

WAVES

Electromagnetic Waves

Waves propagating in form of oscillating electric and magnetic fields.

Do not require medium for propagation.

Transverse Waves

The individual particles of the medium oscillate perpendicular to the direction of wave propagation.

Velocity of Transverse Wave in Solids and Strings

- In solids, $v = \sqrt{\frac{\eta}{\rho}}$
 - where η is modulus of rigidity and ρ is density of solids.
- In stretched string, $v = \sqrt{\frac{T}{m}}$ here, T is tension in string and m is mass per unit length of string.

Progressive Waves

• **Displacement,** $y = A \sin(\omega t - kx + \phi_0)$

$$y = A \sin 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right) = A \sin \frac{2\pi}{\lambda} (vt - x)$$

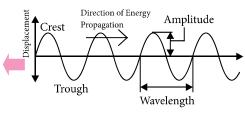
• Phase, $\phi = 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right) + \phi_0$

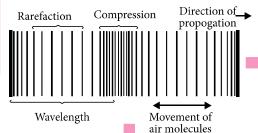
where ϕ_0 is the initial phase.

- Phase change:
- (a) with time
- (b) with position

$$\Delta \phi = \frac{2\pi}{T} \, \Delta t$$

 $\Delta \phi = \frac{2\pi}{\lambda} \, \Delta x.$


Stationary Waves


- Wave formed by the superposition of incident wave and reflected wave is given by $y = \pm 2 a \sin \frac{2\pi x}{\lambda} \cos \frac{2\pi t}{T}$
- Position of antinodes: $x = 0, \frac{\lambda}{2}, \lambda, \frac{3\lambda}{2}$
- Position of nodes: $x = \frac{\lambda}{4}, \frac{3\lambda}{4}, \frac{5\lambda}{4}...$
- Frequency of vibration of a string fixed at both ends, $v = \frac{nv}{2L} = \frac{n}{2L} \sqrt{\frac{T}{m}}$ L = length of string, n = mode of vibration

TYPES OF WAVES

Mechanical Waves

Waves which require a material medium for their propagation are called mechanical waves.

WAVE MOTION

Superposition of Waves

Identical waves of same speed superposes in opposite direction Waves with same speed and different frequency superposes in same direction

• Open organ pipe:

Fundamental mode,

$$\upsilon_1 = v/2L = \upsilon$$
 (1st harmonic)
 $n^{\text{th}} \mod e$, $\upsilon_n = nv/2L (n^{\text{th}} \text{ harmonic and} (n-1)^{\text{th}} \text{ overtone})$

• Closed organ pipe:

Fundamental mode,

$$v_1 = v/4L = v$$
 (1st harmonic)
 $n^{\text{th}} \mod e, v_n = (2n-1)v$

 $[(2n-1)^{th}$ harmonic or $(n-1)^{th}$ overtone]

Matter Waves

Waves associative with microscopic particles such as electrons, protons etc. in motion are called matter waves.

Longitudinal Waves

The individual particles of medium oscillate along the direction of wave propagation.

Velocity of Longitudinal Waves

• In a solid of bulk modulus κ , modulus of rigidity η and density ρ is

$$v = \sqrt{\frac{\kappa + \frac{4}{3} \eta}{\rho}}$$

• In a fluid of bulk modulus κ and density ρ is

$$v = \sqrt{\frac{\kappa}{\rho}}$$

• Newton's formula for the velocity of sound in a gas is

$$v = \sqrt{\frac{\kappa_{\rm iso}}{\rho}} = \sqrt{\frac{P}{\rho}} \ (P = \text{pressure of the gas})$$

Doppler's Effect in Sound

• If v, v_0 , v_s and v_m are the velocities of sound, observer, source and medium respectively, then the apparent frequency,

$$v' = \frac{v + v_m - v_0}{v + v_m - v_s} \times v$$

• If the medium is at rest, $(v_m = 0)$ then

$$\upsilon' = \frac{\upsilon - \upsilon_0}{\upsilon - \upsilon_s} \times \upsilon$$

Beats Formation

- **Beat frequency** = Number of beats sec⁻¹
 - = Difference in frequencies of two sources.

$$v_{\text{beat}} = (v_1 - v_2) \text{ or } (v_2 - v_1)$$

$$\therefore \quad v_2 = v_1 + v_{beat}$$

- If prongs of tuning fork is filed v increases.
- If prongs is loaded with a wax υ decreases.
- Uses:
 - For tuning musical instruments
 - For detection of marsh gas in mines
 - For using as a low frequency oscillator.

