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7. R O T A T I O N A L 
M E C H A N I C S

1. INTRODUCTION

In this chapter we will be studying the kinematics and dynamics of a solid body in two kinds of motion. The first 
kind of motion of a solid body is rotation about a stationary axis, also called pure rotation. The second kind of 
motion of a solid is the plane motion wherein the center of mass of the solid body moves in a certain stationary 
plane while the angular velocity of the body remains permanently perpendicular to that plane. Here the body 
executes pure rotation about an axis passing through the center of mass and the center of mass itself translates 
in a stationary plane in the given reference frame. The axis through the center of mass is always perpendicular to 
the stationary plane. We will also learn about the inertia property in rotational motion, and the quantities torque 
and angular momentum which are rotational analogue of force and linear momentum respectively. The law of 
conservation of angular momentum is an important tool in the study of motion of solid bodies.

2. BASIC CONCEPT OF A RIGID BODY 

A solid is considered to have structural rigidity and resists 
change in shape, size and density. A rigid body is a solid body 
which has no deformation, i.e. the shape and size of the body 
remains constant during its motion and interaction with other 
bodies. This means that the separation between any two points 
of a rigid body remains constant in time regardless of the kind of 
motion it executes and the forces exerted on it by surrounding 
bodies or a field of force. 

A metal cylinder rolling on a surface is an example of a rigid 
body as shown in Fig. 7.1.

Let velocities of points P and Q of a rigid body with respect to a 
reference frame be VP and VQ as shown in the Fig. 7.2.

As the body is rigid, the length PQ should not change during 
the motion of the body, i.e. the relative velocity between P and 
Q along the line joining P and Q should be zero i.e. velocity of approach or separation is zero. Let x-axis be along 
PQ, then

QPV


 = relative velocity of Q with respect to P

QPV


= ( QV cosθ2 î + QV sinθ2 ĵ ) – ( PV cosθ1 î – PV sinθ1 ĵ )

QPV


= ( QV cosθ2 – PV cosθ1) î  + ( PV  sinθ1 + QV  sinθ2) ĵ

A

B

�

�

v
�

Figure 7.1: Metal cylinder rolling on a surface is a 
rigid body system. Relative distance between points 

A and B do not change.
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Now PV  cosθ1 = QV  cosθ2

(Since velocity of separation is 0)

QPV


= ( PV  sinθ1 + QV  sinθ2) ĵ  (which is 

perpendicular to line PQ).

Hence, we can conclude that for each and 
every pair of particles in a rigid body, relative 
motion between the two points in the pair will 
be perpendicular to the line joining the two 
points. 
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(a) (b)

Figure 7.3: (a) Angular velocity of A and B w.r.t. C is ω1 (b) Angular velocity of A and C w.r.t. B is ω1

Suppose A, B, C are points of a rigid system hence during any motion the lengths of sides AB, BC, and CA 
will not change, and thus the angle between them will not change, and so they all must rotate through 
the same angle. Hence all the sides rotate by the same rate. Or we can say that each point is having the 
same angular velocity with respect to any other point on the rigid body.

 Neeraj Toshniwal  (JEE 2009 AIR 21)

3. MOTION OF A RIGID BODY

We will study the dynamics of three kinds of motion of a rigid body.

(a)	 Pure Translational motion

(b)	 Pure Rotational Motion

(c)	 Combined Translational and Rotational motion

Let us briefly discuss the characteristics of these three types of motion of a 
rigid body.

3.1 Pure Translational motion
A rigid body is said to be in pure translational motion if any straight 
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Figure 7.2: Relative velocity between  
two points of a rigid body
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Figure 7.4: Body in pure  
rotational motion.
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line fixed to it remains parallel to its initial orientation all the time. E.g. a car 
moving along a straight horizontal stretch of a road. In this kind of motion, the 
displacement of each and every particle of the rigid body is the same during 
any time interval. All the points of the rigid body have the same velocity and 
acceleration at any instant. Thus to study the translational motion of a rigid 
body, it is enough to study the motion of an individual point belonging to that 
rigid body i.e. the dynamics of a point. 

3.2 Pure Rotational Motion
Suppose a rigid body of any arbitrary shape rotates about an axis which is 
stationary in a given reference frame. In this kind of motion every point of the 
body moves in a circle whose center lies on the axis of rotation at the foot of 
the perpendicular from the particle to this axis, and radius of the circle is equal 
to the perpendicular distance of the point from this axis. Every point of the rigid 
body moves through the same angle during a particular time interval. Such a 
motion is called pure rotational motion. Each particle has same instantaneous 
angular velocity (since the body is rigid) and different particles move in circles of 
different radii, the planes of all these circles are parallel to each other. Particles 
moving in smaller circles have less linear velocity and those moving in bigger 
circles have large linear velocity at the same instant.

