GMr  f  x dx  
J 

a
2 	0 (r 2  + x 

2
)

3/2 

Let r 2  x 
2 =z  2.  

Then 2x dx = 2z dz and 

.1 	
2 

x dx 	f z dz  

(r + x 
2)3/2 —./ 

z 
3 

r  = j 1 
-

2 
dz - -

1 
 - - _ I 

Z Z ,1 2 
V r + x

2 

	

2GMr 1 	1  

2 a 	Nir + a 
2 2 	

r  	1 

Equation (11.21) may be expressed in terms of the 
angle 0 subtended by a radius of the disc at P as, 

2GM 
E - 	(1 —  COS()) . 

a 

(D) Field due to a Uniform Thin Spherical Shell 

We can use the construction of figure (11.8) to find 
the gravitational field at a point due to a uniform thin 
spherical shell. The figure is reproduced here (figure 
11.16) with symbols having same meanings. The 

shaded ring has mass dm = 2 sine do. The field at P 

due to this ring is 
GM  sine c/0 cosa 

dE =
Gdm 

 cosa — 2 	
2z 

2 	 (i) 

G dm 

GM cosa 

z 
2 

... (11.20) 

M 

. . . 

(11.21) 
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r 

Figure 11.16 

From the triangle OAP, 
2 	2 	2 

Z = a + r - 2ar cogs 
or, 	2z dz = 2ar sine de 

or, 	sine de = 
z dz
ar 

Also from the triangle OAP, 
2 	2 	2 

a = z + r - 2zr cosa 
2 	2 	2 

Z + r -a  
Or, 	Cosa = 

2zr 
Putting from (ii) and (iii) in (i), 

or, 

GM 1 

z + 
[ f  

2 
a  

2 
-2r  dz dE = 

4ar 

GM a 2  

J  

dE - 
4ar 

r 21 

Case I : P is outside the shell (r > 

In this case z varies from r - a to r + a. The field 
due to the whole shell is 

E -[z + GM 	a - r  
2 21  =GM 

	

r-a 	r 4ar 	Z  2 

We see that the shell may be treated as a point 
particle of the same mass placed at its centre to 
calculate the gravitational field at an external point. 

Case II : P is inside the shell 

In this case z varies from a - r to a + r (figure 
11.9). The field at P due to the whole shell is 

E= 	z + 
4ar 

	

GM [ a 2  r 21 	
=0. 

a+ r  

(E) Gravitational Field due to a Uniform Solid Sphere 

Case I : Field at an external point 

Let the mass of the sphere be M and its radius be 
a. We have to calculate the gravitational field due to  

the sphere at a point outside the sphere at a distance 
r from the centre. Figure (11.17) shows the situation. 
The centre of the sphere is at 0 and the field is to be 
calculated at P. 

• p 

Figure 11.17 

Let us divide the sphere into thin spherical shells 
each centred at 0. Let the mass of one such shell be 
dm. To calculate the gravitational field at P, we can 
replace the shell by a single particle of mass dm placed 
at the centre of the shell that is at 0. The field at P 
due to this shell is then 

G dm  

Thus, 	E = f dE 

G d

- 	

2
m 
 - 

G
26' dm 

	

r 	r  
GM 

• 2 
r 

Thus, a uniform sphere may be treated as a single 
particle of equal mass placed at its centre for 
calculating the gravitational field at an external point. 

This allows us to treat the earth as a point particle 
placed at its centre while calculating the force between 
the earth and an apple. 

Case II : Field at an internal point 

Figure 11.18 

Suppose the point P is inside the solid sphere 
(figure 11.18). In this case r < a. The sphere may be 
divided into thin spherical shells all centered at 0. 
Suppose the mass of such a shell is dm. If the radius 

(iii) 

r+a 

... (11.22) 

a- r 

Hence the field inside a uniform spherical shell is 
zero. 

dE 
r 2  

towards PO. The field due to the whole sphere may be 
obtained by summing the fields of all the shells making 
the solid sphere. 

(11.23) 
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of the shell is less than r, the point P is outside the 
shell and the field due to the glen is 

dE - 
G dm  along PO . 

r 
If the radius of the shell considered is greater than 

1 r, the point P is intern 1 and the' field due to such a 
shell is zero. The total ield due to the whole sphere 
is obtained by summing he fields due to all the shells. 
As all these fields are along the same direction, the 
net field is 

E = f dE 

-f G 
r
d2m G 

r 2  f dm  

Only the masses of the shells with radii less than 

r should be added to get f dm. These shells form a 

solid sphere of radius r. The volume of this sphere is 

3 	
4 	3  rc r 3

. The volume of the whole sphere is -3 X a . As 

the given sphere is uniform, the mass of the sphere of 
radius r is 

M 4 nr a 
3 

Mr 3 

4 	
a 

3  

a 
3 

Mr 
3 

dm = 3  
a 
G Mr 3  

E = 	3 r 2 a 
GM  

3 r. 
a 

The gravitational field due to a uniform sphere at 
an internal point is proportional to the distance of the 
point from the centre of the sphere. At the centre itself, 
r = 0 and the field is zero. This is also expected from 
symmetry because any particle at the centre is equally 
pulled from all sides and the resultant must be zero. 
At the surface of the sphere, r = a and 

E = GM 
a 

Figure 11.19 

The formula (11.23) for the field at an external 

point also gives E = 	at the surface of the sphere. 
a  

The two formulae agree at r = a. Figure (11.19) shows 
graphically the variation of gravitational field due to 
a solid sphere with the distance from its centre. 

Example 11.7 

Find the gravitational field due to the moon at its 
surface. The mass of the moon is 7'36 x 10 22  kg and the 
radius of the moon is 1'74 x 10 6  M. Assume the moon to 
be a spherically symmetric body. 

Solution : To calculate the gravitational field at an 
external point, the moon may be replaced by a single 
particle of equal mass placed at its centre. Then the field 
at the surface is 

= GM 
a 

6'67 x 10 -11N-m 2/kg 2  x 7.36 x 10 22  kg 
(1'74 x 10 m) 2  

= 1.62 N/kg . 

This is about one sixth of the gravitational field due to 
the earth at its surface. 

11.9 VARIATION IN THE VALUE OF g 

The acceleration due to gravity is given by 

g  

where F is the force exerted by the earth on an object 
of mass m. This force is affected by a number of factors 
and hence g also depends on these factors. 

(a) Height from the Surface of the Earth 

If the object is placed at a distance h above the 
surface of the earth, the force of gravitation on it due 
to the earth is 

F G - 
Mm 

 
(R + h) 2  

where M is the mass of the earth and R is its radius. 
F  GM  

Thus, 	g = 
m 

= 
(R + h) 2  

We see that the value of g decreases as one goes up. 
We can write, 

GM where go  = —2- is the value of g at the surface of the 
R 

earth. If h << R, 

h] g = g 1 + 1 
- 2 

-, go[1. 
R 

If one goes a distance h inside the earth such as 
in mines etc., the value of g again decreases. The force 

Thus, 	f 
and by (i) 

(11.24) 

2 

E. 

GM/a2  ' GM 	go 
g= 	2 - 

R11 +il ] 	[ 1 +fil ) 
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by the earth is, by equation (11.24), 

F= GM 
3
m 
 (R h) 

in 
g= — = 

R 2  R 
F GM [R  

=g 0[1 - -11 • 

The value of g is maximum at the surface of the 
earth and decreases with the increase in height as well 
as with depth similar to that shown in figure (11.19). 

Example 11.8 

Calculate the value of acceleration due to gravity at a 
point (a) 5.0 km above the earth's surface and (b) 5.0 km 
below the earth's surface. Radius of earth = 6400 km and 
the value of g at the surface of the earth is 9.80 m/s 2 . 

Solution : 

(a) The value of g at a height h is (for h << R) 

g 	_ 2 hj 

= (9.80 m/s 2) [1 	km) 
6400 km 

= 9.78 m/s 2 . 

(b) The value at a depth h is 

g = go{ 1 -11-] 

5.0 k m  
= (9.8 m/s 2) [1 

6400 km 

= 9.79 m/s 2 . 

(b) Rotation of the Earth 

As the earth rotates about its own axis the frame 
attached to the earth is noninertial. If we wish to use 
the familiar Newton's laws, we have to include pseudo 
forces. For an object at rest with respect to the earth, 

2  i a centrifugal force mco r is to be added where m is the 
mass of the object, w is the angular velocity of the 
earth and r is the radius of the circle in which the 
particle rotates. 

If the colatitude of the location of the particle is 0 
(figure 11.20), r = R sin 6 where R is the radius of the 
earth. Acceleration of an object falling near the earth's 
surface, as measured from the earth frame, is F/m 
where F is the vector sum of the gravitational force 
GMm 

- mg and the centrifugal 
R 

2 
mw 2  R sin e. The acceleration F/m = g' is the apparent 
value of the acceleration due to gravity. 

At the equator, 6 = 7c/2 and the centrifugal force is 
just opposite to the force of gravity. The resultant of 
these two is 

F = mg - ma 2R 

or, 	 g' = g - co 2R. 

At the poles, 0 = 0 and the centrifugal force 
2 

mw 2R sin 0 = 0. Thus, F = mg and g' = g. Thus, the 
observed value of the acceleration due to gravity is 
minimum at the equator and is maximum at the poles. 
This effect had been discussed in the chapter on 
circular motion. 

