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7. 	 Springs in series and parallel
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k2
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Figure 8.31

	 Series combination	
1 2

1 1 1
k k k
= +

	 Parallel combination	 1 2k k k= +

8. 	 For two blocks of masses m1 and m2 connected by a spring of constant k:

	 Time period	 T 2
k
µ

= π

	 where 1 2

1 2

m m

m m
µ =

+
 is reduced mass of the two-block system.

JEE Main/Boards

Example 1: What is the period of pendulum 
formed by pivoting a meter stick so that it is 
free to rotate about a horizontal axis passing 
through 75 cm mark?

Sol: This is an example of a physical pendulum. 
Find moment of inertia about point of suspension and 
the distance of the point of suspension from the center 
of gravity.

Let m be the mass and   be the length of the stick.
100cm= The distance of the point of suspension 

from center of gravity is d 25cm=

Moment of inertia about a horizontal axis through O is
2

cI I md= +
2

2m md
12

= +


IT 2
mgd

= π ;	

2
2m md

12T 2
mgd

+
= π



( )222 2 12 0.2512dT 2 2 153 s.
12gd 12x9.8x0.25

++
= π = π =





Example 2: A particle executes SHM.

(a) What fraction of total energy is kinetic and what 
fraction is potential when displacement is one half of 
the amplitude?

(b) At what value of displacement are the kinetic and 
potential energies equal?

Sol: The sum of kinetic energy and potential energy 
is the total mechanical energy which is constant 
throughout the SHM.

We know that 2 2
total

1E m A
2

= ω

 ( )2 2 21KE m A X
2

= ω −  and 	 2 21U m x
2

= ω

(a) When Ax
2

= , 
2

2

total

1 3A KE 3KE m
2 4 E 4

= ω ⇒ =  

Solved Examples

O

C
d
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At Ax ,
2

=  
2

21 AU m
2 4

= ω  
total

PE 1
E 4

⇒ =  

(b) Since, K U= , ( )2 2 2 2 21 1m A x m x
2 2

ω − = ω  ;

2 2 A2x A or x 0.707A
2

= = =  

Example 3: Show that the period of oscillation of simple 
pendulum at depth h below earth’s surface is inversely 

proportional to R h,−  where R is the radius of earth. 
Find out the time period of a second pendulum at a 
depth R / 2  from the earth’s surface?

Sol: As we go at a depth below the earth surface, the 
acceleration due to gravity decreases. The value of g 
inside the surface of earth is directly proportional to 
the radial distance from the center of the earth.

At earth’s surface the value of time period is given by

L 1T 2 or T
g g

= π ∝

At a depth h below the surface, ' hg g 1
R

 
= − 

 

'
'

'

gT 1 R RT T
T R h R hhg 1

R

∴ = = = ∴ =
− − 

− 
 

 

' 1or T
R h

∝
−

 Hence Proved.

Further, R/2
RT 2 2 2 s

R R / 2
= =

−
 

Example 4: Describe the motion of the mass m shown 
in figure. The walls and the block are elastic.

V

m
k

L

Sol: As the collision of the block with the wall is elastic, 
there will not be any loss in the kinetic energy and block 
will execute periodic motion of constant time period.

The block reaches the spring with a speed ‘v’. It now 
compresses the spring. The block is decelerated due to 

the spring force, comes to rest when 2 21 Imv kx
2 2

=  and 

return back. It is accelerated due to the spring force till 
the spring acquires its natural length. The contact of 
the block with the spring is now broken. At this instant 
it has regained its speed v (towards left) as the spring 
is not stretched and no potential energy is stored. This 

process takes half the period of oscillation, i.e. m / kπ
. The block strikes the left wall after a time L / v  and as 
the collision is elastic, it rebounds with the same speed 
v. After a time L / v,  it again reaches the spring and the 
process is repeated. The block thus undergoes periodic 

motion with time period 2Lm / k .
v

π +

Example 5: A particle is subjected to two simple 
harmonic motions in the same direction having equal 
amplitudes and equal frequency. If the resultant 
amplitude is equal to the amplitude of the individual 
motions, find the phase difference between the 
individual motions.

T

m

� �

x

T

l/2 l/2

Sol: The amplitude in case of combination of two or 
more SHMs in same direction and same frequency 
is obtained by vector addition of the amplitudes of 
individual SHMs. The angle of each of the individual 
amplitude with the x-axis is equal to the phase constant 
of the respective SHM.

Let the amplitudes of the individual motions be A each. 
The resultant amplitude is also A. If the phase difference 
between the two motion is ,δ

2 2A A A 2A.A.cos= + + δ  

or ( )A A 2 1 cos Acos 2= + δ = δ

or 1cos
2 2
δ
= 	 or 2 / 3δ= π

Example 6: The figure shown below a block collides 
in-elastically with the right block and sticks to it. Find 
the amplitude of the resulting simple harmonic motion.

m
k

m

v
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Sol: Conserve momentum before and after collision. 
The kinetic energy of blocks after collision is converted 
into elastic potential energy of the spring at the instant 
of maximum compression. Maximum compression is 
equal to amplitude of resulting SHM.

Assuming the collision to last for a small interval 
only, we can apply the principle of conservation of 
momentum. The common velocity after the collision 

is 
v
2

. The kinetic energy ( )
2

21 v 12m mv
2 2 4

 
= = 

 
. This is 

also the total energy of vibration as the spring is un-
stretched at this moment. If the amplitude is A, the 

total energy can also be written as 21 kA .
2

 

Thus, 2 21 1 mkA mv , giving A v.
2 4 2k

= =

Example 7: Find the time period of small oscillations 
in a horizontal plane performed by a ball of mass 40 g 
fixed at the middle of a horizontally stretched string 1.0 
m in length. The tension of the string is assumed to be 
constant and equal to 10 N.

Sol: Use the restoring force method to find the angular 
frequency.

Consider a ball of mass m placed at the middle of a 
string of length l and tension T. The components of 
tension T towards mean position is Tcosθ .

The force acting on the ball 2Tcos= θ

( )

( )

2 2

2 2

2Txma
(l / 4) x

xT F and cos
(l / 4) x

∴ =−
+

= θ=
+



As x is small, 2x  can be neglected in the denominator. 

( )
22Tx 4Ta x x

mlm l / 2
 

∴ =− =− =− ω 
 

The acceleration is directly proportional to negative 
displacement x and is directed towards the mean 
position. Hence the motion is SHM

( )
2 2 mlT

T4T / ml

 π π
= = =π  ω  

Substituting the given values, we get

( )( )24x10 1.0
T 3.14 x 0.2s

10

− 
 = =  
 

Example 8: If a tunnel is dug through the earth from 
one side to the other side along a diameter. Show that 
the motion of a particle dropped into the tunnel is 
simple harmonic motion. Find the time period. Neglect 
all the frictional forces and assume that the earth has a 
uniform density.

m

M

y

11 2 2G 6.67x10 Nm kg− −= ; Density of earth 
3 35.51x10 kgm−=

Sol: Use the restoring force method to find the angular 
frequency.

Consider a tunnel dug along the diameter of the earth. 
A particle of mass m is placed at a distance y from 
the center of the earth. There will be a gravitational 
attraction of the earth experienced by this particle due 
to the mass of matter contained in a sphere of radius y. 
Force acting on particle at distance y from center 

3

GMF .y
R

=  

3

GMmma .y
R

⇒ =−

3

GMa .y
R

⇒ = −  
3

3

4G d R
3 y

R

× × π
=−    4 G .d. y

3
π

=−

As the force is directly proportional to the displacement 
and is directed towards the mean position, the motion 
is simple harmonic.

2 4 dG.
3

⇒ ω = π 	 and 3T 2
4 dG

 
= π  π 

3 11

3 3x3.14
dG 5.51x10 x6.67x10−

   π
= =   

   

5062s 84.4min= =
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Example 9: The pulley shown in figure below has a 
moment of inertia I about its axis and mass m. find the 
time period of vertical oscillation of its center of mass. 
The spring has spring constant k and the string does 
not slip over the pulley.

k

I

Sol: For a small displacement of the pulley find the 
extension in the spring. Use the energy method to find 
the angular frequency.

Let us first find the equilibrium position. For rotational 
equilibrium of the pulley, the tensions in the two strings 
should be equal. Only then the torque on the pulley 
will be zero. Let this tension be T. The extension of the 
spring will be y T / k,= as the tension in the spring will 
be the same as the tension in the string. For translational 
equilibrium of the pulley,

mg2T mg or, 2ky mg or, y .
2k

= = =

The spring is extended by a distance mg
2k

when the 
pulley is in equilibrium.

Now suppose, the center of the pulley goes down 
further by a distance x. The total increase in the length 
of the string plus the spring is 2x (x on the left of the 
pulley and x on the right). As the string has a constant 
length, the extension of the spring is 2x. The energy of 
the system is

2
2 2 mg1 1 1U I mv mgx k 2x

2 2 2 2k
 

= ω + − + + 
 

2 2
2 2

2

m g1 I m v 2kx .
2 8kr

 
= + + + 

 

As the system is conservative, dU 0,
dt

=

giving 
2

I dv0 m v 4kxv
dtr

 
= + + 
 

Or, 

2

dv 4kx
dt I m

r

=−
 

+ 
 

or 2 2

2

4ka x, where
I m

r

= − ω ω =
 

+ 
 

Thus, the center of mass of the pulley executes a simple 
harmonic motion with time period

( )2

IT 2 m / 4k .
r

 
= π + 

 

Example 10: Two light springs of force constant 1k  
and 2k  and a block of mass m are in one line AB on 
a smooth horizontal table such that one end of each 
spring is fixed on rigid supports and the other end is 
free as shown in figure. 

k1 C
m

V D
k2

A B60m

The distance CD between the free ends of the springs 
60 cm. If the block moves along AB with a velocity  
120 cm/sec in between the springs, calculate the period 
of oscillation of the block

( )1 2k 1.8N / m, k 3.2N / m,m 200gm= = =

If initially block is mid-way of CD. 

Sol: As there are no dissipative forces the motion of the 
block is oscillatory with constant time period. Add the 
time of motion of different segments to get the time 
period.

If initially block is mid-way of CD their the time period 
T is equal to sum of time to travel 30 cm to right, time 
in contact with spring k2, time to travel 60 cm to left, 
time in contact with spring k1 and time to travel 30 cm 
to right.

2 1

30 1 m 60 1 m 30T 2 2
120 2 k 120 2 k 120

      
   ∴ = + π + + π +               

0.2 0.20.25 0.5 0.25
3.2 1.8

   
= +π + +π +   

   

0.25 / 4 0.5 / 3 0.25= +π + + π +  = 2.83 s.

Example 11: The moment of inertia of the disc used 
in torsional pendulum about the suspension wire is  
0.2 2kg m .−  It oscillates with a period of 2s. Another 
disc is played over the first one and the time period of 
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the system becomes 2.5 s. Fine the moment of inertia 
of the second disc about the wire.

Sol: As another disc is placed on the first disc moment 
of inertia about the axis passing through the wire 
increases and thus time period increases.

Let the torsional constant of the wire be k. The moment 
of inertia of the first disc about the wire is 0.2 2kg m .−
hence, the time period is

20.2kg mI2s 2 2 ... (i)
K k

−
= π = π

�
…(i)

When the second disc having moment of inertia 1I
about. The wire is added, the time period is 

2
1

2

0.2kg m I
2.5s 2 ...(ii)

0.2kg m

− +
= π

− �
…(ii)

From (i) and (ii), 
2

1
2

0.2kgm m I6.25 .
4 0.2kg m

− +
=

−

This gives 2
1I 0.11kg m .= −

Example 12: A simple pendulum having a bob of 
mass m undergoes small oscillations with amplitude 

0 .θ  Find the tension in the string as a function of the 
angle made by the string with the vertical. When is this 
tension maximum, and when is it minimum?

�

mg

T

�0

Sol: The forces acting on the bob are tension due to 
string and weight mg. The bob moves in a circular 
path. The acceleration of the bob has both radial and 
tangential component.

Suppose the speed of the bob at angle θ is .υ Using 
conservation of energy between the extreme position 
and the position with angle ,θ

( )2
0

1 mv mgl cos cos . ...............(i)
2

= θ− θ � …(i)

As the bob moves in a circular path, the force towards 
the center should be equal to mv2 / l. Thus,

2T mgcos mv / l.− θ=

Using (i),

( )0T mgcos 2mg cos cos− θ= θ− θ 	

or	  0T 3mgcos 2mgcos .= θ− θ

Now cosθ  is maximum at 0θ=  and decreases as | |θ  
increases ( )ofor | | 90 .θ <

Thus, the tension is maximum when 0,θ=  i.e., at the 
mean position and is minimum when 0 ,θ=± θ  i.e., at 
extreme positions.

JEE Advanced/Boards

Example 1: A simple pendulum is suspended from the 
ceiling of a car accelerating uniformly on a horizontal 
road. If the acceleration is 0a  and the length of the 
pendulum is l, find the time period of small oscillations 
about the mean position.

Sol: The car accelerates with acceleration a. In the 
reference frame of car the effective value of acceleration 
due to gravity is

2 2
effg g a g a= − = +

 

ma0

mg x � �+

��

a0

T
l

l

We shall work in the car frame. As it is accelerated with 
respect to the road, we shall have to apply a pseudo 
force 0m a on the bob of mass m.

For mean position, the acceleration of the bob with 
respect to the car should be zero. If θ  be the angle 
made by the string with the vertical, then tension, 
weight and the pseudo force will add to zero in this 
position.

Suppose at some instant during oscillation, the 
string is further deflected by an angle a so that the 
displacement of the bob is x. Taking the components 
perpendicular to the string, component of T = 0, 
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component of ( )mg mgsin= α+θ  and component of

( )0 0ma ma cos=− α+ θ . Thus, the resultant component 

F ( ) ( )0m gsin a cos = α+ θ − α+ θ  .

Expanding the sine and cosine and putting cos l,α ≈  
sin a ≈ x/l, we get, 

( )0 0
xF m gsin a cos gcos a sin ...(i)
l

 
= θ − θ+ θ+ θ 

 
At x 0,=  the force F on the bob should be zero, as this 
is the mean position. Thus by (i),

00 m gsin a cos = θ − θ    � …(ii)

Giving 0a
tan

g
θ =

Thus, 0

2 2
0

a
sin

a g
θ =

+
 	  � …(iii)

2 2
0

gcos
a g

θ =
+

 	  � …(iv)

Putting (ii), (iii) and (iv) in 

(i), 2 2
0

xF m g a
l

= +  or, 2F m x,= ω  where
2 2

02 g a
l
+

ω = .

This is an equation of simple harmonic motion with 

time period 
( )1/42 2

0

l2t 2x .
g a

π
= =

ω +

As easy working rule may be found out as follows. In 
the mean position, the tension, the weight and the 
pseudo force balance. From figure, the tension is 

T

�

mg

ma0

( ) ( )2 2
0T ma mg= +

or, 2 2
0

T a g .
m

= +

This plays the role of effective ‘g’. Thus the time period 

is 1/42 2
0

lIt 2 2 .
T / m g a

= π = π
 + 

Example 2: A long uniform rod of length L and mass 
M is free to rotate in a vertical plane about a horizontal 
axis through its one end ‘O’. A spring of force constant 
k is connected vertically between one end of the rod 
and ground. When the rod is in equilibrium it is parallel 
to the ground. 

A

L

O

(a) What is the period of small oscillation that result 
when the rod is rotated slightly and released?

(b) What will be the maximum speed of the displaced 
end of the rod, if the amplitude of motion is 0θ ?

Sol: The rod executes angular SHM. Use restoring 
torque method to find angular frequency of SHM.

(a) Restoring torque about ‘O’ due to elastic force of 
the spring

FL kyL (F ky)τ = − = − =

2kL (as y L )τ = − θ = θ

2
2

2

1 dI ML
3 dt

θ
τ = α =

2
2 2

2

1 dML kL
3 dt

θ
= − θ ;	

2

2

d 3k
Mdt

θ
= − θ

3k MT 2
M 3k

ω = ⇒ = π

(b) In angular SHM, maximum angular velocity

0 0
max

d 3k,
dt M

 θ
= θ ω = θ 

 
,	 v = r dr

dt
 θ

υ=  
 

So, max 0
max

d 3kv L L
dt M

 θ
= = θ 

 

Example 3: A block with mass of 2 kg hangs without 
vibrating at the end of a spring of spring constant  
500 N/m, which is attached to the ceiling of an elevator. 
The elevator is moving upwards with acceleration g

3
. At 

time t=0, the acceleration suddenly ceases.

(a) What is the angular frequency of oscillation of the 
block after the acceleration ceases?
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(b) By what amount is the spring stretched during the 
time when the elevator is accelerating?

(c) What is the amplitude of oscillation and initial phase 
angle observed by a rider in the elevator? Take the 
upward direction to be positive. Take 2g 10.0m / s .=

kx

a =
g

3

mg

Sol: The angular frequency of the spring block 
system in vertical oscillations does not depend on 
the acceleration due to gravity or the acceleration of 
the elevator. The equilibrium position depends on the 
acceleration due to gravity and the elevator. When the 
acceleration of the elevator ceases the block moves to 
the new equilibrium position.

(a) Angular frequency

k 500or
m 2

ω = ω =

or 15.81 rad / sω =

(b) Equation of motion of the block (while elevator is 
accelerating) is,

	 gkx mg ma m
3

− = =

( )( )( )
( )( )
4 2 104mgx 0.053m

3k 3 500
∴ = = = 	

or 	 x 5.3cm=

(c) (i) In equilibrium when the elevator has zero 
acceleration, the equation of motion is 

0kx mg=
( )( )

0

2 10mg
or x 0.04m

k 500
= = =  

= 4cm

x= +A

Mean position

x= -A

x0

0Amplitude A x x
5.3 4.0

∴ = −

= −
 

= 1.3 cm 

kx0

mg

(ii) At time t 0,= block is at x A.= − Therefore, 
substituting x A= − and t 0=  in equation,

x Asin( t )= ω + φ We get initial phase 3
2
π

φ =

Example 4: A solid sphere (radius = R) rolls without 
slipping in a cylindrical through (radius = 5R). Find the 
time period of small oscillations.

r

o
�

x

c

x-axis

Sol: The sphere executes pure rolling in the cylinder. 
The mean position is at the lowest point in the cylinder. 
Find the acceleration for small displacement from the 
mean position and compare with standard equation of 
SHM to find angular frequency.

5R

R

For pure rolling to take place, v = Rw 
'ω =  Angular velocity of COM of sphere C about O

v R
4R 4R 4

ω ω
= = =

'd 1 d
dt 4 dt
ω ω

∴ = 	 or '

4
α

α =

a
R

α =  for pure rolling;	

Where, 
2

gsin 5gsina
7I mR

θ θ
= =

+

As, 22I mR
5

= 	 ' 5gsin
28R

θ
∴ α =

For small ,θ sin ,θ=θ being restoring in nature,

'
'

5g 28RT 2 2
28R 5g

θ
α =− θ ∴ = π = π

α

Example 5: Consider the earth as a uniform sphere of 
mass M and radius R. Imagine a straight smooth tunnel 
made through the earth which connects any two points 
on its surface. Show that the motion of a particle of 

5R

c

O
�’

�

v

�
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mass in along this tunnel under the action of gravitation 
would be simple harmonic. Hence, determine the time 
that a particle would take to go from one end to the 
other through the tunnel.

Sol: Use the restoring force method to find the angular 
frequency.

Suppose at some instant the particle is at radial 
distance r from center of earth O. Since, the particle 
is constrained to move along the tunnel, we define 
its position as distance x from C. Hence, equation of 
motion of the particle is, x xma F=

The gravitational force on mass m at distance r is,

3

GMmrF
R

=  (Towards O)

Therefore, x 3

GMmr xF Fsin
rR

 
= − θ = −  

 
Since xF x∝ − , motion is simple harmonic in nature. 
Further,

x x3 3

GMm GMma .x or a .x
R R

= − = −

∴  Time period of oscillation is,

 
3

x

x RT 2 2
a GM

= π = π

The time taken by particle to go from one end to the 

other is T
2

∴ 	
3T Rt

2 GM
= = π

Example 6: Two identical balls A and B, each of mass 
0.1 kg are attached to two identical massless springs. 
The spring mass system is constrained to move inside a 
rigid smooth pipe bent in the form of a circle as shown 
in figure. The pipe is fixed in a horizontal plane. The 
centers of the balls can move in a circle of radius 0.06 m. 
Each spring has a natural length 0.06 π  m and spring 
constant 0.1 N/m. Initially both the balls are displaced 
by angle π /6 radian with respect to the diameter PQ of 
the circle and released from rest.

A

P
�/6�/6

O

B

Q

(a) Calculate the frequency of oscillation of ball B.

(b) Find the speed of the ball A when A and B are at the 
two ends of diameter PQ

(c) What is the total energy of the system

Sol: Here the two balls connected by the springs are 
free to oscillate along the length of the springs, so the 
time period will depend on the reduced mass of the 
two-ball system.

(a) Restoring force on A or B k x k x= ∆ + ∆ 2k x.= ∆

Where x∆  is compression in the spring at one end? 
Effective force constant = 2k

1 2kFrequency v
2

=
π µ

Where µ  is reduced mass of system.

mm mreducedmass.
m m 2

µ = =
+

1 2k 1 0.1 1v s
2 m / 2 3.14 0.1 3.14

= = =
π

(b) P and Q are equilibrium position. Balls A and B at 
P and Q have only kinetic energy and it is equal the 
potential energy at extreme positions.

2 2 2

Potential energy at extreme position
1 1k(2 x) k(2 x) 4k( x)
2 2

= ∆ + ∆ = ∆

Where x Rx
6
π

∆ =

2 2 2 2
4kR (3.14) x0.1x(0.06)P.E. 3.94x10 J

36 36
−π

⇒ = = ≈

When the balls A and B are at points P and Q respectively.

(A) (B)KE KE PE.+ = ; (A)2KE P.E.=

2 412x mv 3.94 x10
2

−=

1
2 2 2 13.94v x10 6.28x10 0.0628ms

0.1
− − − 

⇒ = = = 
 

(c) Total potential and kinetic energy of the system 
is equal to total potential energy at the extreme 
position=3.94x10-4J.
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Exercise 1 

Q.1 A simple harmonic motion is represented by 
y(t)=10 sin (20t+0.5). Write down its amplitude, angular 
frequency, time period and initial phase, if displacement 
is measured in meters and time in seconds.

Q.2 A particle executing SHM along a straight line has 
a velocity of 4 ms-1, when at a distance of 3 m from its 
mean position and 3 1ms− , when at a distance of 4 m 
from it. Find the time it takes to travel 2.5 m from the 
positive extremity of its oscillation.

Q.3 A simple harmonic oscillation is represented by the 
equation.

Y=0.4sin (440t+0.61)

Here y and t are in m and s respectively. What are 
the values of (i) amplitude (ii) angular frequency (iii) 
frequency of oscillation (iv) time period of oscillation 
and (v) initial phase?

Q.4 A particle executing SHM of amplitude 25 cm and 
time period 3 s. What is the minimum time required for 
the particle to move between two points 12.5 cm on 
either side of the mean position?

Q.5 A particle executes SHM of amplitude a. At what 
distance from the mean position is its K.E. equal to its 
P.E?

Q.6 An 8 kg body performs SHM of amplitude a. At 
what distance from the mean position is its K.E. equal 
to its P.E?

Q.7 A spring of force constant 1200 1Nm−  is mounted 
on a horizontal table as shown in figure. A mass of 
3.0 kg is attached to the free end of the spring. Pulled 
sideways to a distance of 2cm and released, what is

m

(a) The speed of the mass when the spring is compressed 
by 1.0 cm?

(b) Potential energy of the oscillating mass.

Q.8 A trolley of mass 3.0 kg is connected to two 
identical springs each of force constant 600 1Nm−  
as shown in figure. If the trolley is displaced from its 
equilibrium position by 5.0 cm and released, what is the 
total energy stored?

600 Nm
-1 3.0 kg

600 Nm
-1

Q.9 A pendulum clock normally shows correct time. On 
an extremely cold day, its length decreases by 0.2%. 
Compute the error in time per day.

Q.10 Two particles execute SHM of same amplitude 
and frequency on parallel lines. They pass one another 
when moving in opposite directions and at that time 
their displacement is one third their amplitude. What is 
the phase difference between them?

Q.11 What is the frequency of a second pendulum in an 
elevator moving up with an accelerating of g/2?

Q.12 Explain periodic motion and oscillatory motion 
with illustration.

Q.13 What is a simple pendulum? Find an expression for 
the time period and frequency of a simple pendulum.

Q.14 Explain the oscillations of a loaded spring and find 
the relations for the time period and frequency in case 
of (i) horizontal spring (ii) vertical spring

Q.15 What is a spring factor? Find its value in case of 
two springs connected in (i) series and (ii) parallel.

Q.16 Explain phase and phase difference, angular 
frequency, displacement in periodic motion with 
illustrations.

Q.17 Explain displacement, velocity, acceleration and 
time period in SHMs. Find the relation between them.

JEE Main/Boards
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Q.18 From the figure (a) and (b). Obtain the equation 
of simple harmonic motion of the y-projection of the 
radius vector of the revolving particle P in each case.