In the Fig. 7.4 particles of mass m1, m2, m3….. have linear velocities v1, v2, v3….

If ω is the instantaneous angular velocity of the rigid body, then

1 1 2 2 3 3v  = r , v  = r , v r  ...... ,  v  = rn n=ω ω ω ω

3.3 Combined Translational and Rotational Motion 
A rigid body is said to be in combined translational and rotational motion if the body performs pure rotation about 
an axis and at the same time the axis translates with respect to a reference frame. In other words there is a reference 
frame K’ which is rigidly fixed to the axis of rotation, such that the body performs pure rotation in the K’ frame. The 
K’ frame in turn is in pure translational motion with respect to a reference frame K. So to describe the motion of 
the rigid body in the K frame, the translational motion of K’ frame is super-imposed on the pure rotational motion 
of the body in the K’ frame.

Illustration 1: A body is moving down into a well through a rope passing over a fixed pulley of radius 10 cm. 
Assume that there is no slipping between rope and pulley. Calculate the angular velocity and angular acceleration 
of the pulley at an instant when the body is going down at a speed of 20 cm s-1 and has an acceleration of 4.0 m 
s-2.� (JEE MAIN)

Sol: Since the rope does not slip on the pulley, the linear speed and linear acceleration of the rim of the pulley will 
be equal to the speed and acceleration of the body respectively.

Therefore, the angular velocity of the pulley is

 
-1

-1linear velocity of rim
radius of rim

20 cm s =  =  = 2 rad s
10 cm

ω

And the angular acceleration of the pulley is

	 -2
-2linear acceleration of rim

radius of rim
4.0 ms =  =  = 40 rad s

10cm
α
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Figure 7.5: Body in pure  
translational motion.
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4. ROTATIONAL KINEMATICS 

Suppose a rigid body performing pure rotational motion about an axis of rotation rotates by an angle ∆θ in a time 
interval ∆t. The instantaneous angular velocity ω, is defined as,

t 0
d = Lim    = 

t dt∆ →
∆θ θ
∆

ω � …(i)

Similarly, the instantaneous angular acceleration α is defined as,
2

2

d d
dt dt

 =  = ω θα � …(ii)

The relations between linear distance s, linear velocity v and linear acceleration a, and the corresponding angular 
variables describing circular motion θ, ω, and α respectively are given as:

s  r= θ ; 	  v  r= ω ; 		   ta  = rα 	� …(iii)

Here the subscript t along with a in the expression for acceleration signifies that this is the tangential component 
of linear acceleration.

If a body rotates with uniform angular acceleration, 

0 =  + tω ω α  ; 2
0

1t
2

 =  + tθ ω α ; 2 2
0 =  + 2ω ω αθ � …(iv)

where 0ω  is initial angular velocity.

The equations for angular displacement, angular velocity and angular acceleration are similar to the corresponding 
equations of linear motion.

Illustration 2: A disc starts rotating with constant angular acceleration of -2/ 2 rad sπ  about a fixed axis 
perpendicular to its plane and through its center. Calculate 

(a) The angular velocity of the disc after 4 s 

(b) The angular displacement of the disc after 4s and 

(c) Number of turns accomplished by the disc in 4 s. � (JEE MAIN)

Sol:Use the first and second equations of angular motion with constant angular acceleration.

2
0Here            ;       t  4 ; s rad s  = 0

2
− =

πα = ω ; 

(a) -12(4 s) = 0 + rad s-   4 s = 2  rad s
2

 
 
 

πω × π  

(b) 2 21 = 0 + rad s  (16s ) = 4(4s) 2 2
 
 
 

πθ × π  rad

(c) 	  n 2 rad   = 4 rad⇒ × π π  n  2.⇒ =

For variable angular acceleration we should proceed with differential equation d
dt
ω = α

Akshat Kharaya (JEE 2009 AIR 235)
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5. MOMENT OF INERTIA

Before discussing the dynamics of rigid body motion let us study about an important property of a rigid body 
called Moment of Inertia which is indispensable in understanding its dynamics.

Physical Significance of Moment of Inertia: As the name suggests, moment of inertia is the measure of the 
rotational inertia property of a rigid body, the rotational analog of mass in translational motion. “It is the property 
of the rigid body by virtue of which it opposes any change in its state of uniform rotational motion.” The moment 
of inertia of a rigid body depends on its mass, on the location and orientation of the axis of rotation and on the 
shape and size of the body or in other words on the distribution of the mass of the body with respect to the axis 
of rotation. SI units of moment of inertia is Kg-m2. Moment of inertia about a particular axis of rotation is a scalar 
positive quantity.

Definition: Moment of inertia of a system of n particles about an axis is defined as:

2 2 2
1 1 2 2 n nI =  m r  + m r  + .................+ m r  i.e. 2

i i

n

i = 1
I = m r∑ 	� …(i)

where, ri is the perpendicular distance of ith particle of mass mi from the axis of rotation.