(c) Non-sphericity of the Earth 

All formulae and equations have been derived by 
assuming that the earth is a uniform solid sphere. The 
shape of the earth slightly deviates from the perfect 
sphere. The radius in the equatorial plane is about 
21 km larger than the radius along the poles. Due to 
this the force of gravity is more at the poles and less 
at the equator. The value of g is accordingly larger at 
the poles and less at the equator. Note that due to 
rotation of earth also, the value of g is smaller at the 
equator than that at the poles. 

(d) Non-uniformity of the Earth 

The earth is not a uniformly dense object. There 
are a variety of minerals, metals, water, oil etc., inside 
the earth. Then at the surface there are mountains, 
seas, etc. Due to these non-uniformities in the mass 
distribution, the value of g is locally affected. 

"Weighing" the Earth 

The force exerted by the earth on a body is called 
the weight of the body. In this sense "weight of the 
earth" is a meaningless concept. However, the mass of 
the earth can be determined by noting the acceleration 
due to gravity near the surface of the earth. We have, 

GM 
g - 2 

or, 	M = gR 2/G 

Putting g = 9.8 m/s 2, R = 6400 km 

or, 
2 

force mw r = 
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and 	G = 6.67 x 10 
kg 2  

the mass of the earth comes out to be 5.98 x 10 24  kg. 

27ta 	27c 
 a 

3/2 
-11 N-m 

2 
 

11.10 PLANETS AND SATELLITES or, 
2 

T 2 = riTC 	3.  

GM a  
... (11.26) 

Planets 

Planets move round the sun due to the 
gravitational attraction of the sun. The path of these 
planets are elliptical with the sun at a focus. However, 
the difference in major and minor axes is not large. 
The largest difference in the planets of our solar 
system is for Pluto and that is only 3%. The orbits can, 
therefore, be treated as nearly circular for not too 
sophisticated calculations. Let us derive certain 
characteristics of the planetory motion in terms of the 
radius of the orbit assuming it to be perfectly circular. 

Figure 11.21 

Let the mass of the sun be M and that of the planet 
under study be m. The mass of the sun is many times 
larger than the mass of the planet. The sun may, 
therefore, be treated as an inertial frame of reference. 

Speed 

Let the radius of the orbit be a and the speed of 
the planet in the orbit be v. By Newton's second law, 
the force on the planet equals its mass times the 
acceleration. Thus, 

2 GMm  
- M, 

	

2 	[— 

	

a 	 a 

GM 
v = — 

a 

The speed of a planet is inversely proportional to 
the square root of the radius of its orbit. 

Time period 

The time taken by a planet in completing one 
revolution is its time period T. In one revolution it 
covers a linear distance of 2rc a at speed v. Thus, 

T 
2 

=
na 

 

Energy 

The kinetic energy of the planet is 
1 	2 K = my . 

Using (11.25), 
GM _ 	 
a 	2a 

The gravitational potential energy of the 
sun-planet system is 

U -GMm  
a 

The total mechanical energy of the sun-planet 
system is 

GMm GMm GMm  
E = K + U - 

The total energy is negative. This is true for any 
bound system if the potential energy is taken to be 
zero at infinite separation. 

Satellite 

Satellites are launched from the earth so as to 
move round it. A number of rockets are fired from the 
satellite at proper time to establish the satellite in the 
desired orbit. Once the satellite is placed in the desired 
orbit with the correct speed for that orbit, it will 
continue to move in that orbit under gravitational 
attraction of the earth. All the equations derived above 
for planets are also true for satellites with M 
representing the mass of the earth and m representing 
the mass of the satellite. 

Example 11.9 

A satellite is revolving round the earth at a height of 600 
km. Find (a) the speed of the satellite and (b) the time 
period of the satellite. Radius of the earth = 6400 km and 
mass of the earth = 6 x 10 24  kg. 

Solution : The distance of the satellite from the centre of 
the earth is 6400 km + 600 km = 7000 km. 

The speed of the satellite is 

GM 
u = 

a 

1/ 6.67x 10 -11 N-m 2/kg 2 x 6 x 10 u kg 
7000 x 10 3 rn 

= 7.6 x 10 3 m/s = 7.6 km/s . 

or, ... (11.25) 

K =
1  m 

2a 	a 	2a 
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2 The time period is 
2ic a T - 

2it x 7000 x 10 3  m  -58x10 3 s. 
7.6 x 10 3  m/s 

Geostationary Satellite 

The earth rotates about its own axis (the line 
joining the north pole and the south pole) once in 24 
hours. Suppose a satellite is established in an orbit in 
the plane of the equator. Suppose the height is such 
that the time period of the satellite is 24 hours and it 
moves in the same sense as the earth. The satellite 
will always be overhead a particular place on the 
equator. As seen from the earth, this satellite will 
appear to be stationary. Such a satellite is called 
a geostationary satellite. Such satellites are used for 
telecommunication, weather forecast and other 
applications. 

According to equation (11.26), 
, 2 

2 Lin 	3 
T = 

GM 
a 

1/3 

or, 	 a - 
Ill4n 2 J 

 
Putting the values of G, M (6 x 10 24  kg) and 

T (24 hours); the radius of the geostationary orbit 
comes out to be a = 4.2 x 10 4  km. The height above tile 
surface of the earth is about 3.6 x 10 4  km. 

11.11 KEPLER'S LAWS 

From the observations of Tycho Brahe, Kepler 
formulated the laws of planetary motion which we 
have listed in the first section of this chapter. The first 
law states that the path of a planet is elliptical with 
the sun at a focus. Circular path is a special case of 
an ellipse when the major and minor axes are equal. 
For a circular path, the planet should have velocity 
perpendicular to the line joining it with the sun and 
the magnitude should satisfy equation (11.25), that is 

v -.=-1/7X1  • If these conditions are not satisfied, the 
a 

planet moves in an ellipse. 

The second law states that the radius vector from 
the sun to the planet sweeps out equal area in equal 
time. For a circular orbit, this is obvious because the 
speed of the particle remains constant. 

The third law of Kepler states that the square of 
the time period of a planet is proportional to the cube 
of the semimajor axis. For a circular orbit semimajor 
axis is same as the radius. We have already proved 
this law for circular orbits in equation (11.26). As M  

denotes mass of the sun, GM 
is fixed for all planets 

G 

and T 
2

c< a 3.  

11.12 WEIGHTLESSNESS IN A SATELLITE 

A satellite moves round the earth in a circular 
orbit under the action of gravity. The acceleration of 

the satellite is GM towards the centre of the earth, R 
where M is the mass of the earth and R is the radius 
of the orbit of the satellite. Consider a body of mass 
m placed on a surface inside a satellite moving round 
the earth. The forces on the body are 

(a) the gravitational pull of the earth - 0111 
R 

(b) the contact force &V by the surface. 

By Newton's law, 
Mm 	GM 

G 	&V= m[l or, cAt = 0. 

Thus, the surface does not exert any force on the 
body and hence its apparent weight is zero. No support 
is needed to hold a body in the satellite. All positions 
shown in figure (11.22) are equally comfortable. 

Figure 11.22 

One can analyse the situation from the frame of 
the satellite. Working in the satellite frame we have 
to add a centrifugal force on all bodies. If the mass of 

[

GM—, a body is m, the centrifugal force is m - 	away from 
R - 

the centre of the earth. This psuedo force exactly 

balances the weight of the body which is -G11-=-1;n  towards 
R 

the centre of the earth. A body needs no support to 
stay at rest in the satellite and hence all positions are 
equally comfortable. Water will not fall down from the 
glass even if it is inverted. It will act like a "gravity 
free hall". Such a state is called weightlessness. 

It should be clear that the earth still attracts a 

body with the same force GMm 
2  The feeling of 

R 
weightlessness arises because one stays in a rotating 
frame. 

11.13 ESCAPE VELOCITY 

When a stone is thrown up, it goes up to a 
maximum height and then returns. As the particle 
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goes up, the gravitational poteptial energy increases ,  
and the kinetic energy of the ,particle decreases. The 
particle will continue to go up till its kinetic energy 
becomes zero and will return from there. 

Let the initial velocity of the particle be u. The 

kinetic energy of the particle is K= mu 2  and the 

gravitational potential energy of the earth-particle 

system is U = - GmRm  , where M is the mass of the 

earth, m is the mass of the particle and R is the radius 
of the earth. When it reaches a height h above the 
earth's surface, its speed becomes v. The kinetic energy 

there is 2  my 
2 
 and the gravitational potential energy 

GMm 
is — 

R +h 
• 

By conservation of energy 

1 2 GMm  1 2 GMm  
mu - 	- mv - 

2 	R 2 	R + h 

or, 
2 mu  2 	R 	R + h 
1 2 [1 mu  2_ GMm1+  GMm  

The particle will reach the maximum height when 
v becomes zero. 

1 	2 GMR
' 

m  If -2 mu — 	> 0, the right hand side of (i) is 

greater than zero for all values of h. Thus, -1-2  my 2  never 

becomes zero. The particle's velocity never reaches zero 
and so the particle will continue to go farther and 
farther away from the earth. Thus, the particle will 
never return to the earth if 

1 	M 2 Gm  
-2- mu - 	> 0 

R 

or, 	
u  > 	2GM 	

... (11.27) 

This critical initial velocity is called the escape 
velocity. Putting the values of G, M and R, the escape 
velocity from the earth comes out to be 11.6 km/s. In 
this we have neglected the effect of other planets, stars 
and other objects in space. In fact, even if the initial 
velocity is somewhat less than the escape velocity, the 
particle may get attracted by some other celestial 
object and land up there. 