T=3s P(t=0)

60
o

2cm

x
90

o

3cm

x

y

P(t=0)

T=1min

(a) (b)

Q.19 Two particles execute SHM of the same amplitude 
and frequency along does parallel lines. They pass 
each other moving in opposite directions, each time 
their displacement in half their amplitude. What is their 
phase difference?

Q.20 A body oscillates with SHM according to the 
equation, X=6 cos (3 t / 3)π +π metres. What is (a) 
amplitude and (b) the velocity at t=2s.

Q.21 A bob of simple pendulum executes SHM of 
period 20 s. Its velocity is 5 ms-1, two seconds after it 
has passed through its mean position. Determine the 
amplitude of SHM.

Q.22 A particle is moving in a straight line with SHM Its 
velocity has values 3 ms-1 and 2 ms-1 when its distance 
from the mean positions are 1 m and 2 m respectively. 
Find the period of its motion and length of its path.

Q.23 A particle executes SHM with an amplitude 4 cm. 
Locate the position of point where its speed is half its 
speed is half its maximum speed. At what displacement 
is potential energy equal to kinetic energy?

Q.24 A block whose mass is 1 kg is fastened to a spring. 
The spring has a spring constant 50 N m-1. The block 
is pulled to a distance x=10 cm from its equilibrium 
position at x=0 on a frictionless surface at t=0. Calculate 
the kinetic, potential and total energies of the block 
when it is 5 cm away from the mean position.

Q.25 Two point masses of 3.0 kg and 1.0 kg are 
attached to opposite ends of a horizontal spring whose 
spring constant in 300 Nm-1 as shown in figure. Find the 
natural frequency of vibration of the system.

1kg 3kg

Q.26 A system of springs with their spring constants are 
as shown in figure . What is the frequency of oscillations 
of the mass m?

k1

k2

k3 k4

m

Exercise 2 

Single Correct Choice Type

Q.1 A simple harmonic motion having an amplitude 
A and time period T is represented by the equation: 
y 5sin (t 4)m= π +

Then the values of A (in m) and T (in s) are:

(A) A = 5; T = 2	 (B) A = 10; T = 1	

(C) A = 5; T = 1	 (D) A = 10; T = 2

Q.2 The maximum acceleration of a particle in SHM is 
made two times keeping the maximum speed to be 
constant. It is possible when

(A) Amplitude of oscillation is doubled while frequency 
remains constant

(B) Amplitude is doubled while frequency is halved

(C) Frequency is doubled while amplitude is halved

(D) Frequency is doubled while amplitude remains 
constant

Q.3 A stone is swinging in a horizontal circle 0.8 m in 
diameter at 30 rev/min. A distant horizontal light beam 
causes a shadow of the stone to be formed on a nearly 
vertical wall. The amplitude and period of the simple 
harmonic motion for the shadow of the stone are

(A) 0.4 m, 4 s 	 (B) 0.2 m, 2 s

(C) 0.4 m, 2 s	 (D) 0.8 m, 2 s
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Q.4 A small mass executes linear SHM about O with 
amplitude a and period T. Its displacement from O at 
time T/8 after passing through O is:

(A) a/8	 (B) a/2 2 	 (C) a/2	 (D) a/ 2

Q.5 The displacement of a body executing SHM is given 
by x Asin(2 t / 3).= π +π  The first time from t=0 when 
the velocity is maximum is

(A) 0.33 s	 (B) 0.16 s	 (C) 0.25 s	 (D) 0.5 s

Q.6 A particle executes SHM of period 1.2 s. and 
amplitude 8 cm. Find the time it takes to travel 3cm 
from the positive extremely of its oscillation.

(A) 0.28 s	 (B) 0.32 s	 (C) 0.17 s	 (D) 0.42 s

Q.7 A particle moves along the x-axis according to
: x A[I sin t]= + ω . What distance does it travel between? 
t 0andt 2.5 / ?= = π ω

(A) 4A	 (B) 6A	 (C) 5A	 (D) None

Q.8 Find the ratio of time periods of two identical 
springs if they are first joined in series & then in parallel 
& a mass m is suspended from them:

(A) 4	 (B) 2 	 (C) 1	 (D) 3

Q.9 The amplitude of the vibrating particle due to 
superposition of two SHMs,

1 2y sin t and y sin t is:
3

 π
= ω + = ω 

 

(A) 1	 (B) 2  	 (C) 3 	 (D) 2

Q.10 Two simple harmonic motions y1=A sin tω  
are superimposed on a particle of mass m. The total 
mechanical energy of the particle is:

(A) 2 2
1 m A
2

ω 	 (B) 2 2m Aω

(C) 2 2
1 m A
4

ω 	 (D) Zero

Q.11 A block of mass ‘m’ is attached to a spring in 
natural length of spring constant ‘k’. The other end A 
of the spring is moved with a constant velocity v away 
from the block. Find the maximum extension in the 
spring.

(A) 
21 mv

4 k
	 (B) 

2mv
k

	

(C) 
21 mv

2 k
	 (D) 

2mv2
k

Q.12 In the above question, the find amplitude of 
oscillation of the block in the reference frame of point 
A of the spring.

(A) 
21 mv

4 k
	 (B) 

21 mv
2 k

	

(C) 
2mv

k
	 (D) 

2mv2
k

Q.13 For a particle acceleration is defined as 

5xia for x 0 and a 0 for x 0.
x

−
= ≠ = =



 

If the particle is initially at rest (a, 0) what is period of 
motion of the particle.

(A) 4 2a / 5 sec.  	 (B) 8 2a / 5 sec.  

(C) 2 2a / 5 sec.  	 (D) Cannot be determined

Q.14 A mass m, which is attached to a spring with 
spring constant k, oscillates on a horizontal table, with 
amplitude A. At an instant when the spring is stretched 

by 3A / 2 , a second mass m is dropped vertically onto 

the original mass and immediately sticks to it. What is 
the amplitude of the resulting motion?

(A) 3 A
2

	 (B) 7 A
8

	

(C) 13 A
16

	 (D) 2 A
3

Q.15 A particle is executing SHM of amplitude A, about 
the mean position x=0. Which of the following cannot 
be a possible phase difference between the positions of 

the particle at x=+ A/2 and x A / 2= −

(A) 75°	 (B) 165°	 (C) 135°	 (D) 195°
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Previous Years’ Questions

Q.1 A particle executes simple harmonic motion with 
a frequency ƒ. The frequency with which its kinetic 
energy oscillates is� (1987)

(A) ƒ/2	 (B) ƒ 	 (C) 2 ƒ	 (D) 4 ƒ

Q. 2 Two bodies M and N of equal masses are suspended 
from two separate massless springs of spring constants 

1k  and 2k  respectively. If the two bodies oscillate 
vertically such that their maximum velocities are equal, 
the ratio of the one amplitude of vibration of M to that 
of N is� (1988)

(A) 1 2k / k 	 (B) 2 1k / k

(C) 2 1k / k 	 (D) 1 2k / k

Q.3 A highly rigid cubical block A of small mass M and 
side L is fixed rigidly on to another cubical block B of 
the same dimensions and of low modulus of rigidity 
η  such that the lower face of A completely covers 
the upper face of B. The lower face of B is rigidly held 
on a horizontal surface. A small force F is applied 
perpendicular to one of the side faces of A. After the 
force is withdrawn. Block A executes small oscillations. 
The time period of which is given by� (1992)

(A) 2 M Lπ η 	 (B) M2
L
η

π

(C) ML2π
η

	 (D) M2
L

π
η

Q.4 One end of a long metallic wire of length L is tied 
to the ceiling. The other end is tied to a massless spring 
of spring constant k. A mass m hangs freely from the 
free end of the spring. The area of cross-section and the 
Young’s modulus of the wire are A and Y respectively. 
If the mass is slightly pulled down and released, it will 
oscillate with a time period T equal to � (1993)

(A) 1/22 (m / k)π 	 (B) m(YA kL
2

YAk
+

π

(C) 1/22 [(mYA / kL)π 	 (D) 1/22 [(mL / YA)π

Q.5 A particle of mass m is executing oscillation 
about the origin on the x-axis. Its potential energy 

is 3
U(x) k x= , Where k is a positive constant. If the 

amplitude of oscillation is a then its time period T is
� (1998)

(A) Proportional to 1 / a  

(B) Independent of a

(C) Proportional to a

(D) Proportional to 3/2a

Q.6 A spring of force constant k is cut into two pieces 
such that one piece is double the length of the other 
the long piece will have a force constant of �  (1999)

(A) 2/3 k 	 (B) 3/2 k	 (C) 3k	 (D) 6k

Q.7 A particle free to move along the x – axis has porential 
energy by U(x) 2k[1 exp( x )] for x= − − − ∞≤ ≤+∞  Where 
k is a positive constant of appropriate dimensions. Then 
� (1999)

(A) At points away from the origin, the particle is in 
unstable equilibrium

(B) For any finite non-zero value of x, there is a force 
directed away from the origin

(C) If its total mechanical energy is k/2, it has its 
minimum kinetic energy at the origin

(D) For small displacements from x=0, the motion is 
simple harmonic

Q.8 The period of oscillation of simple pendulum of 
length L suspended from the roof of the vehicle which 
moves without friction, down an inclined plane of 
inclination α, is given by� (2000)

(A) L2
gcos

π
α

	 (B) L2
gsin

π
α

(C) L2
g

π 	 (D) 
L2

gtan
π

α

Q.9 A particle executes simple harmonic motion 
between x= -A and x= + A. The time taken for it to go 
from O to A/2 is T1 and to go from A/2 to A is T2, then
� (2001)

(A) 1 2T T< 	 (B) 1 2T T> 	

(C) 1 2T T= 	 (D) 1 2T 2T=
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Q.10 For a particle executing SHM the displacement 
x is given by x=A cos tω . Identify the graph which 
represents the variation of potential energy (PE) as a 
function of time t and displacement.� (2003)

PE
l ll

t
x

lll
lV

PE

(A) I, III	 (B) II, IV	 (C) II, III	 (D) I, IV

Q.11 A block P of mass m is placed on a horizontal 
frictionless plane. A second block of same mass m is 
placed on it and is connected to a spring of spring 
constant k, the two blocks are pulled by a distance 
A. Block Q oscillates without slipping. What is the 
maximum value of frictional force between the two 
blocks?� (2004)

k
Q

P

�a

(A) kA	 (B) kA 

(C) s mgµ  	 (D) Zero

Q.12 A simple pendulum has time period 1T . The point 
of suspension is now moved upward according to the 
relation 2 2y kt ,(k 1m / s )= =  where y is the vertical 
displacement.

The time period now beomes T2.2
2

21
2

2

The time period now beomesT .

T
The ratio of is (Take g 10m / s )

T
= � (2005)

(A) 6/5	 (B) 5/6	 (C) 1	 (D) 4/5

Q.13 The x-t graph of a particle undergoing simple 
harmonic motion is shown below. The acceleration of 
the particle at t=4/3 s is � (2009)

1

0

-1

4 8 12 t(s)

x

(cm)

(A) 2 23 cms
32

−π 	 (B) 
2

2cms
32

−−π 	

(C) 
2

2cms
32

−π 	 (D) 2 23 cms
32

−− π

Q.14 A uniform rod of length L and mass M is pivoted 
at the center. Its two ends are attached to two springs 
of equal spring constants k. The spring are fixed to rigid 
supports as shown in the Fig, and rod is free to oscillate 
in the horizontal plane. The rod is gently pushed 
through a small angle θ in one direction and released. 
The frequency of oscillation is � (2009) 

(A) 1 2k
2 Mπ

	 (B) 1 k
2 Mπ

(C) 1 6k
2 Mπ

 	 (D) 1 24k
2 Mπ

Q.15 The mass M shown in the figure oscillates in simple 
harmonic motion with amplitude A. The amplitude of 
the point P is� (2009)

k1

m

k2P

(A) 1

2

k A
k

 	 (B) 2

1

k A
k

	

(C) 1

1 2

k A
k k+

	 (D) 2

1 2

k A
k k+

Q.16 A wooden block performs SHM on a frictionless 
surface with frequency 0v . The block carries a charge 
+Q on its surface. If now a uniform electric field E



 is 
switched-on as shown, then the SHM of the block will 
be� (2011)

+Q

E
�

(A) Of the same frequency and with shifted mean 
position
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(B) Of the same frequency and with the same mean 
position

(C) Of changed frequency and with shifted mean 
position

(D) Of changed frequency and with the same mean 
position

Q.17 A point mass is subjected to two simultaneous 

sinusoidal 32A,
4
π displacements in x-direction

1 2
2x (t) A sin t and x (t) A sin t
3

 π
= ω = ω + 

 
.

 Adding a third sinusoidal displacement  

3x (t) Bsin( t )= ω +φ  brings the mass to a complete rest. 
The values of B and φ  are � (2011)

(A) 
6A,
3
π

	 (B) 4A,
3
π

(C) 53A,
6
π 	 (D) A,

3
π

Q.18 If a simple pendulum has significant amplitude (up 
to a factor of 1/e of original) only in the period between 
t = Os to t s=τ , then τ  may be called the average 
life of the pendulum. When the spherical bob of the 
pendulum suffers a retardation (due to viscous drag) 
proportional to its velocity, with ‘ b’ as the constant of 
proportionality, the average life time of the pendulum 
is (assuming damping is small) in seconds:� (2012)

mg

�

v
�

mbv

(A) 0.693
b

	 (B) b	

(C) 1
b

	 (D) 2
b

Q.19 The amplitude of a damped oscillator decreases 
to0.9 times its original magnitude is 5s. In another 10s it 
will decrease to α  times its original magnitude, where 
α  equals.	� (2013)

(A) 0.81 	 (B) 0.729 	 (C) 0.6 	 (D) 0.7

Q.20 For a simple pendulum, a graph is plotted 
between its kinetic energy (KE) and potential energy 
(PE) against its displacement d. Which one of the 
following represents these correctly? 

(Graphs are schematic and not drawn to scale)� (2015)

Q.21 A particle performs simple harmonic motion with 
amplitude A. Its speed is trebled at the instant that it is 

at a distance 2A
3

 from equilibrium position. The new 

amplitude of the motion is: � (2016)

(A) 3 A	 (B) A 3 	

(C) 7A
3

	 (D) A 41
3
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Exercise 1 

Q.1 A body is in SHM with period T when oscillated 
from a freely suspended spring. If this spring is cut in 
two parts of length ratio 1:3 & again oscillated from the 
two parts separately, then the periods are T1 & T2 then 
find T1/T2.

Q.2 A body undergoing SHM about the origin has its 
equation is given by x 0.2cos5 t .= π Find its average 
speed from t 0 to t 0.7= = sec.

Q.3 Two particles A and B execute SHM along the same 
line with the same amplitude a, same frequency and 
same equilibrium position O. If the phase difference 
between them is 12sin (0.9)−φ = , then find the 
maximum distance between the two.

Q.4 The acceleration-displacement (a x)−  graph of a 
particle executing simple harmonic motion is shown in 
the figure. Find the frequency of oscillation.

a

O
-�

�

�
-� x

Q.5 A point particle of mass 0.1kg is executing SHM 
with amplitude of 0.1m. When the particle passes 
through the mean position, its K.E. is 38 10 J.−×  Obtain 
the equation of motion of this particle if the initial 
phase of oscillation is 45° .

Q.6 One end of an ideal spring is fixed to a wall at origin 
O and the axis of spring is parallel to x-axis. A block 
of mass m=1 kg is attached to free end of the spring 
and it is performing SHM. Equation of position of block 
in coordinate system shown is x 10 3sin10t= + , is in 
second and x in cm. Another block of mass M=3kg, 
moving towards the origin with velocity 30cm/s collides 
with the block performing SHM at t=0 and gets stuck 
to it, calculate:

1kg 3kg

(i) New amplitude of oscillations.

(ii) New equation for position of the combined body.

(iii) Loss of energy during collision. Neglect friction.

Q.7 A mass M is in static equilibrium on a massless 
vertical spring as shown in the figure. A ball of mass m 
dropped from certain height sticks to the mass M after 
colliding with it. The oscillations they perform reach to 
height ‘a’ above the original level of scales & depth ‘b’ 
below it.

M

b

a

(a) Find the constant of force of the spring;

(b) Find the oscillation frequency.

(c) What is the height above the initial level from which 
the mass m was dropped?

Q.8 Two identical balls A and B each of mass 0.1 kg 
are attached to two identical massless springs. The 
spring mass system is constrained to move inside a 
rigid smooth pipe in the form of a circle as in figure. 
The pipe is fixed in a horizontal plane. The centers 
of the ball can move in a circle of radius 0.06m. Each 
spring has a natural length 0.06 mπ and force constant 
0.1N/m. Initially both the balls are displaced by an 
angle of / 6θ = π radian with respect to diameter PQ of 
the circle and released from rest

A

P
�/6�/6

O

B

Q
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(a) Calculate the frequency of oscillation of the ball B.

(b) What is the total energy of the system?

(c) Find the speed of the ball A when A and B are at the 
two ends of the diameter PQ. 

Q.9 Two blocks A(2kg) and B(3kg) rest up on a smooth 
horizontal surface are connected by a spring of stiffness 
120 N/m. Initially the spring is unreformed. A is imparted 
a velocity of 2m/s along the line of the spring away 
from B. Find the displacement of A, t seconds later. 

3kg 2kg

B A
2m/s

Q.10 A force F 10x 2= + acts on a particle of mass  
0.1 kg, where ‘k’ is in m and F in newton. If it is released 
from rest at x 0.2m= , find :

(a) Amplitude; (b) time period; (c) equation of motion.

Q.11 Potential Energy (U) of a body of unit mass moving 
in one-dimension conservative force field is given by, 

2U (x 4x 3)= − + . All units are in S.I.

(i) Find the equilibrium position of the body.

(ii) Show that oscillations of the body about this 
equilibrium position are simple harmonic motion & 
find its time period.

(iii) Find the amplitude of oscillations if speed of the 
body at equilibrium position is 2√6 m/s.

Q.12 A body is executing SHM under the action of 
force whose maximum magnitude is 50N. Find the 
magnitude of force acting on the particle at the time 
when its energy is half kinetic and half potential.

Q.13 The system shown in the figure can move on a 
smooth surface. The spring is initially compressed by 
6cm and then released. Find 

6kg
k=800N/m

3kg

(a) Time period

(b) Amplitude of 3kg block

(c) Maximum momentum of 6kg block 

Q.14 The resulting amplitude A’ and the phase of the 
vibrations δ

( )

( )

A AS Acos( t) cos t cos t
2 2 4

A 3cos t A'cos t
8 2

 π
= ω + ω + + ω + π 

 
 π

+ ω + = ω + δ 
 

are ____________ and ___________ respectively.

Q.15 A spring block (force constant k=1000N/m and 
mass m=4kg) system is suspended from the ceiling 
of an elevator such that block is initially at rest. The 
elevator begins to move upwards at t=0. Acceleration 
time graph of the elevator is shown in the figure. Draw 
the displacement x (from its initial position taking 
upwards as positive) vs time graph of the block with 
respect to the elevator starting from t=0 to t=1 sec. 
Take 2 10.π =

a
5

(m/s )
2

0.6

t(sec)

a

k

m

k=100 n/m

m=4kg

Q.16 A particle of mass m moves in the potential energy 
U shown below. Find the period of the motion when the 
particle has total energy E. 

U(X)

U=
1
2

kx
2

,x<0

U=mgx, x>0

X

Q.17 The motion of a particle is described by x=30 
sin( t / 6)π + π , where x is in cm and t in sec. Potential 
energy of the particle is twice of kinetic energy for 
the first time after t=0 when the particle is at position 
___________ after ________ time.

Q.18 Two blocks A (5kg) and B (2kg) attached to the 
ends of a spring constant 1120N/m are placed on a 
smooth horizontal plane with the spring undeformed. 
Simultaneously velocities of 3m/s and 10m/s along the 
line of the spring in the same direction are imparted to 
A and B then 
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B5 2

10m/s3m/s

A

(a) Find the maximum extension of the spring.

(b) When does the first maximum compression occurs 
after start.

Q.19 Two identical rods each of mass m and 
length L, are rigidly joined and then suspended 
in a vertical plane so as to oscillate freely about 
an axis normal to the plane of paper passing 
through ‘S’ (point of suspension). Find the time 
period of such small oscillations.

Q.20 (a) Find the time period of oscillations of a 
torsional pendulum, if the torsional constant of the wire 
is 2K 10 J / rad= π . The moment of inertia of rigid body 
is 10kg- 2m about the axis of rotation.

(b) A simple pendulum of length l 0.5m=  is hanging 
from ceiling of a car. The car is kept 
on a horizontal plane The car starts 
accelerating on the horizontal road 
with acceleration of 25m / s . Find 
the time period of oscillations of the 
pendulum for small amplitudes about 
the mean position.

Q.21 An object of mass 0.2kg executes SHM along 
the x-axis with frequency of (25 / )Hzπ . At the point 
x 0.04m= the object has KE 0.5 J and PE 0.4 J. The 
amplitude of oscillation is ____________.

Q.22 A body of mass 1kg is suspended from a 
weightless spring having force constant 600N/m. 
Another body of mass 0.5 kg moving vertically upwards 
hits the suspended body with a velocity of 3.0m/s and 
get embedded in it. Find the frequency of oscillations 
and amplitude of motion.

Q.23 A body A of mass 1m 1kg=  and a body B of mass 
m2 = 4kg are attached to the ends of a spring. The 
body a performs vertical simple harmonic oscillations 
of amplitude a=1.6 cm and angular frequency 25ω =
rad/s. Neglecting the mass of the spring determine 
the maximum and minimum values of force the 
system exerts on the surface on which it rests. [Take

2g 10m / s= ]

Q.24 A spring mass system is hanging from the ceiling 
of an elevator in equilibrium Elongation of spring is l .  
The elevator suddenly starts accelerating downwards 
with accelerating g / 3 find

(a) The frequency and

(b) The amplitude of the resulting SHM.

Exercise 2 

Single Correct Choice Type

Q.1 A particle executes SHM on a straight line path. The 
amplitude of oscillation is 2 cm. When the displacement 
of the particle from the mean position is 1 cm, the 
numerical value of magnitude of acceleration is equal 
to the numerical value of magnitude of velocity. The 
frequency of SHM 1(in second )− is:

(A) 2 3π  	 (B) 2

3

π  	 (C) 3
2π

 	 (D) 1

2 3π

Q.2 A particle executed SHM with time period T and 
amplitude A. The maximum possible average velocity 

in time T
4

is

(A) 2A
T

 	 (B) 4A
T

 	 (C) 8A
T

 	 (D) 4 2A
T

Q.3 A particle performs SHM with a period T and 
amplitude a. The mean velocity of the particle over the 
time interval during which it travels a distance a/2 from 
the extreme position is 

(A) a/T	 (B) 2a/T 	 (C) 3a/T 	 (D) a/2T

Q.4 Two particles are in SHM on same straight line with 
amplitude A and 2A and with same angular frequency
ω . It is observed that when first particle is at a distance 

A / 2 from origin and going toward mean position, 
other particle is at extreme position on other side of 
mean position. Find phase difference between the two 
particles

(A) 45°  	 (B) 90°  (C) 135°  	 (D) 180°

Q.5 A body performs simple harmonic oscillations 
along the straight line ABCDE with C as the midpoint of 
AE. Its kinetic energies at B and D are each one fourth 
of its maximum value. If AE=2R, the distance between 
B and D is

k

A

B

S
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A B C D E

(A) 3R
2

	 (B) R

2
 

(C) 3R  	 (D) 2R

Q.6 In an elevator, a spring clock of time period sT (mass 
attached to a spring) and a pendulum clock of time 
period pT  are kept. If the elevator accelerates upwards

(A) sT  well as pT increases 

(B) sT  remain same, pT  increases

(C) sT  remains same, pT  decreases 

(D) sT  as well as pT  decreases

Q.7 Two bodies P & Q of equal mass are suspended 
from two separate massless springs of force constants 
k1 and k2 respectively. If the maximum velocities of them 
are equal during their motion, the ratio of amplitude of 
P to Q is:

(A) 1

2

k
k

 	 (B) 2

1

k
k

 

(C) 2

1

k
k

 	 (D) 1

2

k
k

Q.8 The spring in figure. A and B are identical but 
length in A is three times each of that in B. the ratio of 
period TA/TB is

A B

m
m

(A)√3 	 (B) 1/3 	 (C) 3 	 (D) 1/√3

Q.9 In the figure the block of mass m, attached to the 
spring of stiffness k is in contact with the completely 
elastic wall, and the compression in the spring is ‘e’. The 
spring is compressed further by ‘e’ by displacing the 
block towards left and is then released. If the collision 
between the block and the wall is completely elastic 
then the time period of oscillations of the block will be:

Wall

m

(A) 2 m
3 k
π  	 (B) m2

k
π  

(C) m
3 k
π  	 (D) m

6 k
π

Q.10 A 2 kg block moving with 10 m/s strikes a spring 
of constant 2π N/m attached to 2 Kg block at rest kept 
on a smooth floor. The time for which rear moving 
block remain in contact with spring will be

(A) 2 sec  	 (B) 1 sec
2

(C) 1sec 	 (D) 1 sec
2

Q.11 In the above question, the velocity of the rear 2 kg 
block after it separates from the spring will be:

(A) 0 m/s 	 (B) 5 m/s 

(C) 10 m/s 	 (D) 7.5 m/s

Q.12 A rod whose ends are A & B of length 25 cm is 
hanged in vertical plane. When hanged from point A 
and point B the time periods calculated are 3 sec & 
4 sec respectively. Given the moment of inertia of rod 
about axis perpendicular to the rod is in ratio 9:4 at 
points A and B. Find the distance of the center of mass 
from point A.