For a continuous rigid body, the moment of inertia can be calculated as:
2I = (dm)r∫ � …(ii)

where dm is the mass of an infinitesimal element of the body at a perpendicular distance r from the axis of rotation.

Moment of inertia depends on: 

(a)	 Mass of the rigid body.

(b)	 Shape and size of the rigid body.

(c)	 Location and orientation of the axis of rotation.

Moment of inertia does not change if the mass:

(i) Is shifted parallel to the axis of rotation because ri does not change.

(ii) Is rotated about the axis of rotation in a circular path because ri does not change. 

Chinmay S Purandare (JEE 2012 AIR 698)

Illustration 3: Two particles having masses 1m  & 2m  are situated in a plane 
perpendicular to line AB at a distance of r1 and r2 respectively as shown. 

(i) Find the moment of inertia of the system about axis AB? 

(ii) Find the moment of inertia of the system about an axis passing though 1m  
and perpendicular to the line joining 1m  and 2m .

(iii) Find the moment of inertia of the system about an axis passing through 
1m  and 2m . 

(iv) Find moment of inertia about an axis passing though center of mass and 
perpendicular to line joining 1m  and 2m  .� (JEE MAIN)

Sol: Use the formula for moment of inertia of a system of n particles. Find the 
distance of center of mass from m1.

(i) Moment of inertia of particle on right is 2
1 1 1I  = m r  

A

m
2

m
1

r
1

r
2

B

Figure 7.6
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Moment of inertia of particle on left is			   2
2 2 2I  = m r  

Moment of inertia of the system about AB is 		  1
2 2

2 1 1 2 2 +  I = I I  = m r + m r  

(ii) Moment of inertia of particle on right is		  1 0I =  

Moment of inertia of particle on left is 	  		  2
2 1 22 (r +r )I m=  

Moment of inertia of the system about axis is 		 1 2 + I = I I  = 0 + 2
2 1 2(r +r )m  

(iii) Moment of inertia of particle on right is 		  1 0I =

Moment of inertia of particle of left is 	  		  2 0I =

Moment of inertia of the system about axis is 	 	 1 2 + 0 0I = I I = +

(iv) of system 1 2

1 2
2

r r
cm m m
r  = m   

 +
=  + 

 Distance of center mass from mass 1m  

Distance of center of mass from mass 2m  = 1m 1 2

1 2

r r
m m
 +
  + 

 

So moment of inertia about center of mass =
2 2

1 2 1 2
2 1

1 2 1 2
1 2

r r r r
m  + mcm m m m m

I  = m m
   + +
      + +   

 

							        	     21 2
1 2

1 2

m m
(r  + r )cm m m

I  =  
+

. 

Illustration 4: Three particles each of mass m, are situated at the vertices of an equilateral 
triangle PQR of side a as shown in the Fig 7.7. Calculate the moment of inertia of the 
system about 

(i) The line PX perpendicular to PQ in the plane of PQR. 

(ii) One of the sides of the triangle PQR 

(iii) About an axis passing through the centroid and perpendicular to plane of the triangle 
PQR. � (JEE MAIN)

Sol: Use the formula for moment of inertia of a system of n particles.

(i) Perpendicular distance of P from PX = 0; perpendicular distance of Q from PX = a perpendicular distance of R 
from PX = a/2. Thus, the moment of inertia of the particle at P is 0, that of particle Q is 2ma , and of the particle at 
R is 2m(a/2) .

The moment of inertia of the three particle system about PX is 
2

2 2 5maI = 0 + ma  + m(a/2)  = 
4

Note that the particles on the axis do not contribute to the moment of inertia.

(ii) Moment of inertia about the side PR = mass of particle Q × square of perpendicular distance of Q from side PR, 
2 2

PR
3 3maI  = m a  = 
2 4

 
 
 
 

(iii) Distance of centroid from each of the particles is a

3
 , so moment of inertia about an axis passing through the 

centroid and perpendicular to the plane of triangle PQR = 
2

2
C

aI  = 3m  = ma
3

 
  
 

 

x

R

P Q
a

Figure 7.7
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Table 7.1: Formulae of MOI of symmetric bodies

S. No. Body, mass M Axis Figure I K(Radius of Gyration)

1. Ring or loop of 
radius R

Through its 
center and 
perpendicular 
to its plane

2MR
 R

2. Disc, radius R Perpendicular 
to its plane 
through its 
center

2MR
2

R

2

3. Hollow cylinder, 
radius R

Axis of cylinder 2MR  R

4. Solid cylinder, 
radius R

Axis of cylinder
2MR

2
R

2

5. Thick walled 
cylinder,

Axis of cylinder

R
1

R
2

( )2 2
1 2M R R

2

+ 2 2
1 2R R
2
+

6. Solid sphere, 
radius R

Diameter

22MR
5

2R
5

7. Spherical shell 
radius, R

Diameter
22MR

3
2R
3

8. Thin rod, length L Perpendicular 
to rod at 
middle point

2ML
12

L

2 3
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9. Thin rod, length L Perpendicular 
to rod at one 
end