Equation (11.27) is valid for any celestial object. 
For example, if , something is thrown up from the 
surface of the moon, it will never return  to  the moon 

if the initial velocity is greater than -\2GM  where M  • 

is the mass of the moon and R is the radius of the 
moon. 

Example 11.10 

Calculate the escape velocity from the moon. The mass 
of the moon = 7.4 x 10 22  kg and radius of the moon 
= 1740 km. 

Solution : The escape velocity is 

v — 
..\12GM

R 

--\12 x 6-67 x 10 -11  N—m 2/1(• X 7.4 x 10 22  
1740 x 10 3  M 

= 2.4 km/s. 

11.14 GRAVITATIONAL BINDING ENERGY 

We have seen that if a particle of mass m placed 

on the earth is given an energy mu 
2 GM =  Rm or more, 

it finally escapes from earth. The minimum energy 
needed to take the particle infinitely away from the 
earth is called the binding energy of the earth-particle 
system. Thus, the binding energy of the earth-particle 

system is GMm
R 

11.15 BLACK HOLES 

Consider a spherical body of mass M and radius 
R. Suppose, due to some reason the volume goes on 
decreasing while the mass remains the same. The 

escape velocity 2GM from such a dense material will 

be very high. Suppose the radius is so small that 

AI2GRM > c  

where c = 3 x 10 8  m/s is the speed of light. The escape 
velocity for such an object is equal to or greater than 
the speed of light. This means, anything starting from 
the object with a speed less than the speed of light 
will return to the object (neglecting the effect of other 
objects in space). According to the theory of relativity 
it is not possible to achieve a velocity greater than c 
for any material object. Thus, nothing can escape from 
such a dense material. Such objects are known as black 
holes. A number of such black holes exist in space. 
Even light cannot escape from a black hole. 

11.16 INERTIAL AND GRAVITATIONAL MASS 

Given two objects A and B, how can we determine 
the ratio of the mass of A to the mass of B. One way 
is to use Newton's second law of motion. If we apply 
equal forces F on each of the two objects, 

F = MA aA  and also F = mBaB. 

(i) 
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MA aB 
mB  aA  

aB  
or, 	 MA = 	MB* 	 • •• (i) 

A 

This equation may be used to "define the mass" of an 
object. Taking the object B to be the standard kilogram 
(mB  = 1 kg), mass of any object may be obtained by 
measuring their accelerations under equal force and 
using (i). The mass so defined is called inertial mass. 

Another way to compare masses of two objects is 
based on the law of gravitation. The gravitational force 
exerted by a massive body on an object is proportional 
to the mass of the object. If FA and FB be the forces of 
attraction on the two objects due to the earth, 

GmA  M 	 GmB M 
FA= 2 	and FB = 2 

MA FA = 
MB FB 

FA 
MA = TB  MB • 

We can use this equation to "define the mass" of an 
object. If B is a standard unit mass, by measuring the 
gravitational forces FA and FB  we can obtain the mass 
of the object A. The mass so defined is called 
gravitational mass. when we measure the mass using 
a spring balance, we actually measure the 
gravitational mass. 

Equivalence of Inertial and Gravitational Mass 

The two definitions of mass, described above, are 
quite independent of each other. There is no obvious 
reason why the two should be identical. However, they 
happen to be identical. Several sophisticated  

experiments have been performed to test this 
equivalence and none of them has supplied any 
evidence against it. The general theory of relativity is 
based on the principle of equivalence of inertial and 
gravitational mass. 

11.17 POSSIBLE CHANGES IN THE 
LAW OF GRAVITATION 

There is some indication that the force between' 
two masses is not as described in this chapter. The 

	

deviation from the simple law F 	—1:z  is being taken 
R 

as an indication of the existence of a fifth interaction 
besides gravitational, electromagnetic, nuclear and 
weak. It has been reported (Phys. Rev. Lett. Jan 6, 
1986) that the force between two masses may be better 
represented by 

F= 	
M

2  
1  m2 [3.  + (1  +  r] 

a]  x  
r  

with a - 0.007 and X 200 m. As a is 
second term in the square bracket 
repulsive force. For r >> 200 m, 

G. mi  m2  
F= 	 

r 2 

which is the force operative between the earth and 
other objects. For r << 200 m , 

G., m1  m2(1  + a)  G'm1  m2  
F - 	2 	 2 

r 	 r 

where G' = G.(1 + a). 

This is the force we measure in a Cavendish-
experiment. The value of G for small distances is about 
1% less than the value of G for large distances. 

Thus, 

Thus, 

or, (ii) negative, the 
represents a 

Worked Out Examples 

L Three particles A, B and C, each of mass m, are placed 
in a line with AB = BC = d. Find the gravitational force 
on a fourth particle P of same mass, placed at a distance 
d from the particle B on the perpendicular bisector of the 
line AC. 

Solution : 

Figure 11-W1  

The force at P due to A is 

G m 2  Gni2  F = 
A  OW 

2d2 

along PA. The force at P due to C is 

G m 2  Grn2  F, =- 
(CP) -  2 d '- 

along PC. The force at P due to B is 

G m 2
FB   - 	along PB. 

The resultant of FA, FB  and Fc  will be along PB. 

Clearly L APB = L BPC = 45°. 

Component at FA along PB = FA  cos45° G m 2  
2/2 d2 



Component at Fc  along PB = Fc  cos45° = 
G m 2  

2/2 d 2  

x 
4.0 x10 6 1un- x 	7.4 x 10 

x = 3.6 x 10 5 km. 

6F71774
- 9 

22 
Or, 

or, 
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Component at FB  along PB = 
G m 2  

d 

Hence, the resultant of the three forces is 

G
d2 
m2[ 

 2 i2 2/2 
1 	1 	) G

d 2  
m 2 [ 	1 

4--
1 	

1 + ,--tA along PB. 

2. Find the distance of a point from the earth's centre where 
the resultant gravitational field due to the earth and the 
moon is zero. The mass of the earth is 6.0 x 10 24  kg and 
that of the moon is 7.4 x 10 22  kg. The distance between 
the earth and the moon is 4'0 x 10 6  km. 

Solution : The point must be on the line joining the 
centres of the earth and the moon and in between them. 
If the distance of the point from the earth is x, the 
distance from the moon is (4.0 x 10 5 km — x). The 
magnitude of the gravitational field due to the earth is 

E -
GM, G x 6 x 10 24  kg  ,  2 	 2 

X 

and magnitude of the gravitational field due to the moon 
is 

G  x 7'4 x 10  22  kg  
E2  - 	 - 

(4.0 x 10 6 km - x) 2  (4.0x 10 5 	- X) 2  

These fields are in opposite directions. For the resultant 
field to be zero E1  = E2 

6 x 10 24  kg 	7.4 x 10 22  kg 
or, 	 2 (4.0 x 10 5  km - x)2  

3. Two particles of equal mass go round a circle of radius 
R under the action of their mutual gravitational 
attraction. Find the speed of each particle. 

Solution : The particles will always remain diametrically 
opposite so that the force on each particle will be 
directed along the radius. Consider the motion of one of 

2  the particles. The force on the particle is F = G mIf 
4 R 

under mutual attraction. Find the speed of A when that 
of B is 3.6 cm/hour. What is the separation between the 
particles at this instant ? 

Solution : The linear momentum of the pair A + B is zero 
initially. As only mutual attraction is taken into account, 
which is internal when A + B is taken as the system, 
the linear momentum will remain zero. The particles 
move in opposite directions. If the speed of A is v when 
the speed of B is 3.6 cm/hour = 10 -6  m/s, 

(1 kg) v = (2 kg) (10 m/s) 

or, 	 v = 2 x 10 -5  m/s. 

The potential energy of the pair is 
G m A  m  with usual 

symbols. Initial potential energy 

6.67x 10 - n 	2/kg  2 x 2 kg x  1 kg 
lm 

= - 13.34 x 10 -11 J. 

If the separation at the given instant is d, using 
conservation of energy, 

- 13.34x 10 -11 J+0 

13.34 x 10 -11  J-m 1 
_- 	 + 2  (2 kg) (10 5  m/s) 2  

+ —
1 

(1 kg) (2 x 10 5  M/S) 2  

Solving this, d = 0.31 m. 

5. The gravitational field in a region is given by 
E = (10 N/kg) ( i + j ). Find the work done by an external 
agent to slowly shift a particle of mass 2 kg from the 
point (0,0) to a point (5 m, 4 m). 

Solution : As the particle is slowly shifted, its kinetic 
energy remains zero. The total work done on the particle 
is thus zero. The work done by the external agent should 
be negative of the work done by the gravitational field. 
The work done by the field is 

f F • dr 

Consider figure (11-W2). Suppose the particle is taken 
from 0 to A and then from A to B. The force on the 
particle is 

F=mE= (2kg)(10 N/kg)(1+j) = (20N)(.i+ j).  

GM„, 

the speed is v, its acceleration is v 2/R. 	 Y 
	

B (5m.4m) 

Thus, by Newton's law, 
G m  2 m v  2 

4R 2 
	

0 (0,0) 
	

A 
	X 

or, 

4. Two particles A and B of masses 1 kg and 2 kg 
respectively are kept 1 m apart and are released to move 

Figure 11-W2 

The work done by the field during the displacement 
OA is 



The resultant field is E = 2 E' 8 GM 
2 towards the 

centre. 
25 a 
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6m 

W1 Fx dx 
0 

5nt 

= f (20 N) dx = 20 N x 5 m = 100 J. 