(A) 9 cm 	 (B) 5 cm 	 (C) 25 cm 	 (D) 20 cm

Q. 13 A circular disc has a tiny hole in it, at a distance 
z from its center. Its mass is M and radius R (R > z). A 
horizontal shaft is passed through the hole and held 
fixed so that the disc can freely swing in the vertical 
plane. For small disturbance, the disc performs SHM 
whose time period is the minimum for z = 

(A) R/2 	 (B) R/3 

(C) R / 2  	 (D) R / 3
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Multiple Correct Choice Type

Q.14 The displacement-time graph of a particle 
executing SHM is shown which of the following 
statement is/are true?

y

O T/4 T/2 3/4 T t

(A) The velocity is maximum at t=T/2

(B) The acceleration is maximum at t=T

(C) The force is zero at t= 3T/4

(D) The potential energy equals the oscillation energy 
at t=T/2. 

Q.15 The amplitude of a particle executing SHM about 
O is 10 cm. Then:

(A) When the K.E. is 0.64 of its max. K.E. its displacement 
is 6cm from O.

(B) When the displacement is 5cm from O its K.E.is 0.75 
of its max. P.E.

(C) Its total energy at any point is equal to its maximum 
K.E.

(D) Its velocity is half the maximum velocity when its 
displacement is half the maximum displacement.

Q.16 A particle of mass m performs SHM along a 
straight line with frequency f and amplitude A.

(A) The average kinetic energy of the particle is zero.

(B) The average potential energy is 2m 2f2Aπ .

(C) The frequency of oscillation of kinetic energy is 2f.

(D) Velocity function leads acceleration by / 2π

Q.17 A system is oscillating with undamped simple 
harmonic motion. Then the 

(A) Average total energy per cycle of the motion is its 
maximum kinetic energy.

(B) Average total energy per cycle of the motion is 1

2times its maximum kinetic energy.

(C) Root means square velocity 1

2
times its maximum 

velocity.

(D) Mean velocity is 1
2

 of maximum velocity.

Q.18 A spring has natural length 40 cm and spring 
constant 500 N/m. A block of mass 1 kg is attached 
at one end of the spring and other end of the spring 
is attached to ceiling. The block released from the 
position, where the spring has length 45cm.

(A) The block will performs SHM of amplitude 5 cm.

(B) The block will have maximum velocity 30 5 cm / sec .

(C) The block will have maximum acceleration 215m / s

(D) The minimum potential energy of the spring will be 
zero.

Q.19 The figure shows a graph between velocity 
and displacement (from mean position) of a particle 
performing SHM:

v(in cm/s)

10
2.5

x
(in cm)

(A) The time period of the particle is 1.57s

(B) The maximum acceleration will be 240cm / s

(C) The velocity of particle is 2 21cm / s when it is at a 
distance 1 cm from the mean position.

(D) None of these

Q.20 Two blocks of masses 3 kg and 6 kg rest on a 
horizontal smooth surface. The 3 kg block is attached 
to A Spring with a force constant

m

3kg
2m

Equilibrium

position

6kg

1k 900Nm−= Which is compressed 2 m from beyond 
the equilibrium position. The 6 kg mass is at rest at 1m 
from mean position 3kg mass strikes the 6kg mass and 
the two stick together.

(A) Velocity of the combined masses immediately after 
the collision is 110ms−
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(B) Velocity of the combined masses immediately after 
the collision is 15ms−

(C) Amplitude of the resulting oscillations is 2m

(D) Amplitude of the resulting oscillation is 5 m
2

.

Q.21 A particle is executing SHM with amplitude A. 
time period T, maximum acceleration a0 and maximum 
velocity 0.v . Its starts from mean position at t-0 and at 
time t, it has the displacement A/2, acceleration a and 
velocity v then

(A) t=T/12	 (B) 0a a / 2= 	

(C) 0v v / 2= 	 (D) t=T/8

Q.22 For a particle executing SHM, x=displacement 
from equilibrium position, v= velocity at any instant 
and a = acceleration at any instant, then

(A) v-x graph is a circle	

(B) v-x graph is an ellipse

(C) a-x graph is a straight line	

(D) a-v graph is an ellipse

Q.23 A particle starts from a point P at a distance of 
A/2 from the mean position O & travels towards left as 
shown in the figure. If the time period of SHM, executed 
about O is T and amplitude A then the equation of 
motion of particle is: 

A/2

PO

A

(A) 2x Asin t
T 6

 π π
= + 

 
	 (B) 2 5x Asin t

T 6
 π π

= + 
 

 

(C) 2x Acos t
T 6

 π π
= + 

 
	 (D) 2x Acos t

T 3
 π π

= + 
 

Q.24 Two particles execute SHM with amplitude A and 
2A and angular frequency ω  and 2ω  respectively. At 
t=0 they starts with some initial phase difference. At,  

t= difference is: 2
3
π
ω

. They are in same phase. Their 
initial phase

(A) 
3
π  	 (B) 2

3
π  	 (C) 4

3
π  	 (D) π

Q.25 A mass of 0.2 kg is attached to the lower end of a 
massless spring of force-constant 200 N/m, the upper 
end of which is fixed to a rigid support. Which of the 
following statements is/are true?

(A) In equilibrium, the spring will be stretched by 1cm.

(B) If the mass is raised till the spring is in not stretched 
state and then released, it will go down by 2 cm before 
moving upwards.

(C) The frequency of oscillation will be nearly 5 Hz.

(D) If the system is taken to moon, the frequency of 
oscillation will be the same as on the earth.

Q.26 The potential energy of particle of mass 0.1kg, 
moving along x-axis, is given by U=5x(x-4)J where x is 
in meters. It can be concluded that

(A) The particle is acted upon by a constant force.

(B) The speed of the particle is maximum at x=2m

(C) The particle executes simple harmonic motion

(D) The period of oscillation of the particle is π /5 s

Q.27 The displacement of a particle varies according 
to the relation x=3 sin 100t + 2cos  50t. Which of the 
following is/are correct about this motion.

(A) The motion of the particle is not SHM

(B) The amplitude of the SHM of the particle is 5 units

(C) The amplitude of the resultant SHM is 73  units.

(D) The maximum displacement of the particle from the 
origin is 9 units.

Q.28 The equation of motion for an oscillating particle 
is given by x=3sin (4πt) + 4cos (4πt), where x is in mm 
and t is in second

(A) The motion is simple harmonic	

(B) The period of oscillation is 0.5 s

(C) The amplitude of oscillation is 5 mm

(D) The particle starts its motion from the equilibrium

Q.29 A linear harmonic oscillator of force constant 
6 12x10 Nm−  and amplitude 0.01 m has a total 

mechanical energy of 160 J. Its

(A) Maximum potential energy is 100 J	

(B) Maximum kinetic energy is 100 J

(C) Maximum potential energy is 160	

(D) Minimum potential energy is zero.
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Q.30 The two blocks shown here rest on a frictionless 
surface. If they are pulled apart by a small distance and 
released at t=0, the time when

K=24N/m
1kg 2kg

1 kg block comes to rest can be

2(A) sec
3
π 	 (B) π sec. 

(C) sec
2
π  	 (D) sec

9
π

Assertion Reasoning Type

Q.31 Statement-I: A particle is moving along x-axis. 
The resultant force F acting on it at position x is given 
by F=-ax-b. Where a and b are both positive constants. 
The motion of this particle is not SHM.

Statement-II: In SHM restoring force must be 
proportional to the displacement from mean position.

(A) Statement-I is true, statement-II is true and 
statement-II is correct explanation for statement-I

(B) Statement-I is true, statement-II is true and statement-
II is NOT the correct explanation for statement-I

(C) Statement-I is true, statement-II is false.

(D) Statement-I is false, statement-II is true.

Q.32 Statement-I: For a particle performing SHM, 
its speed decreases as it goes away from the mean 
position.

Statement-II: In SHM, the acceleration is always 
opposite to the velocity of the particle.

(A) Statement-I is true, statement-II is true and 
statement-II is correct explanation for statement-I.	

(B) Statement-I is true, statement-II is true and Statement-
II is NOT the correct explanation for statement-I

(C) Statement-I is true, statement-II is false.

(D) Statement-I is false, statement-II is true.

Q.33 Statement-I: Motion of a ball bouncing elastically 
in vertical direction on a smooth horizontal floor is a 
periodic motion but not an SHM.

Statement-II: Motion is SHM when restoring force is 
proportional to displacement from mean position.

(A) Statement-I is true, statement-II is true and 
statement-II is correct explanation for statement-I

(B) Statement-I is true, statement-II is true and  
statement-II is NOT the correct explanation for 
statement-I

(C) Statement-I is true, statement-II is false.

(D) Statement-I is false, statement-II is true

Q.34 Statement-I: A particle, simultaneously subjected 
to two simple harmonic motions of same frequency 
and same amplitude, will perform SHM only if two 
SHM’s are in the same direction

Statement-II: A particle, simultaneously subjected 
to two simple harmonic motions of same frequency 
and same amplitude, perpendicular to each other the 
particle can be in uniform circular motion.

(A) Statement-I is true, statement-II is true and 
statement-II is correct explanation for statement-I

(B) Statement-I is true, statement-II is true and 
statement-II is NOT the correct explanation for 
statement-I.

(C) Statement-I is true, statement-II is false.

(D) Statement-I is false, statement-II is true.

Q.35 Statement-I: In case of oscillatory motion the 
average speed for any time interval is always greater 
than or equal to its average velocity.

Statement-II: Distance travelled by a particle cannot 
be less than its displacement.

(A) Statement-I is true, statement-II is true and 
statement-II is correct explanation for statement-I

(B) Statement-I is true. statement-II is true and statement-
II is NOT the correct explanation for statement-I.

(C) Statement-I is true, statement-II is false.

(D) Statement-I is false, statement-II is true.

Comprehension Type

Paragraph 1: When force acting on the particle is of 
nature F kx= − , motion of particle is SHM, Velocity at 
extreme is zero while at mean position it is maximum. In 
case of acceleration situation is just reverse. Maximum 
displacement of particle from mean position on both 
sides is same and is known as amplitude. Refer to figure 
One kg block performs vertical harmonic oscillations 
with amplitude 1.6 cm and frequency 25 rad 1s− .
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1 Kg

4.10 kg

Q.36 The maximum value of the force that the system 
exerts on the surface is

(A) 20 N 	 (B) 30 N 	 (C) 40 N 	 D) 60 N

Q.37 The minimum force is

(A) 20 N	 (B) 30 N 	 (C) 40 N 	 (D) 60 N

Paragraph 2: The graphs in figure show that a quantity 
y varies with displacement d in a system undergoing 
simple harmonic motion.

y y

O d O d

y

O d

y

O d

(A) (B)

(C) (D)

Which graphs best represents the relationship obtained 
when Y is

Q. 38 The total energy of the system

(A) I	 (B) II 	 (C) III	 (D) IV

Q.39 The time

(A) I	 (B) II 	 (C) III	 (D) IV

Q.40 The unbalanced force acting on the system

(A) I	 (B) II	 (C) III	 (D) None

Match the Columns

Q.41 The graph plotted between phase angle ( )φ  and 
displacement of a particle from equilibrium position 
(y) is a sinusoidal curve as shown below. Then the best 
matching is 

O �/2

� �3 /2 2�

P �t

Column A Column B

(a) K.E. versus 
phase angle 
curve (i) 

�tO �/2 � 3 /2�

2�

(b) P.E. versus 
phase angle 
curve (ii) 

�tO �/2 � 3 /2�

2�

(c) T.E. versus 
phase angle 
curve (iii) 

�tO

(d) Velocity 
versus phase 
angle curve

(iv) 
�/2

�

3 /2� �t

�/2

(A) (a)-(i), (b)-(ii), (c)-(iii) & (d)-(iv) 

(B) (a)-(ii), (b)-(i), (c)-(iii) & (d)-(iv)

(C) (a)-(ii), (b)-(i), (c)-(iv) & (d) – (iii) 

(D) (a)-(ii), (b)-(iii), (c)-(iv) & (d)-(i)

Q.42 Column I is a list of possible set of parameters 
measured in some experiments. The variations of the 
parameters in the form of graphs are shown in Column 
II. Match the set of parameters given in Column I with 
the graphs given in Column II. Indicate your answer by 
darkening the appropriate bubbles of the 4 x 4 matrix 
given in the ORS. 
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Column I Column II

(A) Potential energy of 
a simple pendulum (y 
axis) as a function of 
displacement (x axis)

(p) 

y

O x

(B) Displacement (y axis) 
as a function of time (x 
axis) for a one dimensional 
motion at zero or constant 
acceleration when the 
body is moving along the 
positive x-direction.

(q) 

y

xO

(C) Range of projectile 
(y axis) as a function of 
its velocity (x axis) when 
projected at a fixed angle. (r) 

y

xO

(D) The square of the time 
period (y axis) of a simple 
pendulum as a function of 
its length (x axis) (s) 

y

xO

Previous Years’ Questions

Paragraph 1: When a particle of mass m moves on the 
x-axis in a potential of the form ( ) 2V x kx= , it performs 
simple harmonic motion. The corresponding time 

period is proportional to m
k

, as can be seen easily 

using dimensional analysis. However, the motion of a 

particle can be periodic even when its potential energy 
increases on both sides of x 0= in a way different 
from 2kx and its total energy is such that the particle 
does not escape to infinity. Consider a particle of 

mass m moving on the x-axis. Its potential energy is

( ) ( )2v x x 0 for x= α α > near the origin and becomes 

a constant equal to 0 0V for x X≥  (see figure below) 
� (2010) 

V(x)

V0

Xn

Q.1 If the total energy of the particle is E, it will perform 
periodic motion only if

(A) E< 0 	 (B) E>0

(C) 0V >E>0 	 (D) E> 0V

Q.2 For periodic motion of small amplitude A, the time 
period t of this particle is proportional to

(A) mA
α

 	 (B) 1 m
A α

 

(C) A
m
α  	 (D) 1

A m
α

Q.3 The acceleration of this particle for x > 0X is

(A) Proportional to 0V

(B) Proportional to 0

0

V
mX

	

(C) Proportional to 0

0

V
mX

(D) Zero

Q.4 A small block is connected to one end of a massless 
spring of un-stretched length 4.9 m. The other end of 
the spring (see the figure) is fixed. The system lies on a 
horizontal frictionless surface. The block is stretched by 
0.2 m and released from rest at t = 0. It then executes 
simple harmonic motion with angular frequency 

3
π

ω = rad/s. Simultaneously at t = 0, a small pebble 

is projected with speed v form point P at an angle of 
45°  as shown in the figure. Point P is at a horizontal 
distance of 10 m from O. If the pebble hits the block at 
t = 1 s, the value of v is (take g = 10 m/s2)� (2012)

z

45
o

v

P
xO

10m

(A) 50 m / s 	 (B) 51 m / s

(C) 52 m / s 	 (D) 53 m / s
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Q.5 A particle of mass m is attached to one end 
of a mass-less spring of force constant k, lying on a 
frictionless horizontal plane. The other end of the 
spring is fixed. The particle starts moving horizontally 
from its equilibrium position at time t = 0 with an initial 
velocity 0u . When the speed of the particle is 0.5 0u . It 
collides elastically with a rigid wall. After this collision,
� (2013)

(A) The speed of the particle when it returns to its 
equilibrium position is 0u

(B) The time at which the particle passes through the 

equilibrium position for the first time is mt
k

= π .

(C) The time at which the maximum compression of the 

spring occurs is 4 mt
3 k
π

=

(D) The time at which the particle passes through the 

equilibrium position for the second time is 5 mt
3 k
π

=

Q.6 Two independent harmonic oscillators of equal 
mass are oscillating about the origin with angular 
frequencies 1ω  and 2ω  and have total energies 1E  
and 2E , respectively. The variations of their momenta p 

with positions x are shown in the figures. If 2a n
b
=  and 

a n
R
= , then the correct equation(s) is(are)� (2015)

P

Energy=E1

b

a
x

P

x

Energy=E2

R

(A) 1 1 2 2E Eω = ω 	 (B) 22

1
n

ω
=

ω

(C) 2
1 2 nω ω = 	 (D) 1 2

1 2

E E
=

ω ω

Q.7 A block with mass M is connected by a massless 
spring with stiffness constant k to a rigid wall and moves 
without friction on a horizontal surface. The block 
oscillates with small amplitude A about an equilibrium 
position 0x . Consider two cases: (i) when the block is at 

0x ; and (ii) when the block is at 0x x A= + . In both the 
cases, a particle with mass m (< M) is softly placed on 
the block after which they stick to each other. Which of 
the following statement(s) is (are) true about the motion 
after the mass m is placed on the mass M?� (2016)

(A) The amplitude of oscillation in the first case changes 

by a factor of M
m M+

, whereas in the second case it 

remains unchanged

(B) The final time period of oscillation in both the cases 
is same

(C) The total energy decreases in both the cases

(D) The instantaneous speed at 0x  of the combined 
masses decreases in both the cases

Q.8 Column I describes some situations in which a small 
object moves. Column II describes some characteristics 
of these motions. Match the situations in column I with 
the characteristics in column II.� (2007)

Column I Column II

(A) The object moves on the 
x-axis under a conservative 
force in such a way that its 
speed and position satisfy

1 2 2v c c x= − , where 1c and 

2c are positive constants.

(p) The object 
executes a simple 
harmonic motion.

(B) The object moves on the 
x-axis in such a way that its 
velocity and its displacement 
from the origin satisfy v kx= − , 
where k is a positive constant.

(q) The object does 
not change its 
direction.

(C) The object is attached to 
one end of a mass-less spring 
of a given spring constant. 
The other end of the spring is 
attached to the ceiling of an 
elevator. Initially everything 
is at rest. The elevator starts 
going upwards with a constant 
accelerationα . The motion of 
the object is observed from the 
elevator during the period it 
maintain this acceleration.

(r) The kinetic energy 
of the object keeps on 
decreasing.

(D) The object is projected from 
the earth’s surface vertically 

upwards with a speed e

e

GM
2

R
,
  

where eM is the mass of the 
earth and eR is the radius of 
the earth. Neglect forces from 
objects other than the earth.

(s) The object can 
change its direction 
only once.
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Q.9 A linear harmonic oscillator or force constant 
62 10×  N/m and amplitude 0.01m has a total 

mechanical energy of 160 J. Its � (1989)

(A) Maximum potential energy is 100 J
(B) Maximum kinetic energy is 100J
(C) Maximum potential energy is 160J
(D) Maximum potential energy is zero

Q.10 Three simple harmonic motions in the same 
direction having the same amplitude and same period 
are superposed. If each differ in phase from the next by 
45° , then � (1999)

(A) The resultant amplitude is ( )1 2 a+

(B) The phase of the resultant motion relative to the 
first is 90°

(C) The energy associated with the resulting motion is 

( )3 2 2+  times the energy associated with any single 

motion

(D) The resulting motion is not simple harmonic

Q.11 Function x = A sin2 wt + B cos2 wt + C sin wtcos wt 
represent SHM� (2006)

(A) For any value of A, B and C (except C=0)

(B) If A=-B, C=2B, amplitude= B 2

(C) If A=B; C=0

(D) If A=B; C=2B, amplitude= B

Q.12 A metal rod of length L and mass m is pivoted 
at one end. A thin disk of mass M and radius R ( )L<
is attached at its center to the free end of the rod. 
Consider two ways the disc is free to rotate about its 
center. The rod-disc system performs SHM in vertical 
plane after being released from the same displaced 
position. Which of the following statement(s) is/are 
true? �  (2011)

(A) Restoring torque in case A=Restoring torque in  
case B
(B) Restoring torque in case A<Restoring torque in  
case B
(C) Angular frequency for case A>Angular frequency 
for case B
(D) Angular frequency for case A<, angular frequency 
for case B
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Answer Key

JEE Main/Boards

Exercise 1 

Q.1 0.5 rad 		  Q.2 1.048 s 		  Q.3 0.61 rad 	

Q.4 0.5s		  Q.5 0.71 a 		  Q.6 7.56J 	

Q.7 0.35 1ms−  , 0.06 J	 Q.8 1.5J 		  Q.9 86.4s 	

Q.10 141 .4° ’ 		  Q.11 0.612 1s− 		

Q.18 (a) 2 ty 2sin (b)y 3cos t
3 3 30

   π π π
= + =   

   
 		  Q.19 2 / 3radπ

Q.20 (a) 6m (b) 148.99ms−− 	 Q.21 19.67m		  Q.22 4.86s; 5.06m	  

Q.23 2 3cm;2 2cm 	 Q.24 0.1875 J; 0.0625 J, 0.25J	 Q.25 3.2 Hz

Q.26 ( )
( )

( ) ( ){ }

1/2

1 2 3 4

1 2 3 4 1 2

k k k k1
2 k k k k k k m

 +
 
 π + × + + 

Exercise 2 

Single Correct Choice Type

Q.1 A	 Q.2 C	 Q.3 C	 Q.4 D	 Q.5 A	 Q.6 C

Q.7 C	 Q.8 B	 Q.9 C	 Q.10 B	 Q.11 B	 Q.12 C

Q.13 A	 Q.14 B	 Q.15 C

Previous Years’ Questions 
Q.1 C	 Q.2 B	 Q.3 D	 Q.4 B	 Q.5 A	 Q.6 B

Q.7 D	 Q.8 A	 Q.9 A	 Q.10 A	 Q.11 A	 Q.12 A

Q.13 D	 Q.14 C	 Q.15 D	 Q.16 A	 Q.17 B	 Q.18 D

Q.19 B	 Q.20 C	 Q.21 C

JEE Advanced/Boards

Exercise 1 

Q.1 1 / 3 		  Q.2 2 m/s		  Q.3 1.8a

Q.4 1
2

β
π α

		  Q.5 x = 0.1sin(4t + p / 4)
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Q.6 3cm, x 10 3sin5t; E 0.135J= − ∆ = 	  	 Q.7 (a) k ( ) ( )( )
2mg 2mgab 1K : c ,
b a b a 2 b a M m

=
− − π − +

 (b) ( ) ( )( )
2mg 2mgab 1K : c ,
b a b a 2 b a M m

=
− − π − +

Q.8 2 5 21f ;E 4 10 J; v 2 10 m / s− −= = π × = π×
π 	

Q.9 0.8t 0.12 sin10t+

Q.10 (a) 0.4 m, (b) ( ) ( )0.4m, b sec., c x 0.2 0.4cos
5
π

= − ωι (c) x = 0.2 ‒ 0.4 coswt	 Q.11 (i) 0x 2m;(ii)T 2 sec.;(iii)2 3= = π m	

Q.12 25 2N 			   Q.13 (a) ( )sec, b 6cm (c)2.40kgm / s.
10
π

Q.14 
11
23 5A tan

8

 
−  
 

		
Q.15 

0.04
x

-0.04

0.2 0.4 0.6

0.8

1.D

t(sec)

Q.16 2m / k 2 2E / mgπ + 		  Q.17 11 2 110 6cm, sin sec
3 6

−
 

−  π  
	

Q.18 (a) 25cm, (b) 3p/56 seconds		  Q.19 
17L2
18g

π 	

Q.20 (a) 2sec, (b) ( ) ( ) 1/4

2a 2sec, b T sec
5

=  		  Q.21 0.06m	

Q.22 5 3710 Hz, cm
6

π 		  Q.23 60N, 40N 	 Q.24 (a) ( ) ( )g1 1 La , b
T 2 L 3
=

π
 (b) ( ) ( )g1 1 La , b

T 2 L 3
=

π

Exercise 2 

Single Correct Choice Type

Q.1 C	 Q.2 D	 Q.3 C	 Q.4 C	 Q.5 C	 Q.6 C

Q.7 B	 Q.8 C	 Q.9 A	 Q.10 C	 Q.11 A	 Q.12 D

Q.13 C

Multiple Correct Choice Type

Q.14 B, C, D	 Q.15 A, B, C	 Q.16 B, C	 Q.17 A, C	 Q.18 B, C, D	 Q.19 A, B, C

Q.20 A, C	 Q.21 A, B	 Q.22 B, C, D	 Q.23 B, D	 Q.24 B, C	 Q.25 A, B, C, D

Q.26 B, C, D	 Q.27 B, D	 Q.28 A, B, C	 Q.29 B, C	 Q.30 A, B, C

Assertion Reasoning Type

Q.31 D	 Q.32 C	 Q.33 A	 Q.34 D	 Q.35 A

Comprehension Type

Paragraph 1:		  Q.36 D	 Q.37 C

Paragraph 2:		  Q.38 A	 Q.39 D	 Q.40 D 
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Match the Columns 

Q.41 B	 Q.42 A → p, s; B → q, r, s; C → s; D → q

Previous Years’ Questions 

Q.1 C	 Q.2 B	 Q.3 D	 Q.4 A

Q.5 A, D	 Q.6 B, D	 Q.7 A, B, D	 Q.8 A → p; B → q, r; C → p; D → r, q

Q.9 A	 Q.10 A, C	 Q.11 A, B, D	 Q.12 A, D 

Solutions

JEE Main/Boards

Exercise 1

Sol 1: y(t) = 10 sin (20t + 0.5)

A = 10 m

ω = 20 rad./sec

φ = 0.5 radians

f = w
2π

 = 20
2π

 = 10
π

 hz

T = 1
f

 = 
10
π  sec 

y

5m

2.5m
v

�=60
o

�=30
o

Sol 2: V = 2 2A yω −  

4 = 2A 9ω −

3 = 2A 16ω −

T = 2π
ω

 = 2π secω = 1 sec

t = 
360
θ
°

 × T = 60
360°

 × 2π sec

t = 
3
π  sec 

Sol 3: y = 0.4 sin (440 t + 0.61)

(i) Amplitude = 0.4 m

(ii) ω = 440 rad.sec

(iii) f = 
2
ω
π

, 220
π

 hz

(iv) T = 1
f

 = 2π
ω

 = 
220
π  sec

(v) Initial phase = 0.61 radians

Sol 4: A = 25 cm, T = 3s

y

V
30

o

30
o

25 12.5

12.5

⇒ t = 60
360

°
°

 × = 1
2

sec. 
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Sol 8: 

3.0 kg

600 Nm
-1

600 N
-1

KxKx

x

keq = 2k = 1200 Nm-1 

Total energy stored = 1
2

 kA2 

= 1
2

 × 1200 × 
2

1
2

 
 
 

 = 1.5 Joules. 