2ML
3

L

3

10. Solid cylinder, 
length l

Through 
center and 
perpendicular 
to length

R

l

2 2MR Ml
4 12

+
2 2R l

4 12
+

11. Rectangular sheet, 
length l  and 
breadth b

Through 
center and 
perpendicular 
to plane

b

l l

2 2M(l b )
12
+ 2 2l b

12
+

While deriving the MOI of any rigid body the element chosen should be such that: 

Either perpendicular distance of axis from each point of the element is same or the moment of inertia of 
the element about the axis of rotation is known. 

Nitin Chandrol (JEE 2012 AIR 134)

5.1 Theorems on Moment of Inertia
1. Theorem of Parallel Axes: This theorem is very useful in cases when the moment 
of inertia about an axis zC passing through the center of mass (C.O.M) of the rigid body 
is known, and we sought to find the moment of inertia about any other axis z which is 
parallel to the axis zC as shown in Fig. 7.8. The moment of inertia of the rigid body about 
axis z is equal to the sum of the moment of inertia about axis zC and the product of the 
mass m of the body by the square of perpendicular distance between the two axes. If the 
moment of inertia of the rigid body about axis zC is CI , then the moment of inertia I of 
this body about any parallel axis z , is given by 2

C MdI = I + � …(i)

where d is the perpendicular distance between the two axes. 

Illustration 5: Find the moment of inertia of a uniform sphere of mass m and radius R 
about a tangent if the sphere is (i) solid (ii) hollow	  � (JEE MAIN)

Sol: We know the formula for moment of inertia of sphere about an axis passing through its center. Use the parallel 
axes theorem to find the moment of inertia about the tangent.

(i) Using parallel axis theorem 

Z Z
C

d
COM

Figure 7.8: Parallel axes
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2
CI = I  + md

For solid sphere 

2
C

2I  = mR  , d = R
5

 ;	 27I = mR
5

 	

(ii) Using parallel axis theorem 
2

CI = I  + md  

 For hollow sphere 

2
C

2I  = mR , d = R
3

; 	 25I = mR
3

 	  

Illustration 6: Find the moment of inertia of the two uniform joint roads having mass m each 
about point P as shown in Fig 7.10. Use parallel axis theorem. � (JEE MAIN) 

Sol: We know the formulae for moment of inertia of rod about the axes passing through its 
center and through one of its ends and perpendicular to it. Use the parallel axes theorem to 
find the moment of inertia about the point P.

Moment of inertia of rod 1 about axis P, 
2

1
mI  = 

3
  

Moment of inertia of rod 2 about axis p, 
22

2  + m 5
2

mI  = 
12

 
 
 

  

So moment of inertia of a system about axis p; 
25mI  = 

3
  

2. Theorem of Perpendicular Axes: This theorem is applicable only in case of 
two dimensional rigid body or planar lamina as shown in Fig. 7.12. Let the lamina 
lie in the x-y plane and xI  and yI  be the moment of inertia of the lamina about 
x and y axes respectively then the moment of inertia about z-axis perpendicular 
to the plane of the lamina and passing through the point of intersection of x and 
y axes is given as:

z x y= I I  + I � …(ii)

Illustration 7: Find the moment of inertia of a half-disc about an axis perpendicular to 
the plane and passing through its center of mass. Mass of this disc is M and radius is R.
� (JEE MAIN)

Sol: We know the formula for the moment of inertia of the half disc about a perpendicular 
axis through the center A. Use the parallel axes theorem to find the moment of inertia 
about a perpendicular axis through the center of mass.

The COM of half disc will be at distance 4R/3π from the center A. Let moment of inertia 
of half disc about a perpendicular axis passing through A be IA. 

First we fill the remaining half with same density to get a full disc of mass 2M.

The moment of inertia about center A of full disc will be 2IA,

So, 
2 2

A
2MR MRI  = =
2 2 2×

;	
2

CMA
4RI  = I  + M  
3

 
×  π 

;	
22

CM
MR 4RI  = M

2 3
 

− ×  π 
 

R

Solid sphere

R

Hollow sphere

Figure 7.9

X

�

�

P

Figure 7.10
�

�/2

P 1

2

COM
5 /2�

Figure 7.11

l
x

l
z

l
y

Figure 7.12: Perpendicular axes

l
A

C.M

�
4R

3

Figure 7.13
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Illustration 8: Calculate the moment of inertia of a uniform disc of mass M and 
radius R about a diameter.�  
� (JEE MAIN)

Sol: For a uniform disc all diameters are equivalent, i.e. moment of inertia about any 
diameter will be equal to that about any other diameter. We know the formula for 
moment of inertia of disc about axis perpendicular to its plane and passing through 
its center. Use the perpendicular axes theorem to find the moment of inertia about 
a diameter.