Similarly, the work done in displacement AB is 
4M 	4M 

W2  = f Fy  dy = f (20 N) dy 
0 

= (20 N) (4 m) = 80 J. 

Thus, the total work done by the field, as the particle 
is shifted from 0 to B, is 180 J. 

The work done by the external agent is -180 J. 

Note that the work is independent of the path so that 
we can choose any path• convenient to us from 0 to B. 

6. A uniform solid sphere of mass M and radius a is 
surrounded symmetrically by a uniform thin spherical 
shell of equal mass and radius 2 a. Find the gravitational 

field at a distance (a) -3 a 
2 

the centre. 

Solution : 

Figure 11-W3 

Figure (11-W3) shows the situation. The point P, is at 

a distance 2  a from the centre and P2  is at a distance 

E_ 3  2 9 a  2 

k a ] 

This is also the resultant field. The direction is towards 
the centre. The point P2  is outside the sphere as well as 
the shell. Both may be replaced by single particles of 
the same mass at the centre. The field due to each of 
them is 

GM  4 GM 
E' = 	2 

{5 
a 
 ) 25 a 2  

7. The density inside a solid sphere of radius a is given by 
p = p„ a/ r where p, is the density at the surface and r 

denotes the distance from the centre. Find the 
gravitational field due to this sphere at a distance 2 a 
from its centre. 

Solution : The field is required at a point outside the 

sphere. Dividing the sphere in concentric shells, each 
shell can be replaced by a point particle at its centre 
having mass equal to the mass of the shell. Thus, the 
whole sphere can be replaced by a point particle at its 
centre having mass equal to the mass of the given 
sphere. If the mass of the sphere is M, the gravitational 
field at the given point is 

GM GM 
E = 	2 — 	2 	 • • • (i) 

(2a) 	4a 

The mass M may be calculated as follows. Consider a 
concentric shell of radius r and thickness dr. Its volume 
is 

dV = (4nr 2) dr 

and its mass is 

dM = pdV = [p, lr ) (4nr 2dr) . 

= 4np, ar dr. 

The mass of the whole sphere is 
a 

M = f4np, ar dr 
0 

= 2np0a 3. 

Thus, by (i) the gravitational field is 
27cGpoa  3  1 E= 

4a 2  — 

8. A uniform ring of mass m and radius a is placed directly 
above a uniform sphere of mass M and of equal radius. 
The centre of the ring is at a distance ✓3 a from the centre 
of the sphere. Find the gravitational force exerted by the 
sphere on the ring. 

Solution : The gravitational field at any point on the ring 
due to the sphere is equal to the field due to a single 
particle of mass M placed at the centre of the sphere. 
Thus,the force on the ring due to the sphere is also equal 
to the force on it by a particle of mass M placed at this 
point. By Newton's third law it is equal to the force on 
the particle by the ring. Now the gravitational field due 
to the ring at a distance d = a on its axis is 

Gmd
- 
 ✓3 Gm  

	

(a 2  +d 2) 3/2 	8a 2  

Figure 11-W4 

from the centre, (b) 2  a from 

a from the centre. As P, is inside the cavity of the thin 
2 
spherical shell, the field here due to the shell is zero. 
The field due to the solid sphere is 

GM 4 QM  

2  nGp0a. 



v°  - gR +  
2 R + H 

R 2 2  
Vo 

- R - — 
R + H 	2 g 

R+H= R2 

or, 

or, 
2  

R - 
2 g 
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The force on a particle of mass M placed here is 

F = ME 

✓3GMm  
8a 2  

This is also the force due to the sphere on the ring. 

9. A particle is fired vertically upward with a speed of 
9.8 km/s Find the maximum height attained by the 
particle. Radius of earth = 6400 km and g at the surface 
= 9.8 m/s 2. Consider only earth's gravitation. 

Solution : At the surface of the earth, the potential energy 
G Mm  of the earth-particle system is 	with usual 

symbols. The kinetic energy is -1 	
° m v 2 where 2  

vc, = 9.8 km/s. At the maximum height the kinetic energy 
is zero. If the maximum height reached is H, the 
potential energy of the earth-particle system at this 

instant is 
GMm  - 	Using conservation of energy, 
R + H 
G M m 1 2 GMm  M m  

+ m v - 
R 	2 ° R + H 

Writing GM = gR 2  and dividing by m, 

Putting the values of R, v, and g on the right side, 

R + H - 	
(6400 km) 2  

6400 km - (9.8 imils)2 
2 x 9.8 m/s 2  

(6400 kin) 2  
27300 km 

1500 km 

or, 	H = (27300 - 6400) km = 20900 km. 

10. A particle hanging from a spring stretches it by 1 cm at 
earth's surface. How much will the same particle stretch 
the spring at a place 800 km above the earth's surface ? 
Radius of the earth = 6400 km. 

Solution : Suppose the mass of the particle is m and the 
spring constant of the spring is k. The acceleration due 

to gravity at earth's surface is g = GM with usual 

symbols. The extension in the spring is mg/k. 

GMm 
2 

Hence, 	1 cm = 	 • • • (i) 
k R 

At a height h = 800 km, the extension is given by 
GMm  

x= 	 (ii) 
k (R + h) 2  

By (i) and (ii), 	
R 2  

lcm (R+h) 2  
(6400 km) 2  

— 0 79. 

Hence 

11.  A simple pendulum has a time period exactly 2 s when 
used in a laboratory at north pole. What will be the time 
period if the same pendulum is used in a laboratory at 
equator? Account for the earth's rotation only. Take 

GM g = 	= 9.8 m/s 2  and radius of earth = 6400 km. 

Solution : Consider the pendulum in its mean position at 
the north pole. As the pole is on the axis of rotation, the 
bob is in equilibrium. Hence in the mean position, the 
tension T is balanced by earth's attraction. Thus, 

G M m  mg . The time period t is 
R 2  

t = 2n 7/R-17n  - 2 It 1-17  

At equator, the lab and the pendulum rotate with the 

earth at angular velocity o - 27c radian  in a circle of 
24 hour 

radius equal to 6400 km. Using Newton's second law, 

GM m 
 T'=m63 2  R or, T'=m(g-e3 2 R) 

where T' is the tension in the string. 

The time period will be 

t ' = 2 7c 
   — 2 rc 	

1  
(T Vm) 	g  _ co  2 R 	(ii) 

By (i) and (ii), 
- I/2 

T
t   [1  032 R) 

g—co 2 R 	g 

or, 	t'=t [ 1 i- t°
2

2
g 

Putting the values, t' = 2.004 seconds. 

12. A satellite is to revolve round the earth in a circle of 
radius 8000 km. With what speed should this satellite 
be projected into orbit ? What will be the time period ? 
Take g at the surface = 9.8 m/s 2  and radius of the earth 
= 6400 km. 

Solution : Suppose, the speed of the satellite is v. The 
acceleration of the satellite is v 2/r, where r is the radius 

of the orbit. The force on the satellite is GMm-7- with usual 

symbols. Using Newton's second law, 

GMm v 2 
2 — M- 

r 

(7200 km) 2  

X = 0.79 cm. 

(i) 
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Or, 	v 
2 

=
GM _ 	2  (9.8 m/s 2) (6400 km) 2  

r 	(8000 km) 

giving 	v = 7'08 km/s. 

The time period is 
2 

u
n-?.

(
n
7.

(
0
8
8
000

knvifin
s)

) 
 - 118 minutes. 

13. Two satellites S, and S, revolve round a planet in 
coplanar circular orbits in the same sense. Their periods 
of revolution are 1 h and 8 h respectively. The radius of 
the orbit of S, is 10 4  km. When S2  is closest to S, find 
(a) the speed of S2  relative*to S, and (b) the angular speed 
of S2  as observed by an astronaut in S1. 

^Solution : Let the mass of the planet be M, that of S, be 
m, and of S2  be m2 . Let the radius of the orbit of S1  be 
R, ( = 10 4  km) and of S2  be R2. 

Let v, and v2  be the linear speeds of S1  and S2 with 
respect to the plat/let. Figure (11-W5) shows the 
situation. 

Figure 11-W5 

As the square of the time period is proportional to the 
cube of the radius, 

3 	 2 
[RR2i  [pH

2 
 hh]  = 64  

2 	, 
or, 	

R 
— = 4 
R, 

or, 	 R2 = 4R, = 4 x 10 4  km. 

Now the time period of S, is 1 h. So, 

2 nR, 

 1 h 
v1  

2 	,  

1 h - 2 lc x 10 4  km/h 

2 tai 

	

v2  8 h
2 
	

x 10 4  km/h . 

(a) At the closest separation, they are moving in the 
same direction. Hence the speed of S, with respect to S1  

is 1v2  - v11 = x 10 4 km/h. 

(b) As seen from S1, the satellite S2 is at a distance 

R2 - R, = 3 x 10 4  km at the closest separation. Also it is 

moving at it x 10 4  km/h in a direction perpendicular to 
the line joining them. Thus, the angular speed of S2 as 
observed by S, is 

- 
x 10 4  km/h  it 

- 
3 x 104m 3rad/h.  

or, 

similarly, 

QUESTIONS FOR SHORT ANSWER 

• 
1. Can two particles be in equilibrium under the action of 

their mutual gravitational force ? Can three particles 
be ? Cad one of the three particles be ? 