Sol 9: T = 2
g

π
 ; T ∝  1/2 

  → 0.998 l

  → (0.998)1/2 T

T → 0.999 T

Error in a day = 0.001 × (60 × 60 × 24) = 86.4 sec

Sol 10: 

1/3 A y

v

�

Phase Difference = θ = 2 cos-1 (1/3) = 141.05° 

Sol 11: Elevator moving up 

Frequency of seconds pendulum = f0= 0.5 Hz

geff = g + g
2

= 3
2

 g

f = 1
2π

 effg


 = 3
2

f0 = 3
2

 × 0.5 Hz; f = 0.61 Hz 

Sol 5: Amplitude = 0 

Total energy = 1
2

 Ka2 

Potential energy = 1
2

 Kx2 

1
2

 Kx2 = 1
2

 × 1
2

 Ka2 ⇒ x = a

2
 

Sol 6: m = 8 kg

a = 30 cm

k × 0.3 = 60 ⇒ k = 60
0.3

 = 200 n/m

T = 2π m
k

 ⇒ T = 2π 8
200

 = 2
5
π  = 0.4 p

(a) T = 0.4 π sec.

(b) a = k
m
−  x

a = 200
84
−  × 0.12 = 3m/sec2 

P.E. = 1
2

 kx2 = 1
2

 × 200 × (0.12)2 = 1.44 J

K.E. = 1
2

 k(A2 – x2) 

= 100 x (0.09 – 0.0144) = 7.56 J 

Sol 7: k = 1200 Nm-1 

2.0 cm

m=3.0 kg

(a) w = k
m

 = 1200
3

 = 20 rad/s. 

v = 2 2A xω −  = 20 4 1
100
−  = 3

5
 

v = 0.35 m/s

(b) P.E. = 1
2

 kx2 = 1
2

 × 1200 × 
2

1
100
 
 
 

 

= 600 × 1
100 100×

 

P.E. = 0.06 J 
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Sol 12: Periodic motion: A motion which repeats itself 
after equal intervals of time is called periodic motion 

eq; motion of a pendulum

Oscillatory motion: A body is said to possess oscillatory 
or vibratory motion if it moves back and forth 
repeatedly about a mean position. For an oscillatory 
motion, a restoring force is required. 

Sol 13: Simple Pendulum: A simple pendulum is a 
weight suspended from a pivot so that it can swing 
freely.

Time period = 2π 
g
  

  → length of pendulum

g → acceleration due to gravity

Frequency = f = 1
2π

 g


 

Sol 14: Refer spring mass system and ex.3 

Sol 15: Spring factory: It is a mesure of the stiffness of 
a spring

Service:-parallel :

K2K1

K1

K2

k = 1 2

1 2

k k
k k+

 k = k1 + k2

Sol 16: Phase: Phase of a vibrating particle at any 
instant is the state of the vibrating particle regarding 
it’s displacement and direction of vibration at that 
particular instant. It is denoted by φ.

Phase difference is the difference in phases of two 
vibrating particles at a given time.

y
2

1

V
�

Particle 1 lags in phase by θ.

i.e. f2 – f1 = θ 

Angular frequency:- It is frequency f multiplied by a 
numerical quantity ω. It is denoted by ω.

ω = 2 fπ  = 2
T
π  

f → frequency

T → Time period

Displacement in periodic motion: It is the displacement 
from the mean/equilibrium position. 

Sol 17: a = 
2

2

d x
dt

−  = -w2x

a = –w2xω = 2
T
π  

a = – 
2

2

4 x
T
π  x → displacement

T → time period

v = ω 2 2A x− v → velocity

A → Amplitude

x → Displacement 
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Sol 18: Figure (a) Initial phase = φ = 60° = 
3
π

y = 2 sin (wt + φ)

y = 2 sin 2 t
3 3

 π π
+ 

 
 

ω = 2
T
π  = 2

3
π  

Figure (b) initial phase = φ = 
2
π  

A = 3 cm

ω = 2
60
π  = 

30
π  

y = A sin (wt + φ)

y = 3 sin t
3 2

 π π
+ 

 
 cm 

Sol 19:
y

A
particle 1

par
tic

le
2

2�

3

V

φ = 2
3
π

Sol 20: x = 6 cos (3pt + π/3) metres

(a)	 A = 6m

(b)	 V = 2 2A xω −

w = 3π 

T = 2π
ω

= 2/3 sec.

At t = 2s particle will complete 3 orcillations

So the position will be same as at t = 0 s. 

6m

60
o

x = 6 sin (3xt + 5π/6)

x = 6 cos 60° = 6 sin 30°

x = 3cm

V

60
o

X

v = ω 2 2A x− = 3π 36 9−

v = 6 3 π 

v = –48.97 ms-1 
X

V
5 /6�

Sol 21: T = 20 s V = 5 ms-1 

⇒ θ = 2
20

 × 360° ⇒ θ = 36° 

5 = Aω cos 36°

ω = 2
20
π  = π

ω
 

5 = A 
10
π  cos 36°

A = 50
cos36π °

 = 19.68 m

Amplifide of SHM = 19.68 m

Sol 22: x = 1m v = 3 ms–1 

x = 2mv = 2 ms–1 

v = 3 = ω 2A 1−  

3 = ω 2A 1−  

2 = ω 2A 4−  
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⇒ 9
4

 = 
2

2

A 1
A 4

−

−
 ⇒ 9A2 – 36 = 4 A2 – 4

⇒ 5A2 = 32 ⇒ A = 32
5

 = 6.4  

⇒ A = 2.53 m

3 = ω 6.4 1−  

w = 3

5.4
 = 1.29 rad/s

Period of motion: T = 2π
ω

 = 4.86 s

Length of path = 2A = 5.06 m 

Sol 23: A = 4 cm

vmax = Aω 

v = maxv
2

 = A
2
ω  = 2 2Aω − ω  

A2 – x2 = 
2A

4
 

x = 3
2

 A

x = 3
2

 × 4 = 2 3 = 3.464 cm

P.E. = K.E.

⇒ P.E. = 1
2

 × 1
2

 kA2 

1
2

 kx2 = 1
4

 kA2 

x = 2 2  = 2.828 m

Sol 24: k = 50 Nm-1 

m = 1kg 

x=0.1m

w2 = k
m

 = 50
1

 = 50

ω = 5 2  rad/s

10 cm
x

v

5 cm

30
o

v = -Aω cos 30°

v = 10
100

 × 5 2  × 3
2

 ;	 v = 3
2

 

v = 0.61 ms-1 

K.E. = 1
2

 × m × v2 = 1
2

 × 1 × 3
8

 = 0.1875 J

P.E. = 1
2

 × 50 × (0.05)2 = 0.0625 J

Total energy = 1
2

 × 50 × (0.1)2 = 0.25 J

Sol 25: 

300 Nm
-1

1 kg 3 kg

For two mass system.

We take effective mass instead of mass to calculate 
frequency.

µ = 1 2

1 2

m m
m m+

 = 1 3
1 3
×
+

 = 3
4

 kg

w2 = k
µ

 = 300
3 / 4

 = 400

ω = 20 rad/sec.

f = 10
π

 Hz ≅  3.2 Hz

Sol 26: k34 = k3 + k4 

1234

1
k

 = 
1

1
k

 + 
2

1
k

 + 
34

1
k

 

= 
1

1
k

 + 
2

1
k

 + 
3 4

1
(k k )+

 

= 2 3 4 1 3 4 1 2

1 2 3 4

k (k k ) k (k k ) k k
k k (k k )

+ + + +

+

1234

1
k

 = 1 2 3 4 1 2

1 2 3 4

(k k )(k k ) k k
k k (k k )

+ + +

+
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ω = 
1/2

1234k
m

 
  
 

 

f = 1
2π

 
1/2

1234k
m

 
  
 

 

f = 1
2π

 
1/2

1 2 3 4

1 2 3 4 1 2

k k (k k )
(k k )(k k ) (k k )m

 +
  + + + 

Exercise 2

Single Correct Choice Type

Sol 1: (A) y = 5 sin (π t + 4π) 

A = 5 T = 2π
ω

 = 2π
π

 = 2 sec

A = 5; T = 2 sec 

Sol 2: (C) amax. = Aw2 

vmax. = Aω 

Double ω; half the amplitude

Sol 3: (C) A = 0.8
2

 = 0.4 m

f = 
30
60

 = 1
2

 hz T = 2 sec

Sol 4: (D)
x

a

45
o

V

a

2

Sol 5: (A) 2pt + 
3
π  = π 

2pt = 2 '
3
π  

t = 1/3 sec

Sol 6: (C) T = 1.2 sec
A = 8 cm

θ = cos-1 5
8

 ; 	 θ = 51.31° 

t = 
360
θ  × 1.2; t = 0.17 sec

Sol 7: (C) x = A + a sin wt

t = 5
4

 T

x

v

Distance in one rev. = 4A

Total distance covered = 4A + A = 5A 

Sol 8: (B) k1 = k k
k k
×
+

 = k
2

 

k2 = k + k = 2k

t ∝ k-1/2 1

2

T
T

 = 2

1

k
k

 = 2

Sol 9: (C) y1 = sin t
3

 π
ω + 
 

 y2 = sin wt

y1 + y2 2 sin t
6

 π
ω + 
 

 cos 
6
π  

= 3  sin t
6

 π
ω + 
 

 

Sol 10: (B) y = A sin wt + A cos wt

= 2A (sin wt + sin t
2

 π
+ ω 

 
)

= 2A sin t
4

 π
ω + 
 

 sin 
4

 π
 
   

= 2  A sin t
4

 π
ω + 
 

 

T.E. = 1
2

 × mw2 × ( )22A  

T.E. = mw2A2 

Sol 11: (B) 1
2

 kA2 = 1
2

 mv2 ⇒ A = 
2mv

k
 

Sol 12: (C) Amplitude dose not depend on frame of 
reference.
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Sol 13: (A) s = ut + 1
2

 at2 ⇒ –a = 0 + 1
2

 × (–5) × t2 

t = 2a
5

 

T = 4t = 4 2a
5

Sol 14: (B) 1
2

 kA2 31
4

 
− 

 
 = 1

2
 mv2 

⇒ v = 
1/2

k
m
 
 
 

A
2

 

⇒ v1 = 
1/2

k
m
 
 
 

A
4

, w2 = 1

2

ω
 

T.E. = 3
8

 kA2 + 2m
2

 k
m
 
 
 

 
2A

16
 = 7

16
 kA2 

⇒ 7
16

 kA2 = 1
2

 kA’2 

A’ = 7
8

 A 

Sol 15: (C)

30
o

45
o

1

23

4

q24 = 195°

q12 = 75°

q31 = 165°

Previous Years’ Questions

Sol 1: (C) In SHM frequency with which kinetic energy 
oscillation is two times the frequency of oscillation of 
displacement.

Sol 2: (B) (vM)max = (vN)max

∴ ωMAM = wNAN

or M

N

A
A

= N

M

ω
ω

= 2

1

k
k

 k
m

 
ω =  

 


Sol 3: (D) 
x

L

�

Modulus of rigidity, η = F/Aq

Here, A = L2	 and θ = x
L

Therefore, restoring force force is 

F = – ηAθ = – ηLx

Or acceleration, a = F
M

 = – L x
M
η

Since, a ∝ – x, oscillations are simple harmonic in nature, 
time period of which is given by 

T = 2π
displacement
acceleration

 = 2π
x
a

= 2π
M
Lη

 

Sol 4: (B) Keq = 1 2

1 2

k k
k k+  = 

YA
L

YA k
L

+
 = YAk

YA Lk+

m

k

Y.A.L

m

k2=k

k1=
L

YA

∴ T = 2π
eq

m
k

 = 2π
m(YA Lk)

YAk
+
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Note Equivalent fore constant for a wire is given by k 

= AY
L

. Because in case of a wire. F = AY
L

 
 
 

∆L and in 

case of spring F = k.Dx. Comparing these two, we find 

k of wire = AY
L

Sol 5: (A) U(x) = k|x|3

∴ [k] = 
3

[U]
[x ]

 = 
2 –2

3

[ML T ]
[L ]

= [ML–1T–2]

Now, time period may depend on 

T ∝ (mass)x(amplitude)y(k)2

[M0L0T]=[M]x[L]y[ML–1T–2]z=[Mx+zLy–2T–2z] 

Equating the powers, we get 

– 2z = 1or z = –1/2

y – z = 0 or y = z = – ½

Hence, T ∝ (amplitude)–1/2 ∝ (a)–1/2 

or T ∝ 1

a

Sol 6: (B) 

�

k

k1 �1=
3

2 �
�2=

3

1

l1 = 2l2

∴ l1 = 2
3

l

Force constant k ∝ 1
length of spring

∴ k1 = 3
2

k

Sol 7: (D) U(x) = k(1 – 
2–xe )

It is an exponentially increasing graph of potential 
energy (U) with x2. Therefore, U versus x graph will be 
as shown. At origin.

Potential energy U is minimum (therefore, kinetic energy 
will be maximum) and force acting on the particle is zero 
because.

K

U

U

F = –dU
dx

 = – (slope of U-x graph) = 0.

Therefore, origin is the stable equilibrium position. 
Hence, particle will oscillate simple harmonically about 
x = 0 for small displacement. Therefore, correct option 
is (d).

(a), (b) and (c) options are wrong due to following 
reasons. 

(a) At equilibrium position F = –dU
dx

= 0 i.e., slope of U-x 

graph should be zero and from the graph we can see 
that slope is zero at x = 0 and x = ±∞  

Now among these equilibriums stable equilibrium position 
is that where U is minimum (Here x=0). Unstable equilibrium 
position is that where U is maximum (Here none).

Neutral equilibrium position is that where U is constant 
(Here x = ±∞ )

Therefore, option (a) is wrong.

(b) For any finite non-zero value of x, force is directed 
towards the origin because origin is in stable equilibrium 
position. Therefore, option (b) is incorrect.

(c) At origin, potential energy is minimum, hence kinetic 
energy will be maximum. Therefore, option (c) is also wrong. 

Sol 8: (A) Free body diagram of bob of the pendulum 
with respect to the accelerating frame of reference is as 
follows 

M
g

si
n�

�

mg

M
g

si
n�

M
g

si
n�

�
Mg cos�
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∴ Net force on the bob is Fnet = mg cosa

or Net acceleration of the bob is geff = g cosa

T = 2π
eff

L
g

or T = 2π L
gcosα

Note: Whenever point of suspension is accelerating 

g
si

n�

�

90°+�

g

Take T = 2π 
eff

L
g

Where effg
→

 = g
→

 – a
→

a
→

 = acceleration of point of suspension. 

In this question a
→

 = g sin α (down the plane)

∴ | g
→

– a
→

| = geff

 = 2 2g (gsin ) 2(g)(gsin )cos(90 )+ α + α ° + α

= g cosa

Sol 9: (A) In SHM, velocity of particle also oscillates 
simple harmonically. Speed is more near the mean 
position and less near the extreme positions. Therefore, 
the time taken for the particle to go from O to A/2 will 
be less than the time taken to go it from A/2 to A, or 
T1 < T2

Note From the equation of SHM we can show that 

t1 = T0–A/2 = T/12

and t2 = TA/2– A = T/6

So, that t1 = t2 = T0–A = T/4

Sol 10: (A) Potential energy is minimum (in this case 
zero) at mean position (x = 0) and maximum at extreme 
positions (x = ± A).

At time t = 0, x = A. Hence, PE should be maximum. 
Further in graph III, PE is minimum at x = 0 Hence, this 
is also correct.

Sol 11: (A) Angular frequency of the system,

ω = k
m m+

 = k
2m

Maximum acceleration of the system will be, w2 A or 
kA
2m

This acceleration to the lower block is provided by 
friction. 

Hence, fmax = mamax

= mw2A = m kA
2m

 
 
 

 = kA
2

 

Sol 12: (A) y = kt2

2

2

d y
dt

 = 2k or ay = 2m/s2(as k = 1 m/s2)

T1 = 2π
g
  and T2 = 2π

yg a+
  

∴ 
2
1
2
2

T

T
 = yg a

g

+
 = 10 2

10
+  = 6

5

Sol 13: (D) T = 8s, ω = 2
T
π  = 

4
 π
 
 

 rads–1

x = A sin wt

∴ a = – w2x = – 
2

16

 π
  
 

sin t
4

 π
 
 

Substituting t = 4
3

s, we get 

a = – 23
32

 
π  

 
cms–2

Sol 14: (C) 

�

x

�

x

x = L
2

q
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Restoring torque = – (2kx). L
2

α = – kL(L / 2 )
I

θ  = –
2

2

kL / 2
ML / 12

 
 
  

θ = – 6k
M

 
θ 

 

∴ f = 1
2π

α
θ

 = 1
2π

6k
M

Sol 15: (D) x1 + x2 = A and k1x1 = k2x2 

or 1

2

x
x

 = 2

1

k
k

Solving these equations, we get 

x1 = 2

1 2

k
k k
 
  + 

A

Sol 16: (A) Frequency or time period of SHM depends 
on variable forces. It does not depend on constant 
external force. Constant external force can only change 
the mean position. For example, in the given question 
mean position is at natural length of spring in the 
absence of electric field. Whereas in the presence of 
electric field mean position will be obtained after a 
compression of x0. Where x0 is given by 

Kx0 = QE 

or x0 = QE
K

Sol 17: (B)

 

A3 = A

4�/3

2�/3
A1– A

A2 = A

A

Resultant amplitude of x1 and x2
 is A at angle 

3
 π
 
 

from A1. To make resultant of x1, x2 and x3 to be zero. 

A3 should be equal to A at angle φ = 4
3
π  as shown in 

figure. 

Alternate solution: It we substitute, x1 + x2 + x3 = 0

or A sin wt +A sin 2t
3

 π
ω + 
 

+ B sin(ωt + φ)

Then by applying simple mathematics we can prove 
that 

B = A and φ = 4
3
π .

Sol 18: (D) As retardation = bv

∴  Retarding force = mbv

∴  Net restoring torque when angular displacement is 
θ is given by

mg sin mbv= − θ+ 

I mg sin mbv∴ α = − θ + 

Where, 2I m= 

2

2

d g bvsin
dt

θ
∴ = α = − θ +

 

for small damping, the solution of the above differential 
equation will be

( )
bt
2

0 e sin wt
−

∴θ =θ + φ  

∴  Angular amplitude will be = 
bt
2.e
−

θ

According to question, in τ  time (average life–time),

Angular amplitude drops to 1
e

 value of its original 
value ( )θ

6
0 2

0 e
e

τ
−θ

∴ = θ
 
⇒

 
6

1
2
τ
=

2
b

∴τ =

Sol 19: (B) kt
0A A e−=

5k
0 00.9 A A e−⇒ =

and 15k
0 0A A e−α =

Solving 0.729⇒ α =

At mean position, K.E. is maximum where as P.E. is 
minimum.

Sol 20: (C) 
2 2

2 2
1

2A 2A3 A A
3 3

   
ω − =ω −   

   

1
7AA
3

∴ =
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Sol 21: (C) 
2

2 2Av A
3

 
= ω −  

 

Av 5
3
ω

=

newv 3v 5 A= = ω

So the new amplitude is given by
2

2 2 2
new new new

2AV A x 5 A A
3

 
= ω − ⇒ ω = ω −  

 

new
7AA
3

=

JEE Advanced/Boards

Exercise 1

Sol 1: T ∝ 
1/2

1
k

 ; T = m2
k

π  

k1 = 4k ; k2 = 4k
3

 

By k1l1 = k2l2 = kl

T1 = T
2

 ; T2 = T 3
2

 

1

2

T
T

 = 1

3
 

Sol 2: x = 0.2 cos 5pt 

velocity = dx
dt

 = -π sin 5pt

speed = π |sin 5pt|

vavg = 
0.7

0
| sin5 t | dt

0.7

π π∫

= 
0.7
π  × 7 × 

0.1

0

sin5 t dtπ∫ = 10
5
π
π

 0.1

0
cos5 t − π   

vavg = 2 m/s

Sol 3: φ = 2 sin-1 (0.9)

P1

P2

x
a

sin
-1

sin
-1

0.9
0.9 V

Condition

maximum

distance

P1P2 | | y-axis

Max. Distance = 1.8 a

Sol 4: 
�

�

-�

-�

�
x

a = –w2 x 

– w2 = β
α

 = slope of a-x graph 

ω = β
α

 

Frequency = 
2
ω
π

 = 1
2π

 β
α

 

Sol 5: m = 0.1 kg

A = 0.1 m 

1
2

 × mvmax
2 = 8 × 10–3 J

0.1× vmax
2 = 16 × 10–3 ⇒ vmax = 0.4 m/s

Aω = 0.4 

0.1× ω = 0.4 ⇒ ω = 4

x = A sin (wt + φ)

x = 0.1 sin (4t + π/4)

Sol 6: (i) 

1kg
30cm/sec

3kg

30cm/sec



Physics  |   8 .61

x = 10 + 3 sin 10 t

At t = 0 s block 1 is at equilibrium position.

v1 = Aω = 3 × 10 = 30 cm/s

v2 = 30 cm/s

Conservation of momentum

m1 v1 + m2 v2 = (m1 + m2) v

– 1 × 30 + 3 × 30 = 4 × v

v = 15 cm/s 

Final velocity is in opposite direction of initial velocity 
of block 1. This causes a phase change of π.

ω ∝ m–1/2 

ω‘= 5 rad/s

A’ω’ = 15;	A’ = 3 cm

New amplitude = 3 cm

(ii) New equation

x = 10 + 3 sin (5t + π)

(iii) Loss of energy

= 2 2 21 1 11 30 3 30 4 15
2 2 2

 
× × + × × − × × 

 
× 10-4 J

= 1
2

(900+2700 – 900)×10-4 J = 1350 × 10-4 J

∆Eloss = 0.1350 J

Sol 7:

a

b

h
O

(a) mgh + 1
2

 k 
2

Mg
k

 
 
 

 

= 1
2

 k 
2

Mg b
k

 
+ 

 
 - (M + m) gb

= 1
2

 k 
2

Mg a
k

 
− 

 
 + (M + m) ga

Equalising energies in 3 states

1
2

 k 
2

Mg b
k

 
+ 

 
 - (M + m) gb

= 
1
2

 k 
2

Mg a
k

 
− 

 
 + (M + m) ga

k 2 22mg(b a) b a
k

 
+ + − 

 
 = 2 (M + m)g (a + b)

2Mg (b + a) + k (b2 – a2) = 2 (M + m) g (a + b) k = 2mg
b a−

Constant of force of spring = 2mg
b a−

 

(b) ω = 
k

(M m)+  = 2mg
(M m)(b a)+ −

 

f = 1
2π

 2mg
(M m)(b a)+ −

 

(c) mgh = 1
2

 k 
2 2

Mg Mga
k k

     − −        
 

				    + (M + m) ga

mgh = – 1
2

 k 2Mga a
k

  
× −  
  

 

				         + (M + m) ga

mgh = ka
2
−  2mg a

k
 

− 
 

 + (M + m) ga

mgh = –Mga + 
2ka

2
 + (M + m) ga

mgh = mga + 
22mga

(b a)2−
 

h = a + 
2a

(b a)−
 = ab

b a−

Sol 8:

�/6�/6

(a) Frequency

Displace by dθ 
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Dx = 2Rdθ 

dα = –2 k
m

 × 2Rd
R
θ  

dα = –w2 dθ 

w2 = 4k
m

 ω = k2
m

 = 2 

f = 2
2π

 = 1
π

(b) Total energy = 2 × 1
2

 k 
2

R
3

 π
 
 

 

= 2 × 1
2

 × 0.1 × 
2

0.06
3

 × π
 
 

 

= 3.94 × 10-4 J/4p2 × 10-5 J

(c)	 2 × 1
2

 mv2 = 4p2 × 10-5 

v2 = 
2 54 10
0.1

−π ×

v2 = 4p2 × 10-4 

v = 2π × 10-2 = 0.02 π m/sec 

Sol 9:

3kg
k=12N/m

2kg 2m/s

B A

Vcom = 2 2 3 0
5

× + ×  = 0.8 m/s

xA = vcom t + A sin wt

At maximum expansion

2 2 21 1 15 (0.8) kx 2 2
2 2 2
× × + = × ×  

kx2 = 8 – 3.2 = 4.8

x = 0.2

A = 3
5

 x = 3
5

 × 0.2 = 0.12

µ = 3 2
3 2
×
+

 = 1.2

ω = k
µ

 = 120
1.2

 = 10

xA = 0.8 t + 0.12 sin 10 t 

Sol 10: (a) m = 0.1 kg

F = 10 x + 2

Only variable force causes SHM

(a) F(x) = 10 x + 2

a(x) = 100 x + 20

v(x) = 50 x2 + 20 x + c

v(0.2) = 0

50 × 0.04 + 20 × 0.2 + c = 0 

c = −6

v = 50 x2 + 20 x − 6
x=0.2

x=–0.6
 

A = 0.2 ( 0.6)
2

− −  = 0.4 m

Amplitude = 0.4 m

(b) ω = 10
0.1

 = 10 rad/sec

T = 2π
ω

 = 
5
π  sec.