Let AB and CD be two mutually perpendicular diameters of the disc. Take them as x 
and y axes and the line perpendicular to the plane of the disc through the center as 

the Z – axis. The moment of inertia of the ring about the Z – axis is 21  MR
2

I = . As the 
disc is uniform, all of its diameters are equivalent and so x yI  = I

From perpendicular an axis theorem z x y= I I  + I ; hence 
2

z
x

MR = 
2 4
I

I  =  

Illustration 9: In the Fig 7.15 shown find the moment of inertia of square plate having 
mass m and sides a about axis 2 passing through point C (center of mass) and in the 
plane of plate.� (JEE MAIN)

Sol: For uniform square plate axes 2 and 4 along diagonals are equivalent and axes 1 
and 3 are equivalent. Suppose IC is the moment of inertia about the axis perpendicular 
to the plane of plate and passing through the center C. Use perpendicular axes theorem 
to prove that the axes 1 and 2 are also equivalent.

 	 Using perpendicular axes theorem 4 2CI  = I  + I  = I' + I'=2I' � …. (i)

	 Using perpendicular axes theorem 3 1CI  = I  + I  = I + I = 2I  � ….(ii)

	 From (i) and (ii) we get  = I' I

 	 IC = 2I = 
2 2ma ma  I'  =  

6 12
⇒

5.2 Radius of Gyration
The radius of gyration of a rigid body about an axis z is equal to the radius of a ring whose mass is equal to 
the mass of the rigid body, and the moment of inertia of the ring about an axis passing through its center and 
perpendicular to its plane is equal to the moment of inertia of the rigid body about the axis z. Radius of gyration 
can also be defined as the perpendicular distance from the axis of rotation where all mass of the rigid body can be 
assumed to be concentrated when the rigid body is performing pure rotation to get the equation of motion of the 
body. Thus, the radius of gyration is the ‘’equivalent distance’’ of the rigid body from the axis of rotation.

				    2I = MK

				     I = Moment of inertia of the rigid body about an axis

				    M = Mass of the rigid body

				    K = Radius of gyration about the same axis

				    or 	 IK=  
M

 									         …(iii)

Length K is the property of the rigid body which depends upon the shape and size of the body and on the 
orientation and location of the axis of rotation. S.I. Unit of K is meter.

B

Z

DC

A

0

Figure 7.14

1

a

2

3
C

a
4

I

I

I

Figure 7.15
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Illustration 10: Find the radius of gyration of a hollow uniform sphere of radius R about its tangent.� (JEE MAIN)

Sol: Use the formula for radius of gyration.

 	 Moment of inertia of a hollow sphere about a tangent = 25MR
3

2 25 5MK  =  MR   K = R
3 3

⇒  

5.3 Moment of Inertia of a Body Having a Cavity
If we know the moments of inertia of different parts of a rigid body about the same axis, then the moment of inertia 
of the entire body can be calculated by simply adding the moments of inertia of the different parts (about the same 
axis) i.e. moment of inertia is an additive quantity. This principle can be used to calculate the moment of inertia of 
a body having hollow spaces by first assuming the hollow spaces to be filled with same density as that of the body 
and evaluating the moment of inertia of the whole body about the given axis and then add the moments on inertia 
of the hollow spaces about the same axis considering them to have negative mass.

Illustration 11: A uniform disc of radius R has a round disc of radius R/3 cut as shown in Fig 7.16. The mass of the 
disc equals M. Find the moment of inertia of such a disc relative to the axis passing through geometrical center of 
original disc and perpendicular to the plane of the disc. � (JEE ADVANCED)

Sol: Consider the whole disc without the cavity. The cavity can be thought of as a negative mass of same density as 
disc. We know the formula for moment of inertia of uniform disc about axis perpendicular to its plane and passing 
through its center. Find the moment of inertia of cavity (negative mass) about the perpendicular axis passing 
through center of whole disc. The moment of inertia of disc with cavity is the sum of the moment of inertia of whole 
disc and the moment of inertia of cavity (negative).

Let the mass per unit area of the material of disc beσ . Now the empty space can be considered as having density 
–σ

Now 0I  = I  + Iσ −σ  

	  Iσ  = 2 2( R )R /2σπ  = MI of σ  about O = 2MR /2  

	  
2 2

2 2
-

(R/3) (R/3)I  = [ (R / 3) ](2R/ 3)
2σ

−σπ
+ −σπ

		   M.I of= − σ  About O = 2-MR /18

 2 2
0I  = MR /2 MR /18−  

 2
0

4I  = MR
9

6 TORQUE 

6.1 Torque About a Point 
Torque of force F relative to a point O is defined as

 = r  Fτ ×
  

� …(x)

where F


 = force applied to a point on a body

r


 = position vector of the point of application of force relative to the point O in 
a chosen reference frame about which we want to determine the torque (see Fig. 
7.17).