2. Is there any meaning of "Weight of the earth" ? 

3. If heavier bodies are attracted more strongly by the 
earth,why don't they fall faster than the lighter bodies ? 

4. Can you think of two particles which do not exert 
gravitational force on each other ? 

5. The earth revolves round the sun because the sun 
attracts the earth. The sun also attracts the moon and 
this force is 'about twice as large as the attraction of the 
earth on the moon. Why does the moon not revolve round 
the sun ? Or does it ? 

6. At noon, the sun and the earth pull the objects on the 
earth's surface in opposite directions. At midnight 
the sun and the earth pull these objects in same 
direction. Is the weight of an object, as measured by a 
spring balance on the earth's surface, more at midnight 
as compared to its weight at noon ? 

7. An apple falls from a tree. An insect in the apple finds 
that the earth is falling towards it with an 

acceleration g. Who exerts the force needed to accelerate 
the earth with this acceleration g? 

8. Suppose the gravitational potential due to a small 
system is k/r 2  at a distance r from it. What will be the 
gravitational field ? Can you think of any such system ? 
What happens if there were negative masses ? 

9. The gravitational potential energy of a two-particle 
Gm ,n 

system is derived in this chapter as U   Does 
r 

it follow from this equation that the potential energy for 
r = 00 must be zero ? Can we choose the potential energy 
for r = oc. to be 20 J and still use this formula ? If no, 
what formula should be used to calculate the 
gravitational potential energy at separation r ? 

10. The weight of an object is more at the poles than at the 
equator. Is it benificial to purchase goods at equator and 
sell them at the pole ? Does it matter whether a spring 
balance is used or an equal-beam balance is used ? 

11. The weight of a body at the poles is greater than the 
weight at the equator. Is it the actual weight or the 
apparent weight we are talking about ? Does your 



weight 

600N 

time 
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answer depend on whether only the earth's rotation is 
taken into account or the flattening of the earth at the 
poles is also taken into account ? 

12. If the radius of the earth decreases by 1% without 
changing its mass, will the acceleration due to gravity 
at the surface of the earth increase or decrease ? If so, 
by what per cent ? 

13. A nut becomes loose and gets detached from a satellite 
revolving around the earth. Will it land on the earth ? 
If yes, where will it land ? If no, how can an astronaut 
make it land on the earth ? 

14. Is it necessary for the plane of the orbit of a satellite to 
pass through the centre of the earth ? 

15. Consider earth satellites in circular orbits. A 
geostationary satellite must be at a height of about 
36000 km from the earth's surface. Will any satellite 
moving at this height be a geostationary satellite ? Will 

any satellite moving at this height have a time period 
of 24 hours ? 

16. No part of India is situated on the equator. Is it possible 
to have a geostationary satellite which always remains 
over New Delhi ? 

17. As the earth rotates about its axis, a person living in 
his house at the equator goes in a circular orbit of radius 
equal to the radius of the earth. Why does he/she not 
feel weightless as a satellite passenger does ? 

18. Two satellites going in equatorial plane have almost 
same radii. As seen from the earth one move from east 
to west and the other from west to east. Will they have 
the same time period as seen from the earth ? If not, 
which one will have less time period ? 

19. A spacecraft consumes more fuel in going from the earth 
to the moon than it takes for a return trip. Comment 
on this statement. 

OBJECTIVE I 

1. The acceleration of moon with respect to earth is 
0.0027 m/s 2  and the acceleration of an apple falling on 
earth's surface is about 10 m/s 2. Assume that the radius 
of the moon is one fourth of the earth's radius. If the 
moon is stopped for an instant and then released, it will 
fall towards the earth. The initial acceleration of the 
moon towards the earth will be 

(a) 10 m/s 2  (b) 0.0027 m/s 2  (c) 6.4 ro/s 2  (d) 5.0 m/s 2 . 

2. The acceleration of the moon just before it strikes the 
earth in the previous question is 

(a) 10 m/s 2  (b) 0.0027 m/s 2  (c) 6.4 m/s 2  (d) 5.0 m/s 2  
3. Suppose, the acceleration due to gravity at the earth's 

surface is 10 m/s2  and at the surface of Mars it is 
4.0 m/s 2. A 60 kg passenger goes from the earth to the 
Mars in a spaceship moving with a constant velocity. 
Neglect all other objects in the sky. Which part of figure 
(11-Q1) best represents the weight (net gravitational 
force) of the passenger as a function of time. 
(a) A . 	(b) B. 	(c) C. 	(d) D. 

Figure 11-Q1 

4. Consider a planet in some solar system which has a 
mass double the mass of the earth and density equal to 
the average density of the earth. An object weighing W 
on the earth will weigh 
(a) W (b) 2 W (c) W/2 (d) 2 1/3  W at the planet.  

5. If the acceleration due to gravity at the surface of the 
earth is g, the work done in slowly lifting a body of mass 
m from the earth's surface to a height R equal to the 
radius of the earth is 

(a) mgR 	(b) 2mgR 	(c) mgR 	(d) mgR. 

6. A person brings a mass of 1 kg from infinity to a point 
A. Initially the mass was at rest but it moves at a speed 
of 2 m/s as it reaches A. The work done by the person 
on the mass is —3 J. The potential at A is 
(a) —3 J/kg (b) —2 J/kg (c) —5 J/kg (d) none of these. 

7. Let V and E be the gravitational potential and 
gravitational field at a distance r from the centre of a 
uniform spherical shell. Consider the following two 
statements : 
(A) The plot of V against r is discontinuous. 
(B) The plot of E against r is discontinuous. 

(a) Both A and B are correct. 
(b) A is correct but B is wrong. 
(c) B is correct but A is wrong. 
(d) Both A and B are wrong. 

8. Let V and E represent the gravitational potential and 
field at a distance r from the centre of a uniform solid 
sphere. Consider the two statements: 
(A) the plot of V against r is discontinuous. 
(B) The plot of E against r is discontinuous. 

(a) Both A and B are correct. 
(b) A is correct but B is wrong. 
(c) B is correct but A is wrong. 
(d) Both A and B are wrong. 

9. Take the effect of bulging of earth and its rotation in 
account. Consider the following statements : 
(A) There are points outside the earth where the value 
of g is equal to its value at the equator. 
(B) There are points outside the earth where the value 
of g is equal to its value at the. poles. 
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13. (a) Both A and B are correct. 
(b) A is correct but B is wrong. 
(c) B is correct but A is wrong. 
(d) Both A and B are wrong. 

10. The time period of an earth-satellite in circular orbit is 
independent of 
(a) the mass of the satellite (b) radius of the orbit 
(c) none of them 	 (d) both of them. 

11. The magnitude of gravitational potential energy of the 
moon-earth system is U with zero potential energy at 
infinite separation. The kinetic energy of the moon with 
respect to the earth is K. 
(a) U < K . 	(b) U > K. 	(c) U = K. 

12. Figure (11-Q2) shows the elliptical path of a planet about 
the sun. The two shaded parts have equal area. If t1  and 
t2  be the time taken by the planet to go from a to b and 
from c to d respectively, 
(a) t1 < t2 	(b) t1 = t2 	(c) t1 > t, 
(d) insufficient information to deduce the relation 
between t1  and t2 . 

Figure 11-Q2 
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A person sitting in a chair in a satellite feels weightless 
because 
(a) the earth does not attract the objects in a satellite 
(b) the normal force by the chair on the person balances 
the earth's attraction 
(c) the normal force is zero 
(d) the person in satellite is not accelerated. 

14. A body is suspended from a spring balance kept in a 
satellite. The reading of the balance is W1  when the 
satellite goes in an orbit of radius R and is W2  when it 
goes in an orbit of radius 2 R. 
(a) W1 = W2 . (b) W1  < W2. (c) W1  > W2. (d) W1* W2 

15. The kinetic energy needed to project a body of mass m 
from the earth's surface to infinity is 

(a) ¢ mgR 	(b) mgR 	(c) mgR 	(d) 2 mgR. 

16. A particle is kept at rest at a distance R (earth's radius) 
above the earth's surface. The minimum speed with which 
it should be projected so that it does not return is 

	

17/7 FIT ra.I/1 	176.17(d)
4R `-1  2R (

c

) R 	R 
17. A satellite is orbiting the earth close to its surface. A 

particle is to be projected from the satellite to just escape 
from the earth. The escape speed from the earth is ve  . 
Its speed with respect to the satellite 
(a) will be less than ve  
(b) will be more than ve  
(c) will be equal to ye  
(d) will depend on direction of projection. 

OBJECTIVE II 

L Let V and E denote the gravitational potential and 
gravitational field at a point. It is possible to have 
(a) V = 0 and E = 0 (b) V = 0 and E 0 
(c) V# 0 and E = 0 (d) V# 0 and E * 0. 

2. Inside a uniform spherical shell 
(a) the gravitational potential is zero 
(b) the gravitational field is zero 
(c) the gravitational potential is same everywhere 
(d) the gravitational field is same everywhere. 

3. A uniform spherical shell gradually shrinks maintaining 
its shape. The gravitational poential at the centre 
(a) increases 	 (b) decreases 
(c) remains constant 	 (d) oscillates. 

4. Consider a planet moving in an elliptical orbit round the 
sun. The work done on the planet by the gravitational 
force of the sun 
(a) is zero in any small part of the orbit  

(b) is zero in some parts of the orbit 
(c) is zero in one complete revolution 
(d) is zero in no part of the motion. 