(c) x = 0.2 – A cos wt 

x = 0.2 – 0.4 cos 5t
π

Sol 11: u = (x2 – 4x + 3)

(i) F = – dU
dx

 

F = -2x + 4

At equilibrium F = 0

–2x + 4 = 0 ⇒ x = 2 m

(ii) dF = –2dx similar to dF = -w2dx as in SHM 

 2 = 
2

m
ω  = w2 

ω = 2  

T = 2π
ω

 = 2  π sec

(iii) Aω = 2 6  

A = 2 6

2
 ⇒  A = 2 3  m 

Sol 12: Fmax = mw2A

P.E. = 1
2

 K.E.
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⇒ 1
2

 kx2 = 1
2

 × 1
2

 kA2 

⇒ x = A

2
 

F = mw2 A

2
 = maxF

2
 

F = 25 2  N

Sol 13: (a) T = 2π 
k
µ  

µ = 3 6
3 6
×
+

 = 18
9

 = 2 kg

T = 2π 1
400

 = 
10
π  sec

(b) A = 6 cm

(c) vcm = 0;	 vB = 1
2
−  vA 

1
2

 × k × A2 = 1
2

 × 3 × (-2vB)2 + 1
2

 × 6 × vB
2 

800 × (0.06)2 = 12 vB
2 + 6vB

2 

vB
2 = 8 0.36

18
×  

vB = 2 0.6
3
×  

VBmax. = 0.4 m/s

PBmax = 0.4 × 6 

PBmax = 2.4 kg ms–1 

Sol 14: s = AA
4

 
− 

 
 cos wt - A A

2 8
 

− 
 

 sin wt

s = 3A
4

 cos wt - 3A
8

 sin wt

s = 3A
8

 (2 cos wt – sin wt)

s = 3 5
8

 A 2 1cos t sin t
5 5

 
ω − ω 

 
 

s = 3 5
8

 A cos 1 1t sin
5

−  
ω +     

A’ = 3 5
8

 A;	 δ = sin-1 1

5

 
 
 

 

Sol 15: T = 2π 
m
k

 = 0.4 sec

ω = 5π 

For 0 < t < 0.6 sec

x = – mg
2k

 + mg
2k

 sin (5pt + 
2
π )

-0.02

o

-0.04

mg
2k

 = 4 10
2 1000

×
×

 = 0.02 m

for 0 < t < 0.6 sec

x = –0.02 + 0.02 sin (5pt + π/2)

for 0.6 < t 1 sec

x = –0.04 + 0.04 sin (5pt)

0.04

-0.04

0.2
0.4 0.6 0.8

1.0

t(sec)�

x

Sol 16:

U(X)

U=
1
2

kx
2

,x<0

U=mgx, x>0

�

SHM

�

Body under gravity

T = 1
2

 × 2π m
k

 + 2v
g

 

∴
 E = 1

2
 mv2; T= m

k
π  + 2

g
 2E

m
 

∴ v = 2E
m

; T= π m
k

 + 2 2
g

 E
m
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Sol 17: x = 30 sin t
6

 π
π + 
 

 

T = 2π
π

 = 2 

30

15

�/6

P.E. = 2 K.E.

P.E. = 2
3

 T.E.

x = 2
3

 A

Position: x = 2
3

 × 30

x = 10 6  cm

1 2sin
3 6

t 2 sec
2

− π
−  

 = ×
π

t = 1
π

 1 2sin
3 6

−
 π

−  
 

 sec

Sol 18: (a) 

3m/s 10m/s

5 2A B

 

vcm = 5 3 10 2
7

× + ×  = 5ms-1 

1
2

 5 × 33 + 1
2

 × 2 × 102 

= 1
2

 7 × 52 + 1
2

 kx2 

45 + 200 = 175 + kx2 

kx2 = 70 

x2 = 70
1120

 x = 1
4

 m

Maximum extension = 0.25 m

(b) t = 3
4

 T

T = 2π 
k
µ  

µ = 5 2
7
×  = 10

7
 

T = 2π 10
7 1120×

 = 2
28
π  = 

14
π  

Time for first maximum compression 

= 3
4

 × 
14
π  = 3

56
π  sec

Sol 19:	 T = 2π I
mgx

 

I = 
2m

3
  + 

2
2m m

12

 
+  

 





x = 

1mx mx
2
2m

+ 

 = 3
4
  = 

2
24m 13m

12 12
+



  

I = 17
12

 m 2 

T = 2π 
217 m

12
32mg
4





 ;T = 2π 17
18g
  

Sol 20: (a) Iα = - kθ 

α = – k
I

 θ 

w2 = k
2

 ω = k
I

 = π 

T = 2π
ω

 = 2π
π

 ;T = 2 sec 



Physics  |   8 .65

(b) 

5m/S
2

10m/S
2

geff. = 2 210 5+  = 125  

geff. = 5 5  

T = 2π 
g
  = 2π 0.5

5 5 10×
 

T = 
1/4

2
5

 sec

Sol 21: m = 0.2 kg	 f = 25
π

 Hz

P.E. = 4
9

 T.E.

1
2

 kx2 = 4
9

 × 1
2

 kA2;	x = 2
3

 A

A = 3
2

 x = 3
2

 × 0.04

A = 0.06 m

Sol 22: 0.5 × 3 = 1.5 × v

v = 1 m/s

k=600N/m
eq

db

x=1/60m

m =1kg1

3m/s

m =0.5 kg2

ω = 600
1.5

 = 400  = 20 rad./sec

f = 20
2π

 = 10
π

 Hz

1
2

 kx2 + 
21.5 1

2
×

=
1
2

 kh2 – 1.5 × 10 × 
1h
60

 
− 

 
 

1
2

 × 600 × 
2

1
60

 + 1.5
2

 

= 1
2

 × 600 × h2 – 15 × 1h
60

 
− 

 
 

60 h2 – 3h – 7/60 = 0 

h = 1.5
60

 + 37
120

 m

A = h - 1.5
60

 = 37
120

 m

A = 37
120

 × 100 cm = 5 37
60

 cm

Sol 23: m1 = 1kg; m2 = 4kg

a = 1.6 cm

kx = m1 g

x

a

A

B

k

k = w2 m1 = 252 × 1 = 625 N/m

Nmax = m2 g + k(x + a)

kx N

A B

m g1 m g2

k(x+a)

= (m1 + m2)g + ka = 50 + 625 1.6
100
×  

Nmax = 60 N

Nmin = (M1 + M2) g – ka

Nmin = 40N
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Sol 24: k  = mg;	 ω = 
k
m

 = 
9


 

f = 1
2π

1/2
g 

 
 

 

A = /3 ;	 m × 2g
3

 = k × x

x = 2
3

mg
k

 = 2
3

l

Natural length

New equilibrium

g/3

3
�

Exercise 2

Single Correct Choice Type

Sol 1: (C) 

2cm

4 1ω −  = w2 × 1

ω = 3  

F = 3
2π

 Hz

Sol 2: (D) 

�

x

v4
�

4

vavg = displacement
time

 = 2 A
T / 4
×  

vavg = 4 2A
T

Sol 3: (C) vmean =
a / 2
T / 6

 = 3a
T

 

Sol 4: (C)

P1

135
o

P2

Sol 5: (C)

A B C D E

VB
2 = 1

4
 VA

2 

1
4

 R2 w2 = w2 (R2 – x2) ⇒ R2 = (R2 – x2) 4

x = 3
2

 R

dBD = 2x = 3 R 

Sol 6: (C) TS = 2π
m
k

 Ts doesn’t depend on g.

Tp = 2π 
g
 ;	  Tp ∝ g-1/2 

 ∴ Tp decreases 

Sol 7: (B) vmax = Aω = A k

m
 

1 1A k

m
 = 2 2A k

m
 

1

2

A
A

 = 2

1

k
k

 

Sol 8: (C) kA = k/3;		  kB = 3k

TA ∝ k–1/2 ;		 A

B

T
T

 = 3

Sol 9: (A) T =2π
m
k

 × 2 / 3
2
π
π

T = 2
3
π  m

k
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e

e
2�

3

Sol 10: (C) t = T
4

 

t = 
2
π  

k
µ  

t = 
2
π  

2

1
π

 ;		  t = 1
2

 sec

Sol 11: (A) Both block have speed same as 

vcm = 5m/s

Sol 12: (D)

COM

A B

T = 2π I
mg

 

A

B

T
T

 = 3
4

 = B

A

9
4
×




 

3
4

 = 3
2

 B

A





 

B

A





 = 1
4

 

A = 4
5

 × 25 = 20 cm 

Sol 13: (C)

R

m

z

T = 2π I
mgz

 		 ⇒ 
2 2mR 2mzI

2
+

=

T = 2
g
π  

2Rm 2mz
2
+

2mR
2

 = 2mz for minimum T

z = R

2
 

Multiple Correct Choice Type

Sol 14: (B, C, D) v = 0 at t = T/2

a is maximum at extremes

F = 0 at t = 3T
4

 

K.E. = 0 at t = T/2

Sol 15: (A, B, C) K.E. = 0.64 KEmax.

v = 0.8 vmax. 

∴ x = 0.6 A = 6 cm

x = A
2

 P.E. = maxPE
4

 KE = 3
4

 PEmax

KEmax = TE at mean position

x = A
2

 v = max3v
2

 

Sol 16: (B, C) (A) KEavg is never zero in SHM

(B) PEavg = 1
2

 TE = mp2 t2 A2 

(C) Frequency of occurrence of mean position =2f

(D) Acceleration leads 

Sol 17: (A, C) vrms = 

T
2

0

v dt

T

∫
 = v

2
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vmean = 

T

0

v dt

T

∫
 = 8

π
 V 

Sol 18: (B, C, D) A = 3cm

1
2

 mvm
2 = 1

2
 × 500 × 9 

vm = 3 × 10 5  cm/s ; ω = 500 = 10 5

amax. = ω vm 

= 10 5  × 30 5  cm/s2 

= 15 m/s2 

PEmin = 0 at mean position

Sol 19: (A, B, C) A = 2.5

ω = maxv
A

 = 4;	 T = 2
4
π  = 

2
π  = 1.57 s

vmax = 16 × 2.5= 40 cm/s2 

v = ω 2 2A x−  = 2 24 2.5 1−  

= 4 5.25  cm/s = 2 21  cm/s

Sol 20: (A, C) Energy conservation:

1
2

 × 900 × 22 = 1
2

 × 900 × 12 + 1
2

 × 3 v1
2 

2700 = 3 × v1
2 

v1
2 = 900

v1 = 30 m/s

Conservation of momentum:-

3 × 30 + 6 × 0 = 9 × v

v = 10 ms-1 

Energy conservation:-

1
2

 × 900 × 12 + 1
2

 × 9 × 102 = 1
2

 × 900 × A2 

A2 = 2;	 A = 2  m

Sol 21: (A, B) t = / 6
2
π
π

 × T ⇒ t = T
12

 

v = 3
2

 V0 ⇒ a ∝ x ⇒ a = a0/2

A

2
A

6
π

Sol 22: (B, C, D) v2 = w2 (A2 – x2)

a = -w2 x

v2 = w2 
2

2
4

aA
 

−  ω 
 

Sol 23: (B, D) x = A sin 2 t 5
T 6

 π π
+ 

 
 = A cos 2 t

T 3
 π π

+ 
 

 

6
5π

Sol 24: (B, C)

Initial phase difference = 0, 2
3
π  , 4

3
π  

Sol 25: (A, B, C, D) x = mg
k

 = 0.2 10
200
×  = 1 cm

Amplitude = 1 cm

ω = k
m

 = 200
0.2

 = 10 10  

f = 10 10
2π

 = 5 10
π

 ≅  5Hz

Amplitude changes, frequency remains the same.

Sol 26: (B, C, D) m = 0.1 kg

U = 5x(x – 4)

F = – dU
dx

 = 20 – 10 x
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P.E. minimum at x = 2 m
Force is linear function of x with negative slope.

w2 = 10
m

 

ω = 10
0.1

 = 10 rad/s

T = 2
10
π  = 

5
π  sec

Sol 27: (B, D) x = 3 sin 100 t + 8 cos2 50 t

 = 3 sin 100 t + 4 cos 100 t + 4

x = 5 sin (100 t + sin-1 4/5) + 4

Sol 28: (A, B, C) x = 5 sin (4pt + sin-1 4/5) mm 

T = 2
4
π
π

 = 0.5 s

A = 5 mm

φ = sin-1 (4/5)

Sol 29: (B, C) k = 2 × 106 Nm-1 

A = 0.01 m

T.E. = 160 J

PEmax = 160 J

when KE = 0 J

i.e. at equilibrium

KEmax = 1
2

 × 2 × 106 × 10-4 = 100 J

PEmin = 60 J

Sol 30: (A, B, C) t = Tn
2

 

T = m2
k

π  = 22
3 24

π
×

 = 
3
π

Assertion Reasoning Type

Sol 31: (D) The motion is SHM with ω = a
m

 

If the force is linear w.r.t. x and slope is negative. The 
motion is always SHM.

Sol 32: (C) When particle moves from extreme to mean 
position velocity and acceleration have same direction.

Sol 33: (A) Statement-II is the correct explanation.

Sol 34: (D) Phase remains same and SHMs are 
perpendicular.

Sol 35: (A) Statement-II is the correct explanation.

Comprehension Type

Paragraph 1:

Sol 36: (D) ω = 25 rad/s

k = mw2 = 1 × 625 = 625 Nm-1 

Fmax =1×9.8+625× 16
100 10×

 + 4.1×9.8

=59.98 N ≅  60 N

Fmin = 5.1 × 9.8 – 10 ≅  40 N

Sol 37: (C) Minimum force on the surface = (50 – 10) 
N = 40 N

Sol 38: (A) TE of system is constant

Sol 39: (D) d = A sin (wt + φ)

Sol 40: (D) F = –kx + c

k > 0

Match the Columns

Sol 41: (B) (a) y = A sin (t)

v = A cos (t)

KE = c × cos2 (t)

(a) → (ii)

(b) → (i) PE + KE = const.

PE = c × sin2 t

(c) → (iii) TE constant always

(d) → (iv) v = A cos t

Sol 42: (A) PE ∝ x2 (A) → p, s

(B) s = ut + 1
2

at2 

q, r when a = 0 ; 	 S when a ≠ 0

(C) Range = 
2v sin2

g
θ  

(D) T2 = 
24

g
π   
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Previous Year’s Questions

Sol 1: (C) If E > VB, particle will escape. But simultaneously 
for oscillations, E > 0

Hence, the correct answer is V0 > E > 0

Or the correct option is (c)

Sol 2: (B) [a] = 
4

PE
x

 
 
 

 = 
2 –2

4

ML T
L

 
 
  

 = [ML–2T–2]

∴
m 
 α 

 = [L2T2];		 ∴ 1 m
A

 
 

α  
= [T]

As dimensions of amplitude A is [L]

Sol 3: (D) For |x| > x0, potential energy is constant. 
Hence, kinetic energy, speed or velocity will also remain 
constant. 

∴ Acceleration will be zero

Sol 4: (A) 2v sin45
1

g
°
=

v 50 m / s∴ =

Sol 5: (A, D) 

Rigid wall

eq. position

m

0.5 uo

x

2 2 2
0 0

1 1 1mu kx m0.25 u
2 2 2

= + × � ….(i)

After elastic collision 

Block speed is 0.5 u0

So when it will come back to equilibrium point its 
speed will be u0 as (A)

Amplitude 2 2
0

1 1mu kA
2 2

=

0u
A

k
=

Value of x from eq. (i)

2 2
0

3 1 1mu kx
4 2 2
× =

03u mx
2 k

=

t=0

t2

30
o

A

60
o

3 A

2

Time to reach eq. position first time 
2 m
3 k
π

⇒

Second time it will reach at time ⇒

2 m T 2 m 2 m 5 m
3 k 2 3 k 3 kk 2

π π π π
+ ⇒ + ⇒

×
 as (D)

For max. compression time is t2

2
2 m Tt
3 k 4
π

= +

2 m 2 m
3 k kk

π π
= +  = 

7 m
6 k
π

Sol 6: (B, D)  
2

2 2 2
1 1

1

1 b a 1E m a n
2 2m b m

= ω = = =
ω

� … (i)

2
2 2

2 2 2
1 RE m R m 1
2 2m

= ω = ω = � … (ii)

From (i) and (ii) 22

1
n

ω
=

ω

2
2 21 2 1

2
2 1 2

E a 1 n
E R n

 ω ω 
= = ⋅ ⋅    ω ω  

 
1 2

1 2

E E
⇒ =

ω ω

Sol 7: (A, B, D) 

(A) i f
K Kand
M (M m)

  
ω = ω =   +   

Case I: 2 2i
f i

Mv 1 1v Mv KA
M m 2 2

= =
+
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2 2 2 2
i 1 f i

M 1 1A v and (M m)v KA
K 2 2

⇒ = + =

2
2 f
f

i

AMv M MA
K M m A M m

⇒ = ⋅ ⇒ =
+ +

(B) f
MT 2

M m
= π

+
 for both

(C) TEcase I 
2 2
f

1 1 M(M m)v Mv
2 2 M m

 
= + =  

 

      TEcase II 2 2
f i

1 1KA KA
2 2

= =

(D) VEP = Afwf : Decreases in both cases.

Sol 8: A → p; B → q, r; C → p; D → r, q 

Sol 9: (A) The total mechanical energy = 160 J

The maximum PE will be 160 J at the instant when KE = 0

Sol 10: (A, C) By principle of superposition y = y1 + y2 + y3

asin ( t 45 ) asin t asin( t 45 )= ω + ° + ω + ω − °

asin ( t 45 ) asin( t 45 ) asin t= ω + ° + ω − ° + ω

2asin tcos 45 asin t= ω ° + ω

( )2 asin t asin t 1 2 asin t= ω + ω = + ω

∴ Amplitude of resultant motion = ( )1 2+  a    …(i)

(b) The option is incorrect as the phase of the resultant 
motion relative to the first is 45°.

(c) Energy is SHM is proportional to (amplitude)2

( ) ( )2 2
R R

2
S S

1 2 a 1 2 2 2E E
E E 1a

+ + +
∴ = ∴ =

( )R Sor E 3 2 2 E= +

(d) Resultant motion is ( )y 1 2 asin t= + ω

Ii is SHM. 

Sol 11: (A, B, D) 

A B Cx (1 cos 2 t) (1 cos 2 t) sin 2 t
2 2 2

= − ω + + ω + ω

For A = 0, B = 0

Cx sin 2 t
2

= ω

A = -B and C = 2B

X = B cos 2wt + B sin 2wt

Amplitude = B 2   

For A = B; C = 0

X = A,

Hence this is not correct option.

For A = B, C = 2B

X = B + B sin 2wt

It is also represent SHM.

Sol 12: (A, D) Restoring torque is same in both cases

2T
I

α = = − ω θ

In case A the moment of inertia is more as compared 
to B, so wB > wA
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ELASTICITY

1. INTRODUCTION
We have learnt that the shape and size of a rigid body does not change but this is an ideal concept. Actually a rigid 
solid does experience some kind of deformation under the action of external forces and if the magnitude of forces 
cross a certain limit, the deformation is so severe that the material of the solid loses its rigidity. We say that the 
material has broken-down or failure has happened. In this chapter we learn about the properties of solid bodies 
by virtue of which they resist the deformation in their shape and size. These properties constitute the strength of 
a material and the knowledge of these is very essential in constructing small and large structures like houses, tall 
buildings, bridges, railway tracks etc.

2. MOLECULAR STRUCTURE OF A MATERIAL

Matter is made up of atoms and molecules. An atom is made up of a nucleus and electrons. Nucleus contains 
protons and neutrons (collectively known as “nucleons”). Nuclear forces are responsible for the structure of nucleus. 
Likewise, forces between different atoms and molecules are responsible for the structure of a material. 

2.1 Interatomic and Intermolecular Forces
The forces that are responsible for holding the atoms/molecules in place 
in a solid or liquid are called interatomic and intermolecular forces. The 
interaction between any isolated pair of atoms and molecules may be 
represented by a curve that shows how the potential energy varies with 
the separation between them as shown in the Fig. 8.32 

We see that as the distance R decreases, the attractive force first increases 
and then decreases to zero at a separation R0 where the potential energy 
is the minimum. For smaller distance, force is repulsive.

The above picture of interatomic or intermolecular force is an over 
simplification on the actual situation. However, it provides a reasonable 
visualisation.

The force between the atoms can be found from the potential energy 
using the relation,

	 dUF(R) = -
dR

The resulting force curve is shown in Fig. 8.33. 

Force is along the line joining the atoms or molecules, and is shown 
negative for attraction & positive for repulsion.	

2.2 Classification of Matter
Matter can be classified into three states:- solids, liquids and gases.

Solids: A solid is that state of matter whose atoms and molecules are strongly bound so as to preserve their 
original shape and volume. Solids are of two types-crystalline & amorphous.

(a) 	 Crystalline solid: A crystalline solid is one which has regular & periodic arrangement of atoms or molecules 
in three dimensions. Examples of crystalline solids are diamond, rock salt, mica, sugar etc.

(b) 	 Amorphous solids or glassy solids: The word ‘amorphous’ literally means ‘without any form’. There is no 
‘order’ in arrangement of atoms in such a solid. Example - glass.

U(R)

U0

R0
O

R

F(R)

R0

O
R

Figure 8.32: Potential energy versus 
separation

Figure 8.33: Graph of force versus 
separation
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PLANCESS CONCEPTS

In solids, the intermolecular forces are so strong that there is no change in shape and size easily.

Liquids: The intermolecular forces are comparably less than that in solids, so the shape can easily be changed. 

But volume of a given mass of a liquid is not easy to change. It needs quite an effort to change the density of 
liquids.

Liquids are not able to produce reaction forces to applied forces in arbitrary directions.

Gases: This is the third state of matter which cannot support compressive, tensile, or sharing forces. Densities of 
gases change very rapidly with increase in temperature.

Liquids and gases are together classified as fluids: The word ‘’fluid’’ comes from a Latin word meaning ‘’to flow’’.

On an average, the atoms or molecules in a gas are far apart, typically about ten atomic diameters at room 
temperature and pressure. They collide much less frequently than those in a liquid. Gases in general are compressible.

3. INTRODUCTION TO ELASTICITY

When external forces are applied to a body which is fixed to a rigid support, there is a change in its length, volume 
or shape. When the external forces are removed, the body tends to regain its original shape and size. Such a 
property of a body by virtue of which a body tends to regain its original shape or size, when the external forces are 
removed, is called elasticity.

If a body completely regains its shape and size, it is called perfectly elastic. If it does not regain its shape and 
size completely, it is called inelastic material. Those materials which hardly regain their shape are called plastic 
material.

An elastic body is one that returns to its original shape after a deformation. Eg- golf ball, rubber band, soccer 
ball.

An inelastic body is one that does not return to its original shape after a deformation. Eg – dough or bread, clay, 
inelastic ball.

Microscopic reason of elasticity

Each molecule in a solid body is acted upon by forces due to neighboring molecules. When all molecules 
are in a state of stable equilibrium, the solid takes a particular shape. When the body is deformed, 
molecules are displaced from their stable equilibrium positions. The intermolecular distances change 
and restoring forces start acting which drives the molecules to come back to its original shape.

Vaibhav Krishnan (JEE 2009, AIR 22)

One can compare this situation to a spring-mass system. Consider a particle connected to several particles through 
spring. If this particle is displaced a little, the spring exerts a resultant force which tries to bring the particle towards 
its natural position. In fact, the particle will oscillate about this position. In due course, the oscillations will be 
damped out and the particle will regain its original position.

3.1 Stress and Strain

Stress: Elastic bodies regain their original shape due to internal restoring forces. This internal restoring force, acting 
per unit area of a deformed body is called a stress.

i.e. Stress = Restoring force
Area
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PLANCESS CONCEPTS

SI unit of stress is N/m2 and Dimensional formula of stress is [ML–1T–2]

An object can be deformed in different ways.

Misconception: People often get confused between pressure and stress.

Difference between pressure v/s stress:

S. No. Pressure Stress

1 Pressure is always normal to the area Stress can be normal or tangential

2 Always compressive in nature May be compressive or tensile in nature

Nivvedan (JEE 2009, AIR 113)

3.1.1 Types of Stress

There are 2 types of stresses – NORMAL stress and SHEAR stress

Normal stress – When the force applied is perpendicular to the area of application of force, it is called normal 
stress. Normal stress usually leads to a change in length (longitudinal stress) or a change in volume.