Torque is a vector quantity and its direction is given by the right hand rule for cross 
product of vectors.

R/3

R

O

Figure 7.16

Line of action

of force

� P

r sin�

O

r

Figure 7.17: Torque of a force
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Magnitude of torque	 | |τ


= r F sin θ = r F⊥  = rF⊥
where θ is the angle between the force F



 and the position vector r


 of point of application.

	 r⊥  = r sin θ = perpendicular distance of line of action of force from point O. 

	 F⊥  = F sin θ = component of F


 perpendicular to r


SI unit of torque is N-m.

Illustration 12: Find the torque about point O and A.� (JEE MAIN)

Sol: Express the position vector of A relative to O in terms of unit vectors î  and 

ĵ . Force is given in terms of unit vectors î  and ĵ .

Torque about point O, 0 0
ˆ ˆ ˆ ˆ = r   F,  r  = i + j , F = 5 3 i + 5jτ ×

    

 

 ˆ ˆ ˆ ˆ ˆ = (i + j)  (5 3i + 5j) = 5(1 3)kτ × −


 

Torque about point A, ˆ =  = j , a a ˆ ˆr   F,  r F = 5 3 i + 5jτ ×
    

 
ˆ ˆ ˆ ˆ = j  (5 3i + 5j) = -5 3k ×τ



 

Illustration 13: A particle of mass m is released in vertical plane from a point on the 
x – axis, it falls vertically along the y – axis. Find the torque τ  about origin? �
� (JEE MAIN)

Sol: Torque is produced by the force of gravity. This will be equal to the product of 
force of gravity and the perpendicular distance between the line of action of force of 
gravity and the origin O.

	 ˆ  = rF sin  kθτ


 		 Or 	  0r F = x mg⊥τ =  

	  0
0   r mg

x ˆ = mgx k
r

=  

6.2 Torque About An Axis
The torque of a force F



 about an axis AB is the component of the torque of F


 
about point A along the axis AB.

Alternatively to find torque of force F


 about axis AB we choose any point O on 

the axis AB and find the torque of F


 about O as 0 r  Fτ = ×



 . Then we calculate 

the component of 0τ
  along AB to get ABτ

  (see Fig. 7.20).

There are a few special cases of torque of a force about an axis:

Case I: Applied force is parallel to the axis of rotation, i.e. F


 || AB


Therefore torque r  F×
 

 about any point on the axis will be perpendicular to F


 and hence 

perpendicular to AB


. Therefore the component of r  F×
 

 along AB


 will be zero.

Case II: The line of action of the applied force intersects the axis of rotation

( F


 intersects AB


)

If we choose the point of intersection of line of action of F


 and AB


 as the origin O then 

the position vector r


 and applied force F


 will be collinear (see Fig. 7.21). Therefore the 

torque about O is r  F = 0×
 

 and thus the component of this torque along line AB will 
also be zero. 

y

30
o

60
o

(1, 1)

O A B

x

Figure 7.18

O P
x

0

�

�

r

mg

�

Figure 7.19

A

O

B

P

r

F

Figure 7.20: Torque about  
an axis

A

O

B

P

r

F

Figure 7.21: Force 
intersects axis
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Case III: Line of action of F


 and axis AB are skew and F AB⊥
 

Let O be the origin on the axis AB and P be the point of application 

of force F


 such that OP is perpendicular to the axis AB (see Fig. 7.22). 

Then torque OP Fτ = ×




  will be parallel to axis AB and the component 

of τ  along AB will be equal to its magnitude i.e. 

		  τAB = F×(OP)sinθ = F×l

where   = (OP)sinθ is the length of the common perpendicular to 
the line of action of force and the axis called the lever arm or moment 
arm of this force. 

Illustration 14: Find the torque of 
weight about the axis passing through 
point P. � (JEE MAIN)

Sol: Required torque is equal to the 
product of force of gravity and the 
perpendicular distance between the 
line of action of force of gravity and 
the point P.

	 F = mg


 Downwards 

	  = F  rτ ×
  

	  F.r sin = θ

Illustration 15: A bob of mass m is suspended at point O by string of length  . Bob is moving in a horizontal circle 
find out. (i) Torque of gravity and tension about point O and O’ (ii) Net torque about axis OO’.� (JEE ADVANCED)

Sol: Torque of a force about an origin is equal to the product of force and the perpendicular distance between the 
line of action of force and the origin.