5. Two satellites A and B move round the earth in the 
same orbit. The mass of B is twice the mass of A. 
(a) Speeds of A and B are equal. 
(b) The potential energy of earth + A is same as 
that of earth + B. 
(c) The kinetic energy of A and B are equal. 
(d) The total energy of earth + A is same as that of 
earth + B. 

6. Which of the following quantities remain constant in a 
planetory motion (consider elliptical orbits) as seen from 
the sun ? 
(a) Speed. 	 (b) Angular speed. 
(c) Kinetic energy. 	(d) Angular momentum. 

EXERCISES 

L Two spherical balls of mass 10 kg each are placed 10 cm 
apart. Find the gravitational force of attraction between 
them. 

2. Four particles having masses m, 2 m, 3 m and 4 m are 
placed at the four corners of a square of edge a. Find 
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the gravitational force acting on a particle of mass m 
placed at the centre. 

3. Three equal masses m are placed at the three corners 
of an equilateral triangle of side a. Find the force exerted 
by this system on another particle of mass m placed at 
(a) the mid-point of a side, (b) at the centre of the 
triangle. 

4. Three uniform spheres each having a mass M and radius 
a are kept in such a way that each touches the other 
two. Find the magnitude of the gravitational force on 
any of the spheres due to the other two. 

5. Four particles of equal masses M move along a circle of 
radius R under the action of their mutual gravitational 
attraction. Find the speed of each particle. 

6. Find the acceleration due to gravity of the moon at a 
point 1000 km above the moon's surface. The mass of 

the moon is 7.4 x 10 22  kg and its radius is 1740 km. 
7. Two small bodies of masses 10 kg and 20 kg are kept a 

distance 1.0 m apart and released, Assuming that only 
mutual gravitational forces are acting, find the speeds of 
the particles when the separation decreases to 0.5 m. 

8. A semicircular wire has a length L and mass M. A 
particle of mass m is placed at the centre of the circle. 
Find the gravitational attraction on the particle due to 
the wire. 

9. Derive an expression for the gravitational field due to a 
uniform rod of length L and mass M at a point on its 
perpendicular bisector at a distance d from the centre. 

10. Two concentric spherical shells have masses M„ M2  and 
radii R1, R2  (R, < R2). What is the force exerted by this 
system on a particle of mass m1  if it is placed at a 
distance (R1  + R2)/2 from the centre ? 

11. A tunnel is dug along a diameter of the earth. Find the 
force on a particle of mass m placed in the tunnel at a 
distance x from the centre. 

12. A tunnel is dug along a chord of the earth at a 
perpendicular distance R/2 from the earth's centre. The 
wall of the tunnel may be assumed to be frictionless. 
Find the force exerted by the wall on a particle of mass 
m when it is at a distance x from the centre of the 
tunnel. 

13. A solid sphere of mass m and radius r is placed inside 
a hollow thin spherical shell of mass M and radius R as 
shown in figure (11-E1). A particle of mass m' is placed 
on the line joining the two centres at a distance x from 
the point of contact of the sphere and the shell. Find 
the magnitude of the resultant gravitational force on this 
particle due to the sphere and the shell if (a) r < x < 2r, 
(b) 2r < x < 2R and (c) x > 2R. 

Figure 11-El 

14. A uniform metal sphere of radius a and mass M is 
surrounded by a thin uniform spherical shell of equal 
mass and radius 4a (figure 11-E2). The centre of the 
shell falls on the surface of the inner sphere. Find the 
gravitational field at the points P1  and P2 shown in the 
figure. 

Figure 11-E2 

15. A thin spherical shell having uniform density is cut in 
two parts by a plane and kept separated as shown in 
figure (11-E3). The point A is the centre of the plane 
section of the first part and B is the centre of the plane 
section of the second part. Show that the gravitational 
field at A due to the first part is equal in magnitude to 
the gravitational field at B due to the second part. 

Figure 11-E3 

16. Two small bodies of masses 2.00 kg and 4.00 kg are kept 
at rest at a separation of 2.0 m. Where should a particle 
of mass 0.10 kg be placed to experience no net 
gravitational force from these bodies ? The particle is 
placed at this point. What is the gravitational potential 
energy of the system of three particles with usual 
reference level ? 

17. Three particles of mass m each are placed at the three 
corners of an equilateral triangle of side a. Find the work 
which should be done on this system to increase the 
sides of the triangle to 2a. 

18. A particle of mass 100 g is kept on the surface of a 
uniform sphere of mass 10 kg and radius 10 cm. Find 
the work to be done against the gravitational force 
between them to take the particle away from the sphere. 

19. The gravitational field in a region is given by 
E = (5 N/kg) i + (12 N/kg)) . (a) Find the magnitude of 
the gravitational force acting on a particle of mass 2 kg 
placed at the origin. (b) Find the potential at the points 
(12 m, 0) and (0, 5 m) if the potential at the origin is 
taken to be zero. (c) Find the change in gravitational 
potential energy if a particle of mass 2 kg is taken from 
the origin to the point (12 m, 5 m). (d) Find the change 
in potential energy if the particle is taken from (12 m, 
0) to (0, 5 m). 



1. (b) 2. (c) 	3. (c) 	4. (d) 5. (a) 6. (c) 
7. (c) 8. (d) 	9. (b) 	10. (a) 11 	(b) 12. (b) 

13. (c) 14. (a) 	15. (c) 	16. (c) 17 (d) 

OBJECTIVE II 

1. all 2. (b), (c), (d) 	3. (b) 	4. (b), (c) 	5. (a) 6. (d) 

1. 6'67 x 10 -7 N 

2 
4✓2 Gm 2  

a 2  

m 2  
3. (a) 

4 
3
G
a 

2 	(b) 

4 
✓3 GM 2  

.  
4a 

2  

zero 
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20. The gravitational pontential in a region is given by 
V =(20 N/kg) (x + y). (a) Show that the equation is 
dimensionally correct. (b) Find the gravitational field at 
the point (x, y). Leave your answer in terms of the unit 

-6 

vectors i, j, k. (c) Calculate the magnitude of the 
gravitational force on a particle of mass 500 g placed at 
the origin. 

21. The gravitational field in a region is given by 

E = ( 2 T+ 31) N/kg. Show that no work is done by the 
gravitational field when a particle is moved on the line 
3 y + 2 x = 5. 

[Hint : If a line y = mx + c makes angle 0 with the X-axis, 
m = Ulna] 

22. Find the height over the earth's surface at which the 
weight of a body becomes half of its value at the surface. 

23. What is the acceleration due to gravity on the top of 
Mount Everest ? Mount Everest is the highest mountain 
peak of the world at the height of 8848 m. The value at 
sea level is 9'80 m/s 2 . 

24. Find the acceleration due to gravity in a mine of depth 
640 m if the value at the surface is 9'800 m/s 2. The 
radius of the earth is 6400 km. 

25. A body is weighed by a spring balance to be 1'000 kg 
at the north pole. How much will it weigh at the 
equator ? Account for the earth's rotation only. 

26. A body stretches a spring by a particular length at the 
earth's surface at equator. At what height above the 
south pole will it stretch the same spring by the same 
length ? Assume the earth to be spherical. 

27. At what rate should the earth rotate so that the 
apparent g at the equator becomes zero ? What will be 
the length of the day in this situation ? 

28. A pendulum having a bob of mass m is hanging in a 
ship sailing along the equator from east to west. When 
the ship is stationary with respect to water the tension 
in the string is To. (a) Find the speed of the ship due to 
rotation of the earth about its axis. (b) Find the 
difference between To  and the earth's attraction on the 
bob. (c) If the ship sails at speed v, what is the tension 

in the string ? Angular speed of earth's rotation is o and 
radius of the earth is R. 

29. The time taken by Mars to revolve round the sun is 1'88 
years. Find the ratio of average distance between Mars 
and the sun to that between the earth and the sun. 

30. The moon takes about 27'3 days to revolve round the 
earth in a nearly circular orbit of radius 3'84 x 106  km. 
Calculate the mass of the earth from these data. 

31. A Mars satellite moving in an orbit of radius 
9.4 x 10 3  km takes 27540 s to complete one revolution. 
Calculate the mass of Mars. 

32. A satellite of mass 1000 kg is supposed to orbit the earth 
at a height of 2000 km above the earth's surface. Find 
(a) its speed in the orbit, (b) its kinetic energy, (c) the 
potential energy of the earth-satellite system and (d) its 
time period. Mass of the earth = 6 x 10 24  kg. 

33. (a) Find the radius of the circular orbit of a satellite 
moving with an angular speed equal to the angular 
speed of earth's rotation. (b) If the satellite is directly 
above the north pole at some instant, find the time it 
takes to come over the equatorial plane. Mass of the 
earth = 6 x 10 24  kg. 

34. What is the true weight of an object in a geostationary 
satellite that weighed exactly 10'0 N at the north pole ? 

35. The radius of a planet is R, and a satellite revolves 
round it in a circle of radius R2. The time period of 
revolution is T. Find the acceleration due to the 
gravitation of the planet at its surface. 

36. Find the minimum colatitude which can directly receive 
a signal from a geostationary satellite. 

37. A particle is fired vertically upward from earth's surface 
and it goes upto a maximum height of 6400 km. Find 
the initial speed of the particle. 

38. A particle is fired vertically upward with a speed of 
15 km/s. With what speed will it move in intersteller 
space. Assume only earth's gravitational field. 