Normal stress can be of two types – tensile stress and compressive stress.

(a)	 Tensile Stress: Pulling force per unit area. It is applied parallel to the length.

F A F

Figure 8.34: Tensile stress

It causes increase in length or volume.

(b)	 Compressive Stress: Pushing force per unit area. It is applied parallel to the length.

F A F

Figure 8.35: Compressive stress 

It causes decreases in length or volume.

If the force is applied tangentially to one face of a rectangular body keeping the opposite face fixed, the stress is 
called tangential or shearing stress.

Stress is measured in units of 1N/m2. 1N/m2 = 10 dynes/cm2.
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Strain: The fractional or relative change in shape, size or dimensions of body is called the strain.

	 change in dimension
Strain

original dimension
=

There are three types of strains:

(i) 	 Longitudinal strain: It is the ratio of the change in length, ∆ , to the original length,   i.e. ∆


. 

(ii) 	 Volume strain: It is the ratio of change in volume, DV, to the original volume V i.e. V
V
∆

(iii) 	 Shearing strain: The angular deformation, θ, in radians of a face of a 
rectangular body is called shearing strain.

If a tangential force F is used to displace upper face of rectangular body 

through a small angle θ such that the upper face is displaced through distance 

Dx where   is height of the body, then shearing strain = xtan ∆
θ ≈ θ =



 

Strain is a ratio of two similar quantities and does not have any units.

Illustration 1: A 4.0 m long copper wire of cross sectional area 1.2 cm2 is 
stretched by a force of 4.8 × 103 N. Stress will be-� (JEE MAIN)

(A) 4.0 × 107 N/mm2 			   (B) 4.0 × 107 kN/m2 		  (C) 4.0 × 107 N/m2 		  (D) None

Sol: (C) Stress is restoring force per unit area of cross-section.

Stress = F
A

 = 
3

4 2

4.8 10 N

1.2 10 m−

×

×
 = 4.0 × 107 N/m2 

Illustration 2: A copper rod 2m long is stretched by 1mm. Strain will be� (JEE MAIN)

(A) 10–4, volumetric		  (B) 5 × 10–4, volumetric		  (C) 5 × 10–4, longitudinal		 (D) 5 × 10–3, volumetric

Sol: Longitudinal strain is equal to change in length per unit length.

(C) Strain = ∆


 = 
31 10

2

−×  = 5 × 10–4, Longitudinal

Illustration 3: A lead of 4.0 kg is suspended from a ceiling through a steel wire of radius 2.0 mm. Find the tensile 
stress developed in the wire when equilibrium is achieved. Take g = 3.1π ms–2.� (JEE MAIN)

Sol: Stress is restoring force per unit area of cross-section.

Tension in the wire is		  F = 4.0 × 3.1 π N.

The area of cross section is	 A = pr2 = π × (2.0 × 10–3 m)2 = 4.0 π × 10–6 m2.

Thus, the tensile stress developed 
6

4.0 3.1F
A 4.0 10−

× π
=

π×
 N/m2 = 3.1 × 106 N/m2.

Illustration 4: Find the stress on a bone (1 cm in radius and 50 cm long) that supports a mass of 100kg. Find the 
strain on the bone if it is compressed 0.15 mm by this weight. Find the proportionality constant C for this bone. 
� (JEE MAIN)

F �X

�
�

Figure 8.36: Shearing strain
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PLANCESS CONCEPTS

Sol: Stress is restoring force per unit area of cross-section. Strain is equal to change in length per unit length. Strain 
∝ Stress

Stress = F/A = (100kg) (9.8 m/s2) / π × (0.01 m)2 = 3.1 × 106 N/m2

Strain = ∆L/L0 = (0.15 × 10–3m) / (0.5m) = 3.0 × 10–4 

Since strain = C × stress, C = strain / stress = 0.96 × 10–10 m2/N.

4. HOOKE’S LAW AND MODULI OF ELASTICITY

Hooke’s Law: It states that for small deformations, stress is directly proportional to strain within elastic limits and 
the ratio is a constant called modulus of elasticity.

	 Stress
Strain

 = modulus of Elasticity = E

4.1 Young’s Modulus
Young’s modulus is a measure of the resistance of a solid to a change in its 
length when a force is applied perpendicular to its surface. Consider a rod 
with an unstressed length L0 and cross-sectional area A, as shown in the Fig. 
8.37. When it is subjected to equal and opposite forces Fn along its axis and 

perpendicular to the end faces, its length changes by ∆L. These forces tend 

to stretch the rod. The tensile stress on the rod is defined as σ = nF
A

Forces acting in the opposite direction, as shown in Fig. 8.37, would produce 

a compressive stress. The resulting strain is defined as the dimensionless 

ratio, ε = 
0

L
L
∆ Young’s modulus Y for the material of the rod is defined as 

the ratio of tensile stress to tensile strain.

So Young’s Modulus = Tensile stress
Tensile strain

; Y = n 0n

0

F LF / A
L / L A L

σ
= =

ε ∆ ∆
 	

A force applied normal to the end face of a rod cause a change in length.

(a) 	 For loaded wire: ∆L = 
2

FL
rπ γ

	 For rigid body ∆L = 0 so Y = ∞ i.e. Elasticity of rigid body is infinite.

(b) 	 If same stretching force is applied to different wires of same material, ∆L ∝ 
2

L
r

 [As F and Y are 
const.]

	 Greater the value ∆L, greater will be elongation.

	 Following conclusions can be drawn from γ=stress/strain:

(i) 	 E ∝ stress (for same strain), i.e. if we want the equal amount of strain in two different materials, 
the one which needs more stress is having more E.

L0

FnFn

A

�L
�L

Fn

Fn

Figure 8.37: Variation in length of rod
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(ii) 	 1E
strain

∝  (for same stress), i.e., if the same amount of stress is applied on two different 

materials, the one having less strain is having more Elasticity. Rather we can say that, the one 
which offers more resistance to the external forces is having greater value of E. So, we can see 
that modulus of elasticity of steel is more than that of rubber or Esteel > Erubber 

(iii) 	 E = stress for unit strain x 1 or x x
x

 ∆
= ∆ = 

 
, i.e. suppose the length of a wire is 2m, then the 

Young’s modulus of elasticity (Y) is the stress applied on the wire to stretch the wire by the 

same amount of 2m.

Chinmay S Purandare (JEE 2012, AIR 698)

Illustration 5: Two wires of equal cross section but one made of steel and the other of copper, are joined end to 
end. When the combination is kept under tension, the elongations in the two wires are found to be equal. Find the 
ratio of the lengths of the two wires. Young’s modulus of steel = 2.0 × 1011 Nm–2.� (JEE ADVANCED)

Sol: The wires joined together have same stress and same elongation. Ratio of stress and young’s modulus is strain. 
As young’s modulus for steel and copper is different, strains of the wires will be different.

As the cross sections of the wires are equal and same tension exists in both, the stresses developed are equal. Let 
the original lengths of the steel wire and the copper wire be LS and LC respectively and the elongation in each wire 
be  .

	
11 2

S

stress
L 2.0 10 Nm−

=
×

  � … (i)

And	
11 2

C

stress
L 1.1 10 Nm−

=
×

 	� … (ii)

Dividing (ii) by (i),	 LS/LC = 2·0 / 1·1 = 20:11.

Illustration 6: A solid cylindrical steel column is 4.0 m long and 9.0 cm in diameter. What will be decrease in length 
when carrying a load of 80000 kg? Y = 1.9 × 1011 Nm–2.� (JEE MAIN)

Sol: The stress will be equal to load per unit cross section. Strain is the ratio of stress and young’s modulus.

Let us first calculate the cross-sectional area of column = pr2 = π(0.045m)2 = 6.36 × 10–3 m2 

Then, from Y = F / A
L / L∆

we have ∆L = FL
AY

 = 
4

3 2 11 2

[(8 10 )(9.8N)](4.0m)

(6.36 10 m )(1.9 10 Nm )− −

×

× ×
 = 2.6 × 10–3 m.

Illustration 7: A load of 4.0 kg is suspended from a ceiling through a steel wire of length 20 m and radius 2.0 mm. 
It is found that the length of the wire increases by 0.031 mm as equilibrium is achieved. Find Young’s modulus of 
steel. Take g = 3.1 π m/s2.	� (JEE MAIN)

Sol: The stress will be equal to load per unit cross section. Strain is the change in length per unit length. Young’s 
modulus is the ratio of stress and strain.

The longitudinal stress = 
2

3 2

(4.0kg)(3.1 ms )

(2.0 10 m)

−

−

π

π ×
 = 3.1 × 106 N/m2 



8.78  |   Simple Harmonic Motion and Elasticity

The longitudinal strain = 
30.031 10 m

2.0m

−×  = 0.0155 × 10–3 

Thus Y = 
6 2

3

3.1 10 Nm

0.0155 10

−

−

×

×
 = 2.0 × 1011 N/m2.

Illustration 8: A bar of mass m and length   is hanging from point A as shown in Fig. 8.38. Find 
the increase in its length due to its own weight. The Young’s modulus of elasticity of the wire is 
Y and area of cross-section of the wire is A.	  � (JEE ADVANCED)

Sol: Find the elongation for an elementary length dx of the wire due to tension in the wire at 
the location of the element.

Consider a small section dx of the bar at a distance x from B. The weight of the bar for a length 
x is, 

W = mg
x

 
 
 

	

Elongation in section dx will be mgWd dx xdx
AY AY

  
= =   
   





Total elongation in the bar can be obtained by integrating this expression for x = 0 to x =  .

	 \	
x

x 0 0

mgd xdx
AY

=

=

 
∆ = = 

 
∫ ∫
 

 



 or	  mg
2AY

∆ =




Illustration 9: One end of a metal wire is fixed to a ceiling and a load of 2 kg hangs from the other 
end. A similar wire is attached to the bottom of the load and another load of 1 kg hangs from this 
lower wire. Find the longitudinal strain in both the wires. Area of cross section of each wire is 0.005 
cm2 and Young modulus of the metal is 2.0 × 1011 N m–2. Take g = 10 ms–2.� (JEE ADVANCED)

Sol: Find the tension in each wire. Stress is tension per unit area of cross section. Strain is the ratio 
of stress and Young’s modulus.

The situation is described in Fig. 8.40. As the 1kg mass is in equilibrium, the tension in the lower 
wire equals the weight of the load.

Thus	T1 = 10N; Stress = 10N/0.005 cm2 = 2 × 107 N/m2 

Longitudinal strain = 
7 2

4
11 2

2 10 N/ mstress 10
Y 2 10 N / m

−×
= =

×

Considering the equilibrium of the upper block, we can write, T2 = 20N + T1 or T2 = 30N

Stress = 30 N/0.005 cm2 = 6 × 107 N/m2 

Longitudinal strain = 
7 2

11 2

6 10 N / m

2 10 N / m

×

×
 = 3 × 10–4 .

Illustration 10: Each of the three blocks P, Q and R shown in Figure 
has a mass of 3 kg. Each of the wires A and B has cross-sectional 
area 0.005 cm2 and Young modulus 2 × 1011 N/m2. Neglect friction. 
Find the longitudinal strain developed in each of the wires. Take  
g = 10 m/s2. � (JEE ADVANCED)

A

B

A

B

dx

x

T2

T1

2kg

1kg

Figure 8.38

Figure 8.39

Figure 8.40

Figure 8.41

P

A
Q

B

R
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Sol: Find the tension in each wire. Stress is tension per unit area of cross section. Strain is the ratio of stress and 
Young’s modulus.

The block R will descend vertically and the blocks P and Q will move on the frictionless horizontal table. Let the 
common magnitude of the acceleration be a. Let the tensions in the wires A and B be TA and TB respectively.

Writing the equations of motion of the blocks P, Q and R, we get,

	 TA = (3kg) a	�  …. (i)

	 TB – TA = (3kg) a � …. (ii)

	 And (3kg)g – TB = (3kg)a � …. (iii)

By (i) and (ii), 	 TB = 2TA ; By (i) and (iii), TA + TB = (3kg) g = 30 N 

or 3TA = 30N or, TA = 10N and TB = 20 N.

Longitudinal strain = Longitudinal stress
Young modulus

Strain in wire A = 
2

11 2

10N / 0.005 cm

2 10 N / m×
 = 10–4 ;	 And strain in wire B = 

2

11 2

20N / 0.005 cm

2 10 N / m×
= 2 × 10–4.

In practical life, we often hear something like elastic band is usually referred to a rubber band because it 
is easily stretchable and a steel rod is not.

However, here elasticity has some different meaning. Being more elastic means, the material will resist 
more to any external force which tries to change its configuration.

That is why Esteel > Erubber.

Nitin Chandrol (JEE 2012, AIR 134)

4.2 Shear Modulus
The shear modulus of a solid measures its resistance to a shearing force, which is a 
force applied tangentially to a surface, as shown in the Fig. 8.42. (Since the bottom of 
the solid is assumed to be at rest, there is an equal and opposite force on the lower 
surface). The top surface is displaced by x relative to the bottom surface.

The shear stress is defined as, Shear stress = Tangential force
Area

= tF
A

τ =  where A is the 
area of the surface.

The shear strain is defined as 	 Shear strain = 	 x
y

	

where y is the separation between the top and the bottom surfaces.

The shear modulus G is defined as

Shear modulus = Shear Stress
Shear Strain

;
	

tF / A Fy
G

x / y A x
= = 	

Figure 8.42: Shearing 
stress

A
� x

�
F

y
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Illustration 11: A box shaped piece of gelatin dessert has a top area of 15 cm2 and a height of 3cm. When a 
shearing force of 0.50 N is applied to the upper surface, the upper surface displaces 4 mm relative to the bottom 
surface. What are the shearing stress, the shearing strain and the shear modulus for the gelatin?� (JEE MAIN)

Sol: Shearing stress is tangential force per unit area of surface. Shearing Strain is the ratio of displacement of 
the surface to the distance of the surface from the fixed surface. Shear modulus is the ratio of shearing stress to 
shearing strain.

Shear stress = tangential force
area of face

 = 
4 2

0.50N

15 10 m−×
 = 333 N/m2

Shear stress = Displacement
height

 = 0.4cm
3cm

 = 0.133

Shear modulus G = stress
strain

 = 333
0.133

 

	  = 2.5× 103 N/m2	 (1 Pa = 1 N/m2)

4.3 Bulk Modulus
The bulk modulus of a solid or a fluid indicates its resistance to a change in volume. 
Consider a cube of some material, solid or fluid, as shown in the Fig. 8.43. We 
assume that all faces experience the same force Fn normal to each face. (One way to 
accomplish this is to immerse the body in a fluid-as long as the change in pressure 
over the vertical height of the cube is negligible). The pressure on the cube is 

defined as the normal force per unit area nFp
A

=

The SI unit of pressure is N/m2 and is given the name Pascal (Pa).

The change in pressure P∆ is called the volume stress and the fractional change 
in volume V / V∆  called the volume strain. The bulk modulus B of the material is 
defined as

	 Bulk modulus = Volumestress
Volume strain

	 or	 PB
V / V
−∆

=
∆ 	

The negative sign is included to make B a positive number since an increase in pressure ( )p 0∆ >  leads to a 
decrease in volume ( )V 0∆ < .

The inverse of B is called the compressibility factor 1k
B

=  

Elastic properties of matter

Sate		 Shear Modulus	 Bulk Modulus

Solid		 Large			   Large

Liquid	 Zero				   Large

Gas		  Zero				   Small

Fn

Fn
Fn

fn

Fn

Fn

Figure 8.43: Determination 
of bulk modulus of an 

object
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Bulk Modulus has very important applications in case of fluids. Actually, it has various applications in 
adiabatic expansion of gases. Also, while calculating speed of sound through air, one would find that 
it would come out to be directly proportional to square root of bulk modulus of air. (In general, speed 
of sound depends of elastic properties of matter. A more general statement is that mechanical waves’ 
speed depends on elastic properties of matter)

B Rajiv Reddy (JEE 2012, AIR 11)

Illustration 12: Find the decrease in the volume of a sample of water from the following data. Initial volume = 1000 
cm3, initial pressure = 105 Nm–2, final pressure = 106 Nm–2, compressibility of water = 50 × 10–11 m2N–1. (JEE MAIN)

Sol: Using the formula for bulk modulus deduce the value for decrease in volume.

The change in pressure = ∆P = 106 Nm–2 – 105 Nm–2 = 9 × 105 Nm–2.

Compressibility = 1 V / V
Bulkmodulus P

∆
= −

∆
 or,	

50 × 10–11 m2N–1 = – 
3 3 5 2

V
(10 m ) (9 10 Nm )− −

∆

× ×

or, ∆V = – 50 × 10–11 × 10–3 × 9 × 105 m3 = – 4.5 × 10–7 m3 = – 0.45 cm3.

Thus the decrease in volume is 0.45 cm3.

A solid will have all the three moduli of elasticity Y, B and η. But in case of a liquid or a gas, only B can 
be defined because a liquid or a gas cannot be framed into a wire or no shear force can be applied on 

them. For a liquid or a gas, 	 dPB
dV / V

 −
=  
 

So, instead of P, we are more interested in change in pressure dP.

In case of a gas,	 B = XP

Anand K (JEE 2011, AIR 47)

5. THE STRESS-STRAIN CURVE

The stress-strain graph of a ductile metal is shown in Fig. 8.44 
Initially, the strain graph is linear and it obeys the Hooke’s Law up 
to the point P called the proportional limit. After the proportional 
limit, the σ − ε  graph is non-linear but it still remains elastic up 
to the yield point Y where the slope of the curve is zero. At 
the yield point, the material starts deforming under constant 
stress and it behaves like a viscous liquid. The yield point is the 
beginning of the plastic zone. After the yield point, the material 
starts gaining strength due to excessive deformation and this 
phenomenon is called strain hardening. The point U shows the 

Plastic zone

Elastic

zone

P
Y

U

B

Stress( )�

(Nm )
-2

10
B

0.01 0.2 Strain( )�

Figure 8.44



8.82  |   Simple Harmonic Motion and Elasticity

PLANCESS CONCEPTS

PLANCESS CONCEPTS

ultimate strength of the material. It is the maximum stress that the material can sustain without failure. After the 
point U the curve goes down towards the breaking point B because the calculation of the stress is based on the 
original cross-sectional area whereas the cross-sectional area of the sample actually decreases.

It is generally thought that strain results from stress, or many say that Hooke’s law states wrong statement 
that stress is directly proportional to strain.

However, we must not worry because Hooke’s law is correct. Going deeper to a microscopic level will 
help us understand better. It appears that external force cause strain in the body on which it is applied. 
However, stress is defined as restoring force (at equilibrium) per unit area. There can be no restoring 
force if there is no strain. Hence, strain is the cause and not stress. The only glitch here is that restoring 
force is equal to the force applied because (again not to forget) body is in equilibrium. So, it creates 
confusion but we must not take it for granted and understand the minute concepts. 

Yashwanth Sandupatla (JEE 2012, AIR 821)

6. RELATION BETWEEN LONGITUDINAL STRESS AND STRAIN

For small deformations, longitudinal stress is directly 
proportional to the longitudinal strain. What if the 
deformation is large? The stress-strain relation gets more 
complicated in that case and depends on the material 
under study. Let’s take a metal wire and a rubber piece as 
example and study the same. 

Metal Wire: The Fig. 8.45 shows the relation between 
stress and strain as the deformation gradually decreases 
in a stretched wire. 

Up to a strain < 0.01, Hooke’s law is valid and Young’s 
modulus is defined. Point a represents proportional limit 
up to which stress is proportional to strain. 

Point b is called the yield point or elastic limit up to which 
stress is not proportional to strain (a to b) but elasticity still 
holds true. 

The wire shows plastic behavior after point b where there 
is a permanent deformation in the wire and it does not 
return back to its original dimensions. 

The wire breaks at d which is the fracture point if stretched beyond point c. The corresponding stress is called 
breaking stress.

If large deformation takes place between the elastic limit and the fractured point, the material is called 
ductile. If it breaks soon after the elastic limit is crossed, it is called brittle.

Yashwanth Sandupatla (JEE 2012, AIR 821)

Plastic behavior

Elastic behavior

d

b c

a

Stress

Permanent set

0.01 0.30 Strain�

a=Proportional limit

b=Elastic limit

d=Fracture point

Figure 8.45: Graph of Stress versus Strain
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Rubber: Vulcanized rubber shows a very different stress-strain behavior. It 
remains elastic even if it is stretched to 8 times its original length. There are 
2 important phenomena to note from the above Fig 8.46. Firstly, stress is 
nowhere proportional to strain during deformation. Secondly, when external 
forces are removed, body comes back to original dimensions but it follows 
a different retracing path.

The work done by the material in returning to its original shape is less than 
the work done by the deforming force when it was deformed. A particular 
amount of energy is, thus, absorbed by the material in the cycle which 
appears as heat. This phenomenon is called elastic hysteresis.

Elastic hysteresis has an important application in shock absorbers.

The material which has smaller value of Y is more ductile, i.e., it offers less resistance in framing it into 
a wire. Similarly, the material having the smaller value of B is more malleable. Thus, for making wire, we 
choose a material having less value of Y.

GV Abhinav (JEE 2012, AIR 329)

7. POISSON’S RATIO

When a longitudinal force is applied on a wire, its length increases but its radius decreases. Thus two strains are 
produced by a single force.

(a) Longitudinal strain = ∆l
l

 and (b) Lateral strain = R
R
∆

The ratio of these two strains is called the Poisson’s ratio.

Thus, the Poisson’s ratio Lateral strain R / R
Longitudinal strain /

∆
σ = = −

∆l l

Negative sign in σ indicates that radius of the wire decreases as the length increases.

Relation between Y, B, η and σ : Following are some relations between the four

(a) YB
3(1 3 )

=
− σ

 	 (b) Y
2(1 )

η =
+ σ

	  (c) 3B 2
2 6B

− η
σ =

η +
 	 (d) 9

Y
 = 1

B
 + 3

η

Anurag Saraf (JEE 2011, AIR 226)

8. ELASTIC POTENTIAL ENERGY OF A STRAINED BODY

When a body is in its natural shape, potential energy due to molecular forces is minimum and assumed to be zero. 
When deformed, internal forces come into existence and work is done against these forces. Thus potential energy 
of the body increases. This is called elastic potential energy. 

Figure 8.46: Stress versus Strain curve 
for rubber

Strain

Strain2 4 6 8
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8.1 Work Done in Stretching a Wire
If a force F is applied along the length of a wire of length l, area of cross-section A and Young’s modulus Y, such 

that the wire is extended through a small length x, then FY
Ax

=
l  or YAxF =

l
The work done, W, in extending the wire through length Dl is given by 

0

W Fdx
∆

= ∫
l

 
2

0

YA YA( )xdx
∆ ∆

= =∫
l l

l 2l ( )1 Y A
2
  ∆ ∆

=   
  

l l l
l l

= 1
2

 × stress × strain × volume

Also W = Y A1
2
 ∆
 
 

l
l

 1 force extension
2

∆ × ×l =

This work is stored in the wire as elastic potential energy.

Work done per unit volume = ( )2  Y  strain1 Y 1 1 xstressxstrain
2 2 2
 ∆ ∆

× = = 
 

× ×
l l

l l
.

Illustration 13: Spring is stretched by 3 cm when a load of 5.4 × 106 dyne is suspended from it. Work done will be

(A) 8.1 × 106 J			   (B) 8 × 106 J		  (C) 8.0 × 106 ergs		  (D) 8.1 × 106 ergs	�  (JEE MAIN)

Sol: Work done in stretching the spring is equal to the elastic potential energy stored in the spring.

(D) W = 1
2

 × load × elongation	 W = 8.1 × 106 ergs =0.81 J

Illustration 14: A steel wire of length 2.0 m is stretched through 2.0 mm. The cross-sectional area of the wire is  
4.0 mm2. Calculate the elastic potential energy stored in the wire in the stretched condition. Young modulus of steel 
= 2.0 × 1011 N/m2.� (JEE MAIN)

Sol: We know the formula to find the elastic potential energy stored per unit volume of the wire. Calculate the 
volume of the wire and find the energy stored in the entire wire.

The strain in the wire ∆l
l

 = 2.0mm
2.0m

 = 10–3.

The stress in the wire = Y × strain = 2.0 × 1011 N m–2 × 10–3 = 2.0 × 108 N/m2.

The volume of the wire = (4 × 10–6 m2) × (2.0 m) = 8.0 × 10–6 m3.

The elastic potential energy stored 	 = 1
2

 × stress × strain × volume 

							       = 1
2

 × 2.0 × 108 Nm–2 × 10–3 × 8.0 × 10–6 m3 = 0.8 J

This energy can also be thought of as elastic potential energy of a spring. You just need to calculate 
spring constant.

A simple way would be considering ∆l=x and rearranging terms of Hooke’s law in the form of F=-kx. 

Remember F here is restoring force. Now energy is simply 21 kx
2

Vijay Senapathi (JEE 2011, AIR 71)
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9. THERMAL STRESS AND STRAIN

A body expands or contracts whenever there is an increase or decrease in 
temperature. No stress is induced when the body is allowed to expand and 
contract freely. But when deformation is obstructed, stresses are induced. 
Such stresses are called thermal/ temperature stresses. The corresponding 
strains are called thermal/temperature strains.