(i) Torque about point O 

Torque of tension (T), netτ  = 0 (tension is passing through point O)

Torque of gravity mgτ  = mg   sin θ (along negative ĵ )

Torque about point O’

Torque of gravity 	 mgτ  = mgr = mg   sin θ (along negative ĵ )

Torque of tension	 Tτ  = Tr sin (90 + θ) (T cos θ= mg)

T
mg

 Tr cos ( sin )cos mg sin
cos

= θ = θ θ = θ
θ

τ    (along positive ĵ )

(ii) Torque about axis OO’

Torque of gravity about axis OO’ mgτ  = 0 (force mg is parallel to axis OO’)

Torque of tension about axis OO’ Tτ  = 0 (force T intersects the axis OO’)

Net torque about axis OO’ 	  netτ  = 0

6.3 Force Couple 
A pair of forces each of same magnitude and acting in opposite directions is called a force couple. 

A

O

P

B

F

� �

r

Figure 7.22: Force and axis are skew
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P

Figure 7.23
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Figure 7.24

Figure 7.25
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Torque due to couple = magnitude of one force x distance 
between their lines of action. 

Magnitude of torque = τ  = F (d) 

A couple does not exert a net force on an object even though 
it exerts a torque. 

Net torque due to a force couple is the same about any point 
(see Fig. 7.26).

Total torque about A = 1 2x F + x F  = 1 2F(x  + x ) = Fd  

Total torque about B = 1 2y F - y F  = 1 2F(y y ) = Fd−

6.4 Torque on a Rigid Body Executing Pure Rotation
Suppose I is the moment of inertia of a rigid body about the axis of rotation 
which is stationary in a given reference frame. The body is executing pure 
rotational motion about this fixed axis.

text = resultant torque about the axis of rotation due to all the external forces 
acting on the body

α = instantaneous angular acceleration of the body. 

ω = instantaneous angular velocity of the body.

Consider one particle of the body say ith particle of mass mi at perpendicular 
distance ri from the axis.

Radial force on the particle Fr = mω2r towards the center of its circular path.

Tangential force on the particle Ft = miat = miαri

Torque of the radial force about the axis of rotation is zero as it intersects the axis. Torque of tangential force about 
the axis will be,

		  2
i i t i i = rF  = mrτ α

To find the total torque on the rigid body about the axis we take summation of torques acting on all the particles 
of the body. The total torque comes out to be equal to the resultant torque due to external forces only as the 
torques due to internal forces cancel each other in pairs when summation is taken on all the particles of the body 
(By Newton’s third law of motion internal forces form pairs of equal and opposite collinear forces. So the lever arms 
of the forces of a pair with respect to the axis will be equal so their torques will have equal magnitude but opposite 
directions and cancel each other in the summation). So

2
ext i i i

i i
( mr )  = I τ = τ = α α∑ ∑ � …(i)

Remember: This formula is applicable only for pure rotational motion of a rigid body about a fixed axis.

7. KINETIC ENERGY OF BODY IN PURE ROTATION 

When a rigid body performs pure rotational motion about a given axis, all of its constituent particles move in 
circular paths with centers on the axis and radii 1 2r  , r  …… and nr  (say), and with linear velocities 1 1v  =  rω , 

2 2v  =  rω  ,……….. and n nv  =  rω . If 21 ,m m ,….. and nm  are the masses of the particles then the total kinetic 
energy of the rigid body is given by

	 2 2 2
1 1 2 2 nK n

1 1 1 m v  +  m v  + ......... +  m v
2 2 2

=
�

…(i)

F
d

B

y
2

y
1

x
1

x
2

F

Rigid body

Figure 7.26: Force couple

Fixed axis of

Rotation

Figure 7.27: Rigid body executing 
pure rotation
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PLANCESS CONCEPTS

	 = 2 2 2 2 2 2
1 1 2 2 n n

1 1 1 m r  +  m r  + .........+  m r
2 2 2

ω ω ω  

	 = 2 2 2 2
1 1 2 2 nn

1 (m r  + m r  + .......... + m r )
2

ω

Now as we have learnt the term 2 2 2
1 1 2 2 nnm r  + m r  + .......... + m r  is the moment of inertia of the rigid body.

Hence, the rotational kinetic energy of a body is given by

2K 1 I
2

= ω 	� …(ii)

Most of the problems involving incline and a rigid body, can be solved by using the conservation of 
energy. Care has to be taken in writing down the total Kinetic energy. Rotational Kinetic Energy term has 
to be taken into consideration along with translational kinetic energy. And while writing the rotational 
energy, the axis about which the moment of inertia is taken should be carefully chosen. 

The point about which the conservation is done should be inertial to avoid calculating the work done 
by pseudo forces or the point itself should be the COM so that the work done by the torque of pseudo 
forces would be 0.