39. A mass of 6 x 10 24  kg (equal to the mass of the earth) 
is to be compressed in a sphere in such a way that the 
escape velocity from its surface is 3 x 10 8 m/s. What 
should be the radius of the sphere ? 

0 

ANSWERS 

OBJECTIVE I 
	

EXERCISES 
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I/  GR 
	4 

M [2/2 + 1) 

0.65 m/s 2  

4.2 x 10 -5  m/s and 2.1 x 10 -5  m/s 

2n GMm 
L 2  
2 Gm  

d✓ L2 +4d 2  

4GMlin  
(R, + R2) 2  
GMe m 

R 3  x  
GMe m 

2R 2  

13. a) 
Gmm'(x - r) 	Gmm' 	GMm' Gmm' 

( 3 	 (b) 
(x - 2 	

(c)r
(x - R) 2  (x - r) 2  

GM  61 GM  
14.  

16a 2  900a 2  

16. 0.83 m from the 2.00 kg body towards the other body, 

- 3'06 x 10 '°J 

17. 
3Gm 2  

2a 

18. 6.67 x 10 -10 J  

19. (a) 26 N (b) - 60 J/kg, - 60 J/kg (c) - 240 J (d) zero 
•-• 

20. (b) - 20( i + j) N/kg 	(c) 10✓2 N 
22. (✓2 - 1) times the radius of the earth 

23. 9.77 m/s 2  

24. 9'799 m/s 2  

25. 0.997 kg 
26. 10 km approx. 

27. 1'237 x 10 -3  rad/sec, 1'41 h 

28. (a) (DR (b) mw 2R (c) To  + 2 mow approx. 

29. 1.52 

30. 6.02 X 10 24  kg 

31. 6.5 x 10 23  kg 

32. (a) 6.90 km/s (b) 2.38 x 1010  (c) - 4.76 x 10 10  J with 

usual reference (d) 2.01 hours 

33. (a) 42300 km (b) 6 hours 
34. 0'23 N 

4n 2R23  

5.  

6.  

7.  

8.  

9.  

10.  

11.  

12.  

35.  
T 2  R12  

36. sin (0'15) 
37. 7.9 km/s 
38. 10'0 km/s 
39. 9 mm 

0 
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SOLUTIONS TO CONCEPTS 
CHAPTER 11

1. Gravitational force of attraction,

F = 
2r

GMm

= 
2

11

)1.0(

10101067.6  

= 6.67 × 10–7 N

2. To calculate the gravitational force on ‘m’ at unline due to other mouse.

ODF = 
22 )r/a(

m4mG 
=  

2

2

a

Gm8

OIF = 
22 )r/a(

m2mG 
=  

2

2

a

Gm6

OBF = 
22 )r/a(

m2mG 
=  

2

2

a

Gm4

OAF = 
22 )r/a(

mmG 
=  

2

2

a

Gm2

Resultant OFF = 

2

2

22

2

2

a

Gm
36

a

Gm
64 





















= 10

2

2

a

Gm

Resultant OEF = 

2

2

22

2

2

a

Gm
4

a

Gm
64 





















= 

2

2

a

Gm
52

The net resultant force will be,

F = 520
a

Gm
2

a

Gm
20

a

Gm
100

2

22

2

22

2

2


































=  540120
a

Gm
2

2

2











= )6.89120(

a

Gm
2

2

2












= 4.40
a

Gm
2

2

= 
2

2

a

Gm
24

3. a) if ‘m’ is placed at mid point of a side 

then OAF = 
2

2

a

Gm4
in OA direction

OBF   = 
2

2

a

Gm4
in OB direction

Since equal & opposite cancel each other

ocF =   23

2

a2/r

Gm
= 

2

2

a3

Gm4
in OC direction

Net gravitational force on m = 
2

2

a

Gm4

b) If placed at O (centroid)

the OAF = 
)r/a(

Gm

3

2

= 
2

2

a

Gm3

FD

BA E

C

2mm

4m 3m

m

B

A

C

m

m

m m

O

B

A

C

m

m

m m

O
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OBF = 
2

2

a

Gm3

Resultant F


= 
2
1

a

Gm3
2

a

Gm3
2

2

2

22

2

2






















= 

2

2

a

Gm3

Since OCF = 
2

2

a

Gm3
, equal & opposite to F, cancel 

Net gravitational force = 0

4. CBF = ĵ60sin
a4

Gm
î60cos

a4

Gm
2

2

2

2



CAF = ĵ60sin
a4

Gm
î60cos

a4

Gm
2

2

2

2




F


= CBF + CAF

= ĵ60sin
a4

Gm2
2

2
= 

2

r

a4

Gm2 3
2

2
= 

2

2
3

a4

Gmr

5. Force on M at C due to gravitational attraction.

CBF = ĵ
R2

Gm
2

2

CDF = î
R4

GM
2

2

CAF = ĵ45sin
R4

GM
ĵ45cos

R4

GM
2

2

2

2




So, resultant force on C,

 CF =  CAF + CBF + CDF

= ĵ
2

1
2

R4

GM
î

2

1
2

R4

GM
2

2

2

2




















FC =  122
R4

GM
2

2



For moving along the circle, F


= 
R

mv2

or  122
R4

GM
2

2

 = 
R

MV2

  or V = 








 
4

122

R

GM

6.
 2hR

GM


= 

62

2211

10)10001740(

104.71067.6


 

= 
6

11

1027402740

10358.49




= 
13

11

1075.0

10358.49




= 65.8 × 10–2 = 0.65 m/s2

7. The linear momentum of 2 bodies is 0 initially. Since gravitational force is internal, final momentum is 
also zero.
So (10 kg)v1 = (20 kg) v2

Or v1 = v2 …(1)
Since P.E. is conserved

Initial P.E. = 
1

20101067.6 11  

= –13.34×10–9 J

When separation is 0.5 m,

M
B

C

A

D

B

C

A

R
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–13.34 × 10–9 + 0 = 
)2/1(

1034.13 9
+ (1/2) × 10 v1

2 + (1/2) × 20 v2
2 …(2)

 – 13.34 × 10–9 = -26.68 ×10–9 + 5 v1
2 + 10 v2

2

 – 13.34 × 10–9 = -26.68 ×10–9 + 30 v2
2

 v2
2 = 

30

1034.13 9
= 4.44 × 10–10

 v2 = 2.1 × 10–5 m/s.
So, v1 = 4.2 × 10–5 m/s.

8. In the semicircle, we can consider, a small element of d then R d = (M/L) R d = dM.

F = 
2LR

mGMRd

dF3 = 2 dF since = 
LR

GMm2
sin  d

F = 



2/

0

dsin
LR

GMm2
   2/

0cos
LR

GMm2  

 = –2 )1(
LR

GMm
 = 

LR
GMm2

= 
A/LL

GMm2


= 
2L

GMm2

9. A small section of rod is considered at ‘x’ distance mass of the element = (M/L). dx = dm

dE1 =  22 xd

1)dm(G




= dE2

Resultant dE = 2 dE1 sin 

= 2 ×    2222
xd

d

xd

)dm(G





= 

   




 


2222 xdxdL

dxdGM2

Total gravitational field 

E =  


2/L

0
2/322 xdL

dxGmd2

Integrating the above equation it can be found that, 

E = 
22 d4Ld

GM2




10. The gravitational force on ‘m’ due to the shell of M2 is 0.

M is at a distance 
2

RR 21 

Then the gravitational force due to M is given by 

= 
2/21

1

RR(

mGM


= 

2
21

1

)RR(

mGM4



11. Man of earth M = (4/3) R3
Man of the imaginary sphere, having 
Radius = x, M = (4/3)x3

or 
M
M

= 
3

3

R

x

 Gravitational force on F = 
2m

mMG 

or F = 
23

3

xR

mGMx
= 

3R

GMmx


R



M

dd

m
L

a

dx
x

dE1

O

M



d

dE2

x



m

R1

M1

R2 m2

x

m
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12. Let d be the distance from centre of earth to man ‘m’ then 

D = 











4
R

x
2

2 = (1/2)  22 Rx4 

M be the mass of the earth, M the mass of the sphere of radius d/2.
Then M = (4/3) R3
M = (4/3)d3 

or 
M
M

= 
3

3

R

d

 Gravitational force is m,

F = 
2d

mmG 
= 

23

3

dR

MmGd
= 

3R

GMmd

So, Normal force exerted by the wall = F cos.

= 
d2

R

R

GMmd
3

 = 
2R2

GMm
      (therefore I think normal force does not depend on x)

13. a) m is placed at a distance x from ‘O’.
If r < x , 2r, Let’s consider a thin shell of man

dm = 3
2

x
3

4

r)3/4(

m



= 

3

3

r

mx

Thus dm = 
3

3

r

mx

Then gravitational force F = 
2x

mmdG
= 

2

33

x

r/Gmx
= 

3r

Gmx

b) 2r < x < 2R, then F is due to only the sphere.

 F = 
 2rx

mGm





c) if x > 2R, then Gravitational force is due to both sphere & shell, then due to shell,

F = 
 2Rx

mGM





due to the sphere = 
 2rx

mGm





So, Resultant force = 
 2rx

mGm




+ 

 2Rx

mGM





14. At P1, Gravitational field due to sphere M = 
 2aa3

GM


= 

2a16

GM

At P2, Gravitational field is due to sphere & shell,

= 
2)aa4a(

GM


+ 

2)aa4(

GM


= 






 

25

1

36

1

a

GM
2

= 
2a

GM

900

61








15. We know in the thin spherical shell of uniform density has gravitational field at its internal point is zero.

At A and B point, field is equal and opposite and cancel each other so Net field is 

zero.