Consider a rod AB fixed at two supports as shown in Fig. 8.47.

Let	 l = Length of rod

	 A = Area of cross-section of the rod

	 Y = Young’s modulus of elasticity of the rod

And	 α = Thermal coefficient of linear expansion of the rod

Let the temperature of the rod is increased by an amount t. The length of the rod would had increased by an 
amount Dl, if it were not fixed at two supports. Hence Dl = lat

But since the rod is fixed at the supports, a compressive strain will be produced in the rod. Because at the increased 
temperature, the natural length of the rod is l + Dl, while being fixed at two supports its actual length is l. 

Hence, thermal strain t t∆ α
ε = = = α

l l
l l

	 or	 ε = at

Therefore, thermal stress σ = Yε 	 (stress = Y × strain)

or	 σ = Yat	 or force on the supports,  F = σA = YAat

This force F is in the direction shown:

Illustration 16: A wire of cross sectional area 3 mm2 is just stretched between two fixed points at a temperature of 
20°C. Determine the tension when the temperature falls to 20°C. Coefficient of linear expansion α = 10–5 / °C and 
Y = 2 × 1011 N/m2. � (JEE MAIN)

(A) 120 kN	 (B) 20 N		  (C) 120 N		  (D) 12 N

Sol: Thermal stress is equal to product of young’s modulus and thermal strain. Tension is product of area of cross-
section and stress.

(C) F = Y A α Dt = 2 × 1011 × 3 × 10–6 × 10–5 × 20;	 F = 120 N

10. DETERMINATION OF YOUNG’S MODULUS IN LABORATORY

The given Fig. 8.49 shows an experimental set up of a simple method to determine 
Young’s modulus in laboratory. A 2-3 metres long wire is suspended from a fixed 
support. It carries a graduated scale and below it a heavy fixed load. This load 
keeps the wire straight. Wire A is the reference wire whereas wire B serves as the 
experimental wire. A Vernier scale is placed at the end of the experimental wire. 

Now the stress due to the weight Mg at the end is

Stress = 
2

Mg
rπ

	 and	 strain =
L
l ; Thus,	 Y = 

2

MgL
rπ l

 

All the quantities on the right-hand side are known and hence Young’s modulus Y 
may be calculated. 

B

l, , Y, A�

A

B

l, , Y, A�

�l
Figure 8.47: Thermal expansion  

of a rod

Figure 8.48: Thermal stress on 
a rod

F F F F

BA

��

Figure 8.49: Searle's method for 
determination of young's modulus
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Figure 8.50

Figure 8.51

PROBLEM-SOLVING TACTICS

•• Be careful while using the Hooke’s law of elasticity. Always remember that this law is not valid for an elastic 
material when it is stretched beyond its elastic limit. Stress is proportional to strain only when the material is 
stretched up to a certain limit.

•• Always keep the stress-strain graph in mind while solving elasticity problems. 

•• The extent of ductility of a material can be calculated using the strain formulae. Greater the elongation, greater 
the ductility of the material. This concept can be used in questions where one is asked to arrange the elastic 
material in the order of increasing brittleness or ductility. 

•• Conservation of energy principle can be used to solved many problems where elastic potential energy gets 
converted to other forms of energy in the given problem system. 

•• Elongation and compression can be thought as analogous to a spring (refer to Plancess concept to how to do 
it) in appropriate limits.

•• Direct questions may be asked on relation between Poisson’s ratio and modulus of elasticity, so it would be 
nice if you learn them.

FORMULAE SHEET

Elasticity:

Stress:	 Stress (σ) = Restoring force
Area

SI units = N/m2 

Normal/ longitudinal stress	 sn = nF
A

Fn is the normal force

A is the cross-sectional area

Tangential / shearing stress	 st = tF
A

Ft is the tangential force

Volume stress				    sV = F
A

Note: This is the stress developed when body is immersed in a liquid.

Strain:	 Longitudinal strain	  ∆
ε =

l
l

 	

Volumetric strain 			   V
V
∆

ε =

D  and DV are change in length and volume 
respectively.

Shearing strain 			   X
X
∆

ε =

Ft

Fn

A

D

B

C

F

F F

F

A A’

x

D C

�x
B B’

�
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Hooke’s Law:	 stress ∝ strain

stress = (E) (strain)	 (E is modulus of elasticity)

E is constant for a particular type of strain for a particular material. SI unit of E is N/m2.

Young’s modulus of elasticity (Y)	 n(F / A)longitudinal stress
Y

Longitudinal strain ( / )
= =

∆l l

Bulk modulus of elasticity (B)	 Volumestress
B

Volume strain
−

=  = F / A
V / V
−
∆

 = P
V / V
−

∆

For a liquid or gas				    B = dp
(dV / V)

−

Compressibility = 
1 
 β 

Modulus of rigidity (η)	  shearing stress
shearing strain

η =  = tF / A
( x / x)∆

 = tF / A
θ

	(See Fig. 8.52)

Elastic potential energy stored per unit volume in a stretched wire

	 u = 1
2

 (stress x strain) 

Thermal stress and strain	 T∆
∈= = α∆

l
l

	
F FY

A A T
σ

= = =
∈ ∈ α∆

α is thermal coefficient of linear expansion of rod. DT is change in temperature of the rod.

Variation of density with pressure: As pressure on a body increases, its density also increases. When pressure 

increases by dp, the new density ρ’ in terms of the previous density ρ is	 '
dp1
B

ρ
ρ =

−
 where B is the Bulk modulus.

Poisson’s ratio: As the length of a wire of circular cross-section increases, its radius decreases.

Poisson’s ratio is defined as	 lateral strain
longitudinal strain

σ =  = R / R
/

∆
−
∆l l

Relation between Y, B, η and σ 

YB
3(1 2 )

=
− σ

;		  σ = 3B 2
2 6B

− η
η +

;		  Y
2(1 )

η =
+ σ

;		  9 1 3
Y B
= +

η

B

l, , y, A�

A

Figure 8.52
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Find

(a) The energy density of wire,

(b) The elastic potential energy stored in the wire.

Sol: Find the stress and strain and use the formula for 
energy density. Product of energy density and volume 
is energy stored in entire wire.

Here, l = 4.0 m, Dl = 2 × 10–3 m, 	

A = 2.0 × 10–6 m2, Y = 2.0 × 1011 N/m2 

(a) The energy density of stretched wire

	 U = 1
2

× stress × strain = 1
2

 × Y × (strain)2 

	 = 1
2

 × 2.0 × 1011 × 
23(2 10

4

− ×
  
 

	 = 0.25 × 105 = 2.5 × 104 J/m3. 

(b) Elastic potential energy = energy density × volume= 
2.5 × 104 × (2.0 × 10–6) × 4.0 J

= 20 × 10–2 = 0.20 J 

Example 4: The bulk modulus of water is 

2.3 × 109 N/m2.

(a) Find its compressibility.

(b) How much pressure in atmosphere is needed to 
compress a sample of water by 0.1%?

Sol: Compressibility is inverse of bulk modulus. From 
the formula for bulk modulus deduce the change 
in pressure required to produce the given change in 
volume.

Here, B = 2.3 × 109 N/m2 

	

9

5

2.3 10
atm

1.01 10

×
=

×
 = 2.27 × 104 atm

(a) Compressibility = 1
B

 

	 = 
4

1
2.27 10×

= 4.4 × 10–5 atm–1 

(b) Here, V 0.1%
V
∆

= −  = – 0.001

Required increase in pressure,

JEE Main/Boards

Example 1: A steel wire of length 4 m and diameter 
5 mm is stretched by 5 kg-wt. Find the increase 
in its length, if the Young’s modulus of steel is  
2.4 × 1012 dyne/cm2.

Sol: From the formula for Young’s modulus deduce the 
change in length.

Here, l = 4 m = 400 cm, 2r = 5 mm

or r = 2.5 mm = 5mm

F = 5 kg-wt = 5000 g-wt = 5000 × 980 dyne

Dl = ?, Y = 2.4 × 1012 dyne/cm2 

2

F lAs Y
lr

= ×
∆π

2 12

(5000 980) 400
l

(22 / 7) (0.25) 2.4 10

× ×
∆ =

× × ×
 = 0.0041 cm

l∆  = 4.1× 10-5 m

Example 2: One end of a wire 2 m long and 0.2 cm2 in 
cross section is fixed in a ceiling and a load of 4.8 kg is 
attached to the free end. Find the extension of the wire. 
Young’s modulus of steel = 2.0 × 1011 N/m2.

Take g = 10 m/s2.

Sol: From the formula for Young’s modulus deduce the 
extension in wire.

	 We have stress T / AY
strain / L

= =
l

With symbols having their usual meanings. The 

extension is TL
AY

l =

As the load is in equilibrium after the extension, the 
tension in the wire is equal to the weight of the load  
= 4.8 kg × 10 ms–2 = 48 N

Thus, 
4 2 11 2

(48N)(2m)

(0.2 10 m ) (2.0 10 Nm )− −× × ×
l =

	 = 2.4 × 10–5 m.

Example 3: A steel wire 4.0 m in length is stretched 
through 2.0 mm. The cross-sectional area of the wire is 
2.0 mm2. If Young’s modulus of steel is 2.0 × 1011 N/m2. 

Solved Examples
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DP = B × V
V

 ∆
− 
 

= 2.27 × 104 × 0.001= 22.7 atm 

Example 5: One end of a nylon rope of length 4.5 
m and diameter 6 mm is fixed to a tree-limb. A 
monkey weighing 100 N jumps to catch the free end 
and stays there. Find the elongation of the rope and 
the corresponding change in the diameter. Young’s 
modulus of nylon = 4.8 × 1011 Nm–2 and Poisson ratio 
of nylon = 0.2.

Sol: From the formula for Young’s modulus deduce 
the change in length of the rope. From the formula for 
Poisson ratio deduce the change in diameter.

As the monkey stays in equilibrium, the tension in the 
rope equals the weight of the monkey. Hence,

Y = stress T / A
strain / L

=
l

 or TL=
AY

l

or, 	 elongation 

l = 
6 2 11 2

(100 N) (4.5 m)

( 9 10 m ) (4.8 10 Nm )− −

×

π× × × ×

 = 3.32 × 10–5 m

Again, Poisson ratio  = d / d
/ L

∆
l

= ( d)L
d

∆
l

or, 
5 3

d 4.5 m
0.2

(3.32 10 m) (6 10 m)− −

∆ ×
=

× × ×

or, Dd = 
80.2 6 3.32 10 m

4.5

−× × × = 8.8 × 10–9 m

Example 6: A solid lead sphere of volume 0.5 m3 
is taken in the ocean to a depth where the water 
pressure is 2 × 107 N/m2. If the bulk modulus of lead is  
7.7 × 109 N/m2. Find the fractional change in the radius 
of the sphere.

Sol: From the formula for bulk modulus deduce the 
change in volume for the given increase in pressure.

	 34V r
3

= π  ⇒ r 1 V
r 3 V
∆ ∆

=

Bulk modulus K = – P
( V / V)

∆
∆

or V
V
∆  = – P

K
∆

or r
r
∆  1 P

3 K
∆

= −  = – 
7

9

2 101
3 7.7 10

×
×

×

	 = – 0.87 × 10–3.

The negative sign indicates that the radius decreases.

Example 7: Find the greatest length of steel wire that 
can hang vertically without breaking. Breaking stress of 
steel =8.0 × 108 N/m2. 

Density of steel = 8.0 × 103 kg/m3. 

Take g = 10 m/s2.

Sol: Breaking stress gives the maximum weight per unit 
area of cross-section that the wire can withstand.

Let l be the length of the wire that can hang vertically 
without breaking. Then the stretching force on it is 
equal to its own weight. If therefore, A is the area of 
cross-section and ρ is the density, then

Maximum stress (sm) = weight
A

forcestress
area

 
= 

 
 or	 m

(A )g
A
ρ

σ =
l

\	 m

g
σ

=
ρ

l  Substituting the values

8

3

8.0 10

(8.0 10 )(10)

×
=

×
l  = 104 m 

Example 8: A copper wire of negligible mass, length 1 
m and cross-sectional area 10–6 m2 is kept on a smooth 
horizontal table with one end fixed. A ball of mass 1 
kg is attached to the other end. The wire and the ball 
are rotating with an angular velocity of 20 rad/s. If the 
elongation in the wire is 10–3 m, obtain the Young’s 
modulus of copper. If on increasing the angular velocity 
to 100 rad/s, the wire breaks down, obtain the breaking 
stress.

Sol: The stress developed in the wire will be due to 
the centrifugal force. Ratio of stress and strain is the 
Young’s modulus. The breaking stress will be due to the 
centrifugal force at increased angular velocity.

The stretching force developed in the wire due to 
rotation of the ball is

F = mrw2 = 1 × 1 × (20)2 = 400 N

Stress in the wire = F
A

 = 
6

400
10−

 N/m2 Strain in the wire 

= 
310

1

−

 = 10–3 

StressY
Strain

= = 
6 3

400
10 10− −×

 = 4 × 1011 N/m2 
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Breaking stress = 
2

6

1 1 (100)

10−

× ×  = 1010 N/m2.

Example 9: (a) A wire 4 m long and 0.3 mm in diameter 
is stretched by a force of 100 N. If extension in the wire 
is 0.3 mm, calculate the potential energy stored in the 
wire.

(b) Find the work done in stretching a wire of cross-
section 1 mm2 and length 2 m through 0.1 mm, Young’s 
modulus for the material of wire is 2.0×1011 N/m2.

Sol: Work done in stretching the wire is equal to the 
elastic potential energy stored in the wire. (a) Energy 
stored 

1U (stress)(strain)(volume)
2

=

or	 1 FU (A )
2 A
  ∆

=   
  

l l
l

= 1 F
2

⋅∆l

= ( )( )31 100 0.3 10
2

−× = 0.015 J 

(b) Work done = potential energy stored	

= 21 k( )
2

∆l  = ( )21 YA
2
 

∆ 
 

l
l

YAas k
 

= 
 l

Substituting the values, we have

11 6(2.0 10 )(10 )1W
2 (2)

−×
= (0.1 × 10–3)3 

= 5.0 × 10–4 J	

Example 10: A steel wire of diameter 0.8 mm and 
length 1 m is clamped firmly at two points A and B 
which are 1 m apart and in the same horizontal plane. 
A body is hung from the middle point of the wire such 
that the middle point sags 1 cm lower from the original 
position. Calculate the mass of the body. Given Young’s 
modulus of the material of wire = 2 × 1012 dynes/cm2.

Sol: Tension in the wire is the product of stress and 
area of cross-section. Stress is the product of Young’s 
modulus and strain. The vertical components of 
tensions in the two parts of the wire will balance the 
weight of the body hung from the wire.

Let the body be hung from the middle point C so that it 
sags through 1cm to the point D as shown in the figure.

A

T

D

T

B
C

��

m

mg

∴ AD2 = AC2 + CD2 = (50)2 + (1)2 

or AD = 50.01 cm

Increase in length = 0.01 cm

Strain = 40.01 2 10
50

−= ×

Stress = 2 × 1012 × 2 × 10–4 

∴ Stress = 4 × 108 dynes/cm2 

Tension T = Stress × Area of cross-section

	 = 4 × 108 × π × (0.08)2 

Since the mass m is in equilibrium

mg = 2T cos θ or m = 2Tcos
g

θ

= 
8 22 4 10 (0.08) (1 / 50.01)

980
× × ×π × = 82 gm. 

JEE Advanced/Boards

Example 1: A light of rod of length 200 cm is suspended 
from the ceiling horizontally by means of two vertical 
wires of equal length tied to its ends. One of the wires 
is made of steel and is of cross-section 0.1 sq cm  
and the other is of brass of cross-section 0.2 sq. cm. 
Find the position along the rod at which a weight may 
be hung to produce (a) equal stresses in both wires and 
(b) equal strains in both wires.

(Ybrass = 10 × 1011 dynes/cm2. 

Ysteel = 20 × 1011 dynes/cm2).

Sol: Net torque of the tensions in the wires about the 
point of suspension of the weight on the rod must be 
zero.

Steel

wire

T1

C
A B

T2

Brass

wire

x (200 x)
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Let AB be the rod and let C be the point at which the 
weight is hung.

(a) Stress in steel wire = 1T
0.1

Stress in brass wire = 2T
0.2

As the two stresses are equal,

	 1 2T T
0.1 0.2

=  or 1

2

T
T

 = 0.5	�  … (i)

Taking moments about C,

T1 = T2 (200 – x) or 1

2

T 200 x
T x

−
=  	�  … (ii) 

Equations (i) and (ii) give

	 200 x
x
−  = 0.5 

Or x = 133.3 cm = 1.33 m

(b) Strain = Stress T
Y AY

=

As the strain in both wires are equal,

1 2

1 1 2 2

T T
A Y A Y

=  or 1 1 1

2 2 2

T A Y
T A Y

=  = 
11

11

0.1 20 10

0.2 10 10

× ×

× ×

∴ T1 = T2

Now, T1x = T2 (200 – x) ⇒ x = 200 – x 

or x = 100 cm =1 m.

Example 2: A rod AD, consisting of three segments AB, 
BC and CD joined together, is hanging vertically from 
a fixed support at A. The lengths of the segments are 
respectively 0.1 m, 0.2 m and 0.15 m. The cross-section 
of the rod is uniformly equal to 10–4 m2. A weight of 10 
kg is hung from D. Calculate the displacements of the 
points B, C and D using the data on Young’s moduli 
given below (neglect the weight of the rod). 

YAB = 2.5 × 102 N/m, 

YBC = 4.0 × 102 N/m and 

YCD = 1.0 × 102 N/m

Sol: From the formula for Young’s modulus deduce the 
elongation in each segment of the wire. 

	 We know that 

4 10

10 9.8 0.1mg
AY 10 2.5 10−

× ×
∆ = =

× ×

ll = 3.92 × 10–6 m

This is the displacement of B. 

A A’

B

C

D

B’

C’

D’

l =0.1m1

l =0.2m2

l =0.15m3

�/A1

� �l + l1 2

� � �l + l + l1 2 3

For segment BC: 

2 4 10

10 9.8 0.2

10 4.0 10−

× ×
∆ =

× ×
l = 4.9 × 10–6 m

Displacement of C: = Dl1 + Dl2 

= 4.9 × 10–6 m

For segment CD: 

3 4 10

10 9.8 0.15

10 1.0 10−

× ×
∆ =

× ×
l =14.7 × 10–6 m

Displacement of D = Dl1 + Dl2 + Dl3 

 	  = 23.52 × 10–6 m.

Example 3: A steel rod of length 6.0 m and diameter 
20 mm is fixed between two rigid supports. Determine 
the stress in the rod, when the temperature increases 
by 80° C if

6.0m

(a) The ends do not yield

(b) The ends yield by 1 mm.

Take Y = 2.0 × 106 kg/cm2 

And α = 12 × 10–6 per °C.

Sol: Rise in temperature causes thermal strain and 
thermal stress. Use the formula for coefficient of 
thermal expansion to obtain thermal strain. Thermal 
stress is the product of Young’s modulus and thermal 
strain.

Given, length of the rod l = 6 m
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Diameter of the rod d = 20 mm = 2 cm

Increase in temperature t = 80°C

Young’s modulus Y = 2.0 × 106 kg/cm2 

And thermal coefficient of linear expansion

α = 12 × 10–6 per °C

(a) When the ends do not yield

Let,	 s1 = stress in the rod

Using the relation σ = atY

∴ s1 = (12 × 10–6) (80) (2 × 106)

= 1920 kg/cm2 =19.2 ×  106 N

(b) When the ends yield by 1 mm

Increase in length due to increase in temperature Dl = 
lat

Of this 1mm or 0.1 cm is allowed to expand. Therefore, 
net compression in the rod

Dlnet = (lt – 0.1)

or compressive strain in the rod,

netl 0.1t
l l

∆  
ε = = α − 

 

\ Stress s2 = Yε = Y 
0.1t
l

 
α − 
 

Substituting the values,

s2 = 2 × 106 6 0.112 10 80
600

− 
× × − 

 

= 1587 kg/cm2 = 15.8 ×  106 N

Example 4: Two blocks of masses 1 kg and 2 kg are 
connected by a metal wire going over a smooth pulley 
as shown in figure The breaking stress of the metal is  
2 × 109 Nm–2. What should be the minimum radius of 
the wire used if it is not to break? 

Take g = 10 ms–2. 

1 kg

2 kg

Sol: Find the tension in the metal wire due to the masses 
connected to it. The stress due to tension should not 
exceed the breaking stress.

The stress in the wire

= Tension
Area of crosssection

To avoid breaking, this stress should not exceed the 
breaking stress.

Let the tension in the wire be T. The equations of motion 
of the two blocks are,

T – 10 N = (1kg) a and	 20 N – T = (2kg) a

Eliminating a from these equations,

	 T = (40/3) N

The stress = 
2

(40 / 3) N

rπ
If the minimum radius needed to avoid breaking is r,

	 2 × 109 
2

N
m

 = 
2

(40 / 3) N

rπ

Solving this,	 r = 4.6 × 10–5 m. 

Example 5: A steel rod of cross-sectional area 16 cm2 
and two brass rods each of cross-sectional area 10 cm2 
together support a load of 5000 kg as shown in figure 
Find the stress in the rods. Take Y for steel = 2.0 × 106 
kg/cm2 and for brass = 1.0 × 106 kg/cm

20cm

B
ra

ss

5000kg

Brass Steel 30m

Sol: Compression in the length of steel and brass rods 
is equal. From the formula for Young’s modulus deduce 
the compression in length of each rod and equate them 
to get the relation between respective stresses.

Given area of steel rod AS = 16 cm2 

Area of two brass rods

		  AB = 2 × 10 = 20 cm2 

Load,	 F = 5000 kg

Y for steel	YS = 2.0×106 kg/cm2 Y
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for brass	 YB = 1.0×106 kg/cm2

Length of steel rod lS = 30 cm

Length of steel rod lB = 20 cm

Let	 sS = stress in steel

and	 σB = stress in brass

Decrease in length of steel rod = decrease in length of 
brass rod

or	 S B
S B

S BY Y
σ σ

× = ×l l

or	 sS = S B
B

B S

Y
Y

× ×σ
l
l

 

= 
6

B6

2.0 10 20
301.0 10

×
× ×σ

×

\	 sS = 4
3

 σB � …. (i)

Now, using the relation,

F = ssAs + σBAB 	or 

5000 = sS × 16 + σB × 20 � …. (ii)

Solving eq. (i) and (ii), we get

σB =120.9 kg/cm2 and	 sS =161.2 kg/cm2 

Example 6: A sphere of radius 0.1 m and mass 8π kg 
is attached to the lower end of a steel wire length 5.0 
m and diameter 10–3 m. The wire is suspended from 
5.22 m high ceiling of a room. When sphere is made 
to swing as a simple pendulum, it just grazes the floor 
at its lowest point. Calculate velocity of the sphere at 
the lowest position. Young’s modulus of steel is 1.994 
× 1011 N/m2.

Sol: The elongation in the wire is known, thus the 
corresponding stress can be calculated. The stress in 
turn gives the tension in the wire. At the lowest point 
the net acceleration of the sphere is centripetal, i.e. 
directed vertically upwards. Apply Newton’s second law 
at the lowest point to find the speed of the sphere.

Let Dl be the extension of wire when the sphere is at 
mean position. Then, we have

T5.22m

l + Dl + 2r = 5.22

or	 Dl = 5.22 – l – 2r

	 5.22 – 5 – 2 × 0.1 = 0.02 m

Let T be the tension in the wire at mean position during 

oscillations, T / AY
/

=
∆l l

∴ 	 T = YA∆l
l

 = 
2Y rπ ∆l
l

Substituting the values, we have
11 3 2(1.994 10 ) (0.5 10 ) 0.02

T
5

−× ×π× × ×
=

= 626.43 N

The equation of motion at mean position is,

	 T – mg = 
2mv

R
Hence,	 R = 5.22 – r = 5.22 – 0.1 = 5.12 m

and	 m = 8π kg = 25.13 kg

Substituting the proper values in Eq. (i), we have

(626.43) – (25.13 × 9.8) = 
2(25.13)v

5.12
Solving this equation, we get	 V = 8.8 m/s

Example 7: A thin ring of radius R is made of a material 
of density ρ and Young’s modulus Y. If the ring is rotated 
about its center in its own plane with angular velocity 
ω, find the small increase in its radius.

Sol: As the ring rotates each element of the ring of 
infinitesimal length experiences a centrifugal force, due 
to which the ring slightly expands, thus increasing its 
radius. The longitudinal strain in the ring produces a 
tensile stress or tension in the ring.

Consider an element PQ of length dl. Let T be the 
tension and A the area of cross-section of the wire.

Mass of element dm = volume × density = A (dl)ρ 

The component of T, towards the center provides the 
necessary centripetal force

\	 22Tsin (dm)R
2

 θ
= ω 

 
 � … (i)

For small angles (d / R)sin
2 2 2
θ θ
≈ =

l

Substituting in eq. (i), we have

2dT. A(d ) R
R

= ρ ω
l l 	 or	 T = Arw2R2 
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Let DR be the increase in radius,

Longitudinal strain 

(2 R) R
2 R R

∆ ∆ π ∆
= =

π
l

l

Tcos( /2)�Tcos( /2)�

( /2)� ( /2)�

F

O

�

T T

Now, T / AY
R / R

=
∆

∴ 
2 2TR (A R )RR

AY AY
ρω

∆ = = or DR = 
2 3R
Y

ρω

Example 8: A member ABCD is subjected to point 
loads F1, F2, F3 and F4 as shown in figure Calculate the 
force F2 for equilibrium if F1 = 4500 kg, 

F3 = 45000 kg and F4 =13000 kg.

Determine the total elongation of the member, 
assuming modulus of elasticity to be 2.1 × 106 kg/cm2.

6.25cm
2

25cm
2

A

B C

D
F1 F2 F3

12.5cm
2

F4

120cm 60cm 90cm

Sol: Find the tension in each segment of the member 
ABCD. From the formula of Young’s modulus, find the 
elongation in each segment.

Given

Area of part AB, A1 = 6.25 cm2 

Area of part AB, A2 = 25 cm2 

Area of part CD, A3 = 12. 5 cm2 

Length of part AB, l1 = 120 cm

Length of part BC, l2 = 60 cm

Length of part CD, l3 = 90 cm

Young’s modulus of elasticity 

Y = 2.1 × 106 kg/cm2 

Magnitude of the force F2 for equilibrium

The magnitude of force F2 may be found by equating 
the forces acting towards right to those acting towards 
left,

	 F2 + F4 = F1 + F3 

	 F2 + 13000 = 4500 + 45000

\	 F2 = 36500 kg 

Total Elongation of the member

For the sake of simplicity, the force of 36500 kg (acting 
at B) may be split up into two forces of 4500 kg and 
32000 kg. The force of 45000 kg acting at C may be split 
into two forces of 32000 kg and 13000 kg. Now, it will 
be seen that the part AB of the member is subjected 
to a tension of 4500 kg, part BC is subjected to a 
compression of 32000 kg and part CD is subjected to a 
tension of 13,000 kg. Using the relation.

3 31 1 2 2

1 2 3

FF F1=
Y A A A
 

∆ − +  
 

ll l
l  

With usual notation

6

1= x
2.1 10

4500 120 32000 60 13000 90
cm

6.25 25 12.5

∆
×

 × × ×
− + 

 

l

= 0.049 cm or Dl = 0.49 mm
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JEE Main/Boards

Exercise 1

Q.1 A wire is replaced by another wire of same length 
and material but of twice diameter.

(i) What will be the effect on the increase in its length 
under a given load?

(ii) What will be the effect on the maximum load which 
it can bear?

Q.2 Two wires are made of same metal. The length of the 
first wire is half that of the second wire and its diameter 
is double that of the second wire. If equal loads are 
applied on both wires, find the ratio of increase in their 
lengths.

Q.3 The breaking force for a wire is F. What will be the 
breaking forces for

(i) Two parallel wires of this size and

(ii) For a single wire of double thickness?

Q.4 What force is required to stretch a steel wire 1 sq. 
cm in cross section to double its length? Ysteel = 2 × 1011 
Nm–2.

Q.5 A structural steel rod has a radius of 10 mm and 
length of 1.0 m. A 100 kN force stretches it along its 
length. Calculate (a) stress, (b) elongation, and (c)% 
strain in the rod. Young’s modulus of structural steel is  
2.0 × 1011 Nm–2.

Q.6 Find the maximum length of a steel wire that can 
hang without breaking.

Breaking stress = 7.9×1012 dyne/cm2.

Density of steel = 7.9 g/cc.

Q.7 A spherical ball contracts in volume by 0.01%, 
when subjected to a normal uniform pressure of 100 
atmosphere. Calculate the bulk modulus of the material.

Q.8 A sphere contracts in volume by 0.02% when taken 
to the bottom of sea 1 km deep. Find bulk modulus 
of the material of sphere. Density of sea water is  
1000 kg/m3.

Q.9 A metal cube of side 10 cm is subjected to a 
shearing stress of 104 Nm–2. Calculate the modulus of 
rigidity if the top of the cube is displaced by 0.05 cm 
with respect to its bottom.

Q.10 Calculate the increase in energy of a brass bar 
of length 0.2 m and cross sectional area 1cm2 when 
combined with a load of 5kg weight along its length. 
Young’s modulus of brass = 1.0 × 1011 Nm–2 and g = 
9.8 ms–2.

Q.11 A wire 30m long and of 2 mm2 cross-section is 
stretched due to a 5kg-wt by 0.49 cm. Find

(i) The longitudinal strain

(ii) The longitudinal stress and

(iii) Young’s modulus of the material of the wire.

Exercise 2 

Single Correct Choice Type

Q.1 A wire of length 1m is stretched by a force of 10N. 
The area of cross-section of the wire is 2 × 10–6 m2 & γ 
is 2 × 1011 N/m2. Increase in length of the wire will be-

(A) 2.5 × 10–5 cm	 (B) 2.5 × 10–5 mm	

(C) 2.5 × 10–5 m	 (D) None

Q.2 A uniform steel wire of density 7800 kg/m3 is  
2.5 m long and weighs 15.6 × 10–3 kg. It extends by  
1.25 mm when loaded by 8kg. Calculate the value of 
young’s modulus for steel.

(A) 1.96 × 1011 N/m2 	 (B) 19.6 × 1011 N/m2 

(C) 196 × 1011 N/m2 	 (D) None

Q.3 The work done in increasing the length of a one 
meter long wire of cross-sectional area 1mm2 through 
1mm will be (Y = 2 × 1011 N/m2)

(A) 250 J	 (B) 10 J	 (C) 5 J	 (D) 0.1 J
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Q.4 The lengths and radii of two wires of same material 
are respectively L, 2L, and 2R, R. Equal weights are 
applied on them. If the elongations produced in them 
are l1 and l2 respectively, then their ratio will be

(A) 2 : 1	 (B) 4: 1	 (C) 8 : 1	 (D) 1 : 8

Q.5 What is the density of lead under a pressure of  
2.0×108 N/m2, if the bulk modulus of lead is 8.0×109 N/m2 
and initially the density of lead is 11.4g/cm3 ?

(A) 11.69g/cm3 		  (B) 11.92g/cm3 

 (C) 11.55g/cm3 	  (D) 11.862g/cm3

Q.6 A rubber rod of density 3 31.3 10 kg / m×  and 
Young’s modulus 6 26 10 N / m×  hangs from the ceiling 
of a room. Calculate the deviation in the value of its 
length from the original value 10m.

(A) 10.9 cm     (B) 5.8 cm      (C) 9.3 cm      (D) 10.6 cm

Q.7 A metal rod is trapped horizontally between two 
vertical walls. The coefficient of linear expansion of the 
rod is equal to 51.2 10 / C−×   and its Young’s modulus

11 22 10 N / m× . If the temperature of the rod is increased 
by 5°C, calculate the stress developed in it.

(A) 2.2×107 N/m2	 (B) 3.1 × 107 N/m2

(C) 1.2 × 107 N/m2	 (D) 1.2 × 104 N/m2

Previous Years’ Questions
Q.1 The following four wires are made of the same 
material. Which of these will have the largest extension 
when the same tension is applied?� (1981)

(A) Length=50 cm, diameter=0.5 mm
(B) Length=100 cm, diameter = 1 mm

(C) Length=200cm, diameter= 2 mm
(D) Length=300 cm, diameter=3 mm

Q.2 A given quantity of an ideal gas is at pressure p and 
absolute temperature T. The isothermal bulk modulus 
of the gas � (1998)

 (A) 2p
3

	 (B) p	 (C) 3p
2

	 (D) 2p

Q.3 The pressure of a medium is changed from 1.01 × 
105 Pa to 51.165 10 Pa×  and change in volume is 10% 
keeping temperature constant. The bulk modulus of 
the medium is�  (2005)

(A) 5204.8 10 Pa×  	 (B) 5102.4 10 Pa×

(C) 551.2 10 Pa×  	 (D) 51.55 10 Pa×

Q.4 A pendulum made of a uniform wire of cross 
sectional area A has time period T. When an additional 
mass M is added to its bob, the time period changes to 

MT . If the Young’s modulus of the material of the wire 

is Y then 1
Y

 is equal to: (g = gravitational acceleration

� (2015)

(A) 
2

MT Mg1
T A

   −     
		 (B) 

2
MT A1
T Mg

   −      

(C) 
2

M

T A1
T Mg

   −      

		 (D) 
2

MT A1
T Mg

   −     

JEE Advanced/Boards

Exercise 1 

Q.1 A rubber cord has a cross-sectional area 1mm2 
and total unstretched length 10.0 cm. It is stretched to  
12.0 cm and then released to project a missile of 
mass 5.0g. Taking Young’s modulus Y for rubber as 

8 25.0 10 N / m× . Calculate the velocity of projection.

Q.2 Calculate the pressure required to stop the increase 
in volume of a copper block when it is heated from 50oC 
to 70°C. Coefficient of linear expansion of copper = 8.0 × 
10‒6/°C and the bulk modulus of elasticity = 1011 N/m2.

Q.3 Calculate the increase in energy of a brass bar of 
length 0.2m and cross-sectional area 1.0 cm2, when 
compressed with a load of 5kg-weight along its 
length. Young’s modulus of brass 11 21.0 10 N / m= × and  
g = 9.8 m/s2.
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Exercise 2

Q.1 A steel wire of uniform cross-section of 2mm2 is 
heated upto 50° and clamped rigidly at two ends. If the 
temperature of wire falls to 30° then change in tension 
in the wire will be, if coefficient of linear expansion of 
steel is 1.1 × 10–5 /°C and young’s modulus of elasticity 
of steel is 2 × 1011 N/m2.

(A) 44 N	 (B) 88 N	 (C) 132 N	 (D) 22 N

Q.2 A metallic wire is suspended by suspending weight 
to it. If S is longitudinal strain and Y its young’s modulus 
of elasticity. Potential energy per unit volume will be

(A) 2 21 Y S
2

       (B) 21 Y S
2        

(C) 21 YS
2

       (D) 2YS2 

Q.3 The compressibility of water is 10 25 10 m / N−× . 
Find the decrease in volume of 100 ml of water when 
subjected to a pressure of 15 mPa.

(A) 0.75 ml 	 (B) 0.75 mm

(C) 0.75 mm	 (D) 7.5 mm

Q.4 The upper end of a wire 1 meter long and 2mm 
radius is clamped. The lower end is twisted through an 
angle of 45º. The angle of shear is

(A) 0.09°	 (B) 0.9°	 (C) 9°	 (D) 90°

Previous Years’ Questions 

Q.1 Two rods of different materials having coefficient 
of thermal expansion a1, a2 and Young’s moduli Y1, Y2 
respectively are fixed between two rigid massive walls. 
The rods are heated such that they undergo the same 
increase in temperature. There is no bending of the 
rods. If a1 : a2 = 2:3, the thermal stresses developed in 
the two roads are equal provided Y1 : Y2 is equal to�
�  (1989)

(A) 2 : 3	 (B) 1 : 1	 (C) 3 : 1	 (D) 4 : 9

Q.2 The adjacent graph shows extension (Dl) of a 
wire of length 1m suspended from the top of a roof 
at one end and with a load W connected to the 
other end. If the cross-sectional area of the wire is  
10–6m2, calculate from the graph the Young’s modulus 
of the material of the wire.� (2003)

4

3

2

1

20 40 60 80
W(N)

(A) 2 × 1011 N/m2 	 (B) 2 × 10–11 N/m2

(C) 2 × 1012 N/m2 	 (D) 2 × 1013 N/m2 

Q.3 In Searle’s experiment, which is used to find Young’s 
modulus of elasticity, the diameter of experimental 
wire is D = 0.05 cm (measured by a scale of least count 
0.001 cm) and length is L = 110 cm (measured by a 
scale of least count 0.1 cm). A weight of 50N causes an 
extension of l = 0.125 cm (measured by a micrometer 
of least count 0.001 cm). Find maximum possible error 
in the values of Young’s modulus. Screw gauge and 
meter scale are free from error. � (2004)

Q.13 In plotting stress versus strain curves for two 
materials P and Q, a student by mistake puts strain 
on the y-axis and stress on the x-axis as shown in the 
figure. Then the correct statement(s) is(are) � (2015)

Strain P

Q

Stress

(A) P has more tensile strength than Q 

(B) P is more ductile than Q

(C) P is more brittle than Q

(D) The Young’s modulus of P is more than that of Q
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PlancEssential Questions
JEE Main/Boards

Exercise 1 
Q. 1	 Q.3	 Q.7

Q.10

Exercise 2 
Q.4	 Q.6	 Q.7

Previous Years’ Questions 
Q.9	 Q.11

JEE Advanced/Boards

Exercise 2 
Q.1	 Q.4

Previous Years’ Questions 
Q.1	 Q.2	 Q.3

Answer Key

JEE Main/ Boards

Exercise 1 

Q.2 1: 8		  Q.3 (i) 2F (ii) 4F		  Q.4 2 × 107 N

Q.5 (a) 3.18 × 108 N m–2 (b) 1.59 mm (c) 0.16%		  Q.6 1.02 × 109 cm

Q.7 1.013 × 1011 		  Q.8 4.9 × 1010 		  Q. 9 2 × 106 Nm–2 

Q.10 2.4 × 10–5 J		  Q.11 1.5 × 1011 N/m2.

Exercise 2 

Single Correct Choice Type

Q.1 C	 Q.2 A	 Q.3 D	 Q.4 D	 Q.5 A

Q.6 D	 Q.7 C

Previous Years’ Questions 

Q.1 A	 Q.2 B	 Q.3 D	 Q.4 D
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JEE Advanced/Boards

Exercise 1 
Q.1 20 m/s	 Q.2 1.728 × 108 N/m2 	 Q3 2.4 × 10–5 J

Exercise 2 
Q.1 B	 Q.2 C	 Q.3 A	 Q.4 A

Previous Years’ Questions 
Q.1 C	 Q.2 A	 Q.3 1.09 × 1010 N/m2 	 Q.4 A, B

Solutions

JEE Main/Boards

Exercise 1

Sol 1: ∆L = fL
Ay

 

If diameter is increased to twice then

(i) ∆L will decrease to ¼ value

(ii) F = L
L
∆  A

Maximum load capacity will decrease to ¼ of initial 
value. 

Sol 2: L1 = 2L
2

 

d1 = 2d2 ;		  A1 = 4A2 

F1 = F2

∆L = FL
Ay

 

1

2

L
L

∆
∆

 = 1 2

1 2

L A
A L

 = 1
2

 1
4

 = 1
8

 

Sol 3: Breaking force for two parallel wires of this size

(i) F’ = F1 + F2 = F + F = 2F

(ii) If thickness is double that means area is 4 times.

F = L
L
∆  YA ⇒ F’ = L

L
∆  Y 4A = 4F 

Sol 4: F = y L
L
∆  A

∆L = 2L – L = L

F = 2 × 1011 L
L

 10–4 = 2 × 107 N 

Sol 5: r = 10 × 10–3 m

R = 10–2 m

L = 1 m

(a) Stress = F
A

 = 
3

2 2

100 10
(10 )−

×

π
 = 

5

4

10
10−π×

 = 
910
π

 

= 3.18 × 108 N/m2 

(b) Elongation = ∆L = stress length
y
×  

= 
8

11

3.18 10 1
2 10
× ×

×
 = 1.59 × 10–3 m = 1.59 mm

(c) % Strain = L
L
∆  × 100 = 

31.59 10 100
1

−× ×  = 0.159%

Sol 6: Stress=7.9 × 107 N/cm2 = 7.9 × 1011 N/m2 

Stress = F
A

 = Ag
A

ρ  = ρlg = 7.9 × 1011 

  = 
117.9 10

7900 10
×
×

 = 107 m = 109 cm 
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Sol 7: V
V
∆  = –10–4 

P = 100 × 105 N/m2

B = P
V / V
−

∆
 = 

71.013 10
10 4

×
−

 = 1.013 × 1011 Nm–2 

Sol 8: Pressure at 1 km depth = P 

= P0 + 1000 × 98 × 1000

= 105 + 98 × 107 = 99 × 105 N/m2

Bulk modulus = P
V / V
−

∆
 = 

5

4

99 10
2 10−

×

×
 

= 4.9 × 1010 Pa 

Sol 9: Stream = X
L
∆  = 0.05

10
 = 5 × 10–3 

Modulus = stress
strain

 = 
4

3

10
5 10−×

 

= 10
5

 × 106 = 2 × 106 N/m2 

Sol 10: Strain =
4 11

5 10
10 10−

×

×
 =

7

5 10
10
×  = 5 × 10–6 

Increase in energy = work done

1
2

 × 
4

50
10−

 × 5 × 10–6 × 10–4 × 0.2

= 
11

4

250 10
10

−

−

× = 250×10–7=2.5× 10–5 J 

Sol 11: (i) The initial length of the wire 

= L = 30m

The increase in length of the wire,

 l = 0.44 × 10–2

Longitudinal stress

 4/ L 1.633 10−= = ×l .

(ii) The tension applied to the wire= Mg = 5 × 9.8 N

Area of cross section of the wire,

A = 2 mm2 = 2 × 10–6 m2 

∴ Longitudinal stress

6

5 9.8
Mg / A

2 10−

×
= =

×
 

7 22.45 10 N / m= ×

(iii) Young’s modulus = 
stress
strain

7

4

2.45 10

1.633 10−

×

×
 = 1.5 × 1011 N/m2

Exercise 2

Sol 1: (C) Stress = F/A = 10/(2 × 10–6)

= 5 × 106 N/m2 

Strain = Stress
Y

= 
6

11

5 10

2 10

×

×
 

= 2.5 × 10–5 

l = L × strain = 1 × 2.5 × 10–5 

l = 2.5 × 10–5 m

Sol 2: (A) Volume = Mass / density

Area of cross-section = Volume/length

= mass
density length×

 = 
315.6 10

7800 2.5

−×
×  

= 8 × 10–7 m2 

Y = F
A L∆

l  = 
7 3

8 9.8 2.5

(8 10 ) 1.25 10− −

× ×

× × ×

Y = 1.96 × 1011 N/m2 

Sol 3: (D) Work done on the wire

1W F
2

= ×l

 1
2

= × stress × volume × strain

21W Y strain volume
2

= × × ×

2

2

1W Y
2 L

∆
= × ×

l 2

2

L
L
∆  × AL = 

2YA L
2L
∆

11 6 62 10 10 10
W 0.1 J

2 1

− −× × ×
= =

×

Sol 4: (D) 
2

1 1 2
2

2 2 1

L r

L r
=

l
l

L1 = L, L2 = 2L, r1 = 2R., r2 = R

∴ 
2

1
2

2

L R 1
2L 84R

= =
l
l
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Sol 5: (A) The changed density, '
dp1
B

ρ
ρ =

−
Substituting the value, we have

8

9

11.4'
2.0 101
8.0 10

ρ =
×

−
×

3' 11.69g / cmρ =  ≈ 11.7g/cm3

Sol 6: (D) Mass of the rod = AL
ρ

 if A is its cross sectional 
area

Weight acts at the mid-point

∴ mg (L / 2)Y
A L

= ×
∆

If L is the original length

⇒ ∆L = 
2mgL g L

2AY 2Y
ρ

=

= 9.8 1.3
10.6cm

120
×

=

Sol 7: (C) If L = initial length of the rod, increase in 
length caused by temperature increase 

= L α θ 

If this expansion is prevented by a compressive force, 
then

5LStrain 6 10
L

−αθ
= αθ = ×

∴ Stress developed in the rod 

= Y × strain = 12 × 106 N/m2 

= 1.2 × 107 N/m2 

Previous Years’ Questions

Sol 1: (A) 
2

F F=
AY d Y

4

 
 
 

∆ =  π    
  

l ll  or ( ) 2

1
d

∆ ∝l

Now, 
2

1
d

 is maximum in option (A).

Sol 2: (B) In isothermal process

pV = constant

∴ pdV + Vdp = 0 or dp p
dV V

   
= −   

   
∴ Bulk modulus, 

B = – dp dp V
dV / V dV

   
= −   

   

∴ pB V p
V

  
= − − =  

  

∴ B = p

Note: Adiabatic bulk modulus is given by B = gp.

Sol 3: (D) From the definition of bulk modulus,
dpB

(dV / V)
−

=

Substituting the values, we have

( )
5

5(1.165 1.01) 10
B 1.55 10 Pa

10 / 100
− ×

= = ×

Sol 4: (D)

Time period, T 2
g

= π


When additional mass M is added to its bob

MT 2
g
+∆

= π
 

Mg
AY

∆ =




 M

Mg
AYT 2

g

+
⇒ = π





2
MT Mg

1
T AY

 
= +  

 
2

MT1 A 1
Y Mg T

   = −     

JEE Advanced/Boards

Exercise 1

Sol 1: Equivalent force constant of rubber cord.
8 6(5.0 10 )(1.0 10 )YAk
(0.1)

−× ×
= =

l
35.0 10 N / m= ×

Now, from conservation of mechanical energy, elastic 
potential energy of cord
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= Kinetic energy of missile

∴ 2 21 1k( ) mv
2 2

∆ =l

∴ 
kv
m

 
= ∆  
 

l  = ( )
3

2
3

5.0 10
12.0 10.0 10

5.0 10
−

−

 ×  − ×
 × 

 

= 20 m/s

Note: Following assumptions have been made in this 
problem:

(i) k has been assumed constant, even though it 
depends on the length (l).

(ii) The whole of the elastic potential energy is 
converting into kinetic energy of missile.

Sol 2: Let the initial volume of the block be V and v the 
increase in volume when it is heated t1 to t2. Then

2 1v V (t t )= ×γ× −

Where γ is the coefficient of volume expansion. The 
volume strain is therefore,

2 1
v (t t )
V
= γ −

The bulk modulus is
change in pressure

B
volume strain

=

2 1

PB
(t t )

=
γ −

2 1P B (t t )= γ −

Given B = 3.6 × 1011 N/m2 

γ = 3α = 3 × 8.0 × 10–6 

= 24 × 10–6 /°C

(t2 – t1) = 70 – 50 = 20°C

∴ P (3.6 × 1011) × (24 × 10–6) × 20

= 1.728 × 108 N/m2 

Sol 3: Work done in compressing the bar is given by
1W F
2

= l

Where F is the force applied on the bar and l is the 
compression in the length of the bar. By Hooke’s law, the 
Young’s modulus of the material of the bar is given by

F / A FLY
/ L A

= =
l l

Where A is the area of cross-section of the bar and L is 
the initial length

∴ FL
AY

=l

Hence from equation (i), we have
2F LW

2AY
=

Here F = 5kg, wt=5 × 9.8 N, L=0.2 m

A = 1.0 cm2 = 1.0 × 10–6 m2 and 

Y = 1.0 × 10–5 N/m2 

∴ 
2

4 11

(5 9.8) 0.2
W

2 (1.0 10 ) (1.0 10 )−

× ×
=

× × × ×

52.4 10 J−= ×

This is the increase in energy of the bar.

Exercise 2

Sol 1: (B)

F = Y α DtA; 		  A = 2 × 10–6 m2 

Y = 2 × 11 N/m2 ;	 α = 1.1 × 10–5 

T = 50 – 30 = 20°C

F = 2 × 1011×1.1×10–5×20 × 2 × 10–6 = 88 N

Sol 2: (C) Potential energy per unit volume = u

1 stress strain
2

= × × ;	 But stressY
strain

=

∴ stress = Y × strain = Y × S

∴ Potential energy per unit volume = u

21 1(YS)S YS
2 2

= × =

Sol 3: (A)

  Compressibility 1 V
K V P

∆
= =

×∆

DV = (V × DP) × 1
K

DV = (100 × 15 × 106) × 5 × 10–10 

DV = 0.75 ml 

Sol 4: (A) r
L
φ

θ =  = (2 / 1000)45
1



 = 0.09°
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Previous Years’ Questions

Sol 1: (C) Thermal stress σ = Y α Dθ Given, σ 1 = σ 2 

∴ Y1 a1Dθ = Y2 a2Dθ 

or 1 2

2 1

Y 3
Y 2

α
= =
α

1

2

Sol 2: (A) .W
YA

 
∆ =  

 

ll

i.e., graph is a straight line passing through origin (as 

shown in question also), the slope of which is 
YA
l .

\Slope = 
YA

 
 
 

l

∴
1Y

YA slope
  

=   
  

l

=
6 4

1.0 (80 20)
10 (4 1) 10− −

  −
 

− × 

= 2.0 × 1011 N/m2 

Sol 3: Young’s modulus of elasticity is given by

2

Stress F / A FL FLY
Strain / L A d

4

= = = =
 π
  
 

l l
l

Substituting the values, we get

3 4 2

50 1.1 4
Y

(1.25 10 ) (5.0 10 )− −

× ×
=

× ×π× ×

11 22.24 10 N / m= ×

Now, Y
Y
∆  = L

L
∆  + ∆l

l
 + d2

d
∆

0.1 0.001 0.0012
110 0.125 0.05
     

= + +     
       

0.0489=

DY = (0.0489) Y

= (0.0489) × (2.24 × 1011) N/m2  = 1.09 × 1010 N/m2 

Sol 4: (A B)

stressY
strain

=

P Q
P

1 strain 1 1 Y Y
Y stress Y Yθ

⇒ = ⇒ > ⇒ <