Shrikant Nagori (JEE 2009 AIR 30)

Illustration 16: A uniform circular disc has radius R and mass m. A particle, 
also of mass m, is fixed at a point A on the edge of the disc as shown in Fig 
7.28. The disc can freely rotate about a fixed horizontal chord PQ that is at a 
distance R/4 from the center C of the disc. The line CA is ⊥  to PQ. Initially the 
disc is held vertical with point A at its highest point. It is then allowed to fall 
so that it starts rotating about PQ. Find the linear speed of the particle as it 
reaches lowest point.	�  (JEE ADVANCED) 

Sol: Find the moment of inertia of circular disc and the particle at point A 
about the chord PQ. The loss in potential energy of the system comprising the 
disc and the particle will be equal to the gain in its rotational kinetic energy.

2 22 21 mR R 5R 15mRI =    + m  + m  = 
2 2 4 4 8

   
   
   

×  

	 Energy equation 

	 2mgR mgR5R 1 5Rmg  +  = I mg 
4 4 2 4 4

ω − −  

	 g = 4 
5R

ω 	  

	 5RV =  = 5gR
4
ω  

Illustrations 17: A pulley having radius r and moment of inertia I about its axis is fixed at the top of an inclined 
plane of inclination θ as shown in Fig 7.30. A string is wrapped round the pulley and its free end supports a block 

A

R

C

R/4

QP

A

C

O

C

A’

Figure 7.29

Figure 7.28
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of mass m which can slide on the plane initially. The pulley is rotated at a 
speed 0ω  in a direction such that the block slides up the plane. Calculate the 
distance moved by the block before stopping?	�  (JEE ADVANCED) 

Sol: Apply Newton’s second law of motion for block M along the inclined 
plane. Find the torque (about its axis) of force of tension acting on pulley. 
This will be equal to the product of moment of inertia I and the angular 
acceleration of pulley.

Suppose the deceleration of the block is a. The linear deceleration of the rim 
of the pulley is also a. The angular deceleration of the pulley is α  = a/r. If the 
tension in the string is T, the equations of motion are as follows: 

	 mg sin   – T  ma  θ =  and Tr I    Ia / r.         = α=

Eliminating T from these equations, 

	
2mg sin  – I  ma;a

r
θ =  Giving, 

2

2
mgr sin
I + mr

a = θ

The initial velocity of the block up the incline is v = 0rω  Thus, the distance moved by the block before stopping is 

	
2 22

0(I + mr )vx   = 
2a 2mg sin 

ω
=

θ
  

Illustration 18: A uniform rod of mass m and length   can rotate in vertical plane 
about a smooth horizontal axis hinged at point H.

(i) Find angular acceleration α of the rod just after it is released from initial 
horizontal position from rest?

(ii) Calculate the acceleration (tangential and radial) of point A at this moment.

(iii) Calculate net hinge force acting at this moment.

(iv) Find α  and ω  when rod becomes vertical.

(v) Find hinge force when rod become vertical.� (JEE ADVANCED)

Sol: The axis of rotation passing through H is fixed. So the torque of force of gravity about axis through H is equal 
to the product of moment of inertia about axis through H and angular acceleration of rod. Angular acceleration at 
an instant can be found if the torque of force of gravity at the instant is known.

(i) H H = I   τ α  

 
2

mg.
3gm =    = 

2 3 2
α ⇒ α 



	

(ii) tA
3g 3ga =  = .   =  
2 2

α 



2
CAa = r  = 0.  = 0ω   (∵ω  = 0 just after release) 

(iii) Suppose hinge exerts normal reaction in component form as shown

In vertical direction 

ext CMF  = ma  

1
3g mg  N  = m.
4

⇒ −

(We get the value of CMa  from previous example)

1
mg N  = 
4

⇒  

M

�

Figure 7.30

H

A

X

�

�/2 mg

Figure 7.31

H A

X

�

Figure 7.32

N
1

N
2

Figure 7.33
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In horizontal direction 

ext CMF  = ma  2 N  = 0⇒  (∵ CMa  in horizontal = 0 as ω  = 0 just after release)

(iv) Torque = 0 when rod becomes vertical so α  = 0

Using energy conservation 
2

21 mI   I=
2 3

mg  =  
2

 
 
 
 

ω 


(Work done by gravity when COM moves down by (½)   = change in K.E.)

	 3g = ω


 

(v) When rod becomes vertical 

3g = 0,  =  α ω


 (Using netF  = CMMa ) 

2

H
mF  - mg = 

2
ω   ( CMa  = centripetal acceleration of COM) 

Ans.	 H
5mgF  = 

2
 

Illustration 19: A bar of mass m is held as shown between 4 disks each of mass m’ and radius 
r = 75 mm. Determine the acceleration of the bar immediately after it has been released 
from rest, knowing that the normal forces exerted on the disks are sufficient to prevent any 
slipping and assuming that. 	 (a) m = 5 kg and m’ = 2 kg.

(b) The mass m’ of the disks is negligible.

(c) The mass m of the bar is negligible