Hence, EA = EB

16. Let 0.1 kg man is x m from 2kg mass and (2 – x) m from 4 kg mass.


2x

1.02
= –

2)x2(

1.04




R/2

m

O
d

x



x

n

F

R/2


d

m

R

O

M

r

49
P1

a

P2

a

a

B

A

B

A
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or 
2x

2.0
= –

2)x2(

4.0



or 
2x

1
= 

2)x2(

2


or (2 – x)2 = 2 x2

or 2 – x = 2 x or  x(r2 + 1) = 2

or x = 
414.2
2

= 0.83 m from 2kg mass.

17. Initially, the ride of  is a 
To increase it to 2a,

work done = 
a

Gm
a2

Gm 22

 = 
a2

Gm3 2

18. Work done against gravitational force to take away the particle from sphere,

= 
1.01.0

1.010G




= 
1

11

101

11067.6







= 6.67 × 10–10 J

19. E


= (5 N/kg) î + (12 N/kg) ĵ

a) F


= E


m

= 2kg [(5 N/kg) î + (12 N/kg) ĵ ] = (10 N) î + (12 N) ĵ

F


= 576100  = 26 N

b) V


= E


r

At (12 m, 0), V


= – (60 J/kg) î V


= 60 J

At (0, 5 m), V


= – (60 J/kg) ĵ V


= – 60 J

c)  V


= 
)5,2,1(

)0,0(

mdrE


=    )5,12(

)0,0(rĵ)N24(î)N10( 

= – (120 J î + 120 J î ) = 240 J

d)  v = –   
 m5,0

0,m12)ĵN24îN10(r 

= –120 ĵ + 120 î = 0  

20. a) V = (20 N/kg) (x + y)

R
GM

= L
M

MLT 2

or 
L

MTLM 1231 

= 
M
TML 22 

Or M0 L2 T–2 = M0 L2 T–2

 L.H.S = R.H.S 

b) )y,x(E


= – 20(N/kg) î – 20(N/kg) ĵ

c) F


= E


m

= 0.5kg [– (20 N/kg) î – (20 N/kg) ĵ = – 10N î - 10 N ĵ

 |F|


= 100100  = 10 2 N

21. E


= 2 î + 3 ĵ

The field is represented as 
tan 1 = 3/2
Again the line 3y + 2x = 5 can be represented as 
tan 2 = – 2/3
m1 m2 = –1
Since, the direction of field and the displacement are perpendicular, is done by the particle on the line.

m m

m

a

a

a

100g

10cm

10kg


2j

3j

5/2

5/3 2
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22. Let the height be h

(1/2) 
2R

GM
= 

2)hR(

GM


Or 2R2 = (R + h)2

Or 2 R = R + h
Or h = (r2 – 1)R

23. Let g be the acceleration due to gravity on mount everest.

g = 





 

R

h2
1g

=9.8 





 

6400000

17696
1 = 9.8 (1 – 0.00276) = 9.773 m/s2

24. Let g be the acceleration due to gravity in mine.

Then g= g 





 

R

d
1

= 9.8 










3106400

640
1 = 9.8 × 0.9999 = 9.799 m/s2

25. Let g be the acceleration due to gravity at equation & that of pole = g
g= g – 2 R
= 9.81 – (7.3 × 10–5)2 × 6400 × 103

= 9.81 – 0.034
= 9.776 m/s2

mg = 1 kg × 9.776 m/s2

= 9.776 N or 0.997 kg
The body will weigh 0.997 kg at equator.

26. At equator, g = g – 2R …(1)
Let at ‘h’ height above the south pole, the acceleration due to gravity is same.

Then, here g = g 





 

R

h2
1 …(2)

 g - 2 R = g  





 

R

h2
1

or 
g

R
1

2
 = 

R

h2
1

or h = 
g2

R22
= 

   
81.92

106400103.7
2325


 

= 11125 N = 10Km (approximately) 

27. The apparent ‘g’ at equator becomes zero.
i.e. g = g – 2 R = 0
or g = 2R

or  = 
R

g
= 

3106400

8.9


= 6105.1  = 1.2 × 10–3 rad/s.

T = 

2

= 
3102.1

14.32



= 1.5 × 10–6 sec. = 1.41 hour

28. a) Speed of the ship due to rotation of earth v = R
b) T0 = mgr = mg – m2 R
 T0 – mg = m2 R
c) If the ship shifts at speed ‘v’
T = mg – m

2 R

A

To

A
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= T0 -
 

R
R

Rv
2

2










 

= T0 – 








 
R

Rv2Rv 222

m

 T = T0 + 2v m
29. According to Kepler’s laws of planetary motion,

T2  R3

2
e

2
m

T

T


3
es

3
ms

R

R


3

es

ms

R

R










2

1
88.1







 


es

ms

R

R
= (1.88)2/3 = 1.52

30. T = 2
GM

r3

27.3 = 2 × 3.14 
 

M1067.6

1084.3
11

35






or 2.73 × 2.73 =
 

M1067.6

1084.314.32
11

35






or M = 
211

1532

)3.27(10335.3

10)84.3()14.3(2



= 6.02 × 1024 kg

 mass of earth is found to be  6.02 × 1024 kg.

31. T = 2
GM

r3

 27540 = 2 × 3.14 
 

M1067.6

10104.9
11

333





or (27540)2 = (6.28)2  
M1067.6

104.9
11

26






or M = 
211

1832

)27540(1067.6

10)4.9()28.6(




 = 6.5 × 1023 kg. 

32. a) V = 
hr

GM


= 

hr

gr2



= 
)24.6(10

)106400(8.9
6

23




= 6.9 × 103 m/s = 6.9 km/s

b) K.E. = (1/2) mv2

= (1/2) 1000 × (47.6 × 106) = 2.38 × 1010 J

c) P.E. = 
)hR(

GMm



= –  
3

32411

10)20006400(

101061067.6


 

= –
8400

1040 13
= – 4.76 × 1010 J

d) T = 
V

)hr(2 
= 

3

3

109.6

10840014.32




= 76.6 × 102 sec = 2.1 hour
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33. Angular speed f earth & the satellite will be same

eT

2
= 

sT

2

or 
360024
1


= 

2

3

gR

)hR(
2

1




or 12 I 3600 = 3.14 
2

3

gR

)hR( 

or 
2

2

gR

)hR( 
= 

2

2

)14.3(

)360012( 
or 

62

93

10)6400(8.9

10)h6400(




= 
2

2

)14.3(

)360012( 

or 
9

93

106272

10)h6400(




= 432 × 104

or (6400 + h)3 = 6272 × 432 × 104

or 6400 + h = (6272 × 432 × 104)1/3

or h = (6272 × 432 × 104)1/3 – 6400
= 42300 cm.
b) Time taken from north pole to equator = (1/2) t

= (1/2) × 6.28 
62

3

10)6400(10

)640043200(




= 3.14 
112

63

10)64(

10)497(




= 3.14 
5106464

497497497




= 6 hour.

34. For geo stationary satellite,
r = 4.2 × 104 km
h = 3.6 × 104 km
Given mg = 10 N

mgh = mg 
  











 2

2

hR

R

= 10
 

  
















233

23

103600106400

106400
= 

17980

4096
= 0.23 N

35. T = 2
2

1

3
2

gR

R

Or T2 = 4
2

1

3
2

gR

R

Or g = 
2

1

3
2

2

2

R

R

T

4

 Acceleration due to gravity of the planet is = 
2

1

3
2

2

2

R

R

T

4

36. The colattitude is given by .
OAB = 90° – ABO
Again OBC =  = OAB

 sin  = 
42000
6400

= 
53
8

 = sin–1 







53

8
= sin–1 0.15. 

Colatitude

CB

A





O
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37. The particle attain maximum height = 6400 km.
On earth’s surface, its P.E. & K.E.

Ee = (1/2) mv2 + 





 

R

GMm
…(1)

In space, its P.E. & K.E. 

Es = 










hR

GMm
+ 0

Es = 







R2

GMm
…(2) ( h = R)

Equating (1) & (2) 

2mv
2

1

R

GMm
 = 

R2

GMm


Or (1/2) mv2 = GMm 





 

R

1

R2

1

Or v2 = 
R

GM

= 
3

2411

106400

1061067.6


 

= 
6

13

104.6

1002.40




= 6.2 × 107 = 0.62 × 108

Or v = 81062.0  = 0.79 × 104 m/s = 7.9 km/s.

38. Initial velocity of the particle = 15km/s
Let its speed be ‘v’ at interstellar space.

(1/2) m[(15 × 103)2 – v2] = 


R 2
dx

x

GMm

 (1/2) m[(15 × 103)2 – v2] = GMm








Rx

1

 (1/2) m[(225 × 106) – v2] = 
R

GMm

 225 × 106 – v2 = 
3

2411

106400

1061067.62


 

 v2 = 225 × 106 –
32

02.40
× 108

 v2 = 225 × 106 – 1.2 × 108 = 108 (1.05)
Or v = 1.01 × 104 m/s or 

= 10 km/s 
39. The man of the sphere = 6 × 1024 kg.

Escape velocity = 3 × 108 m/s

Vc = 
R

GM2

Or R = 
2

cV

GM2

=  28

2411

103

1061067.62



 

= 
9
02.80

× 10–3 = 8.89× 10–3 m  9 mm.

    
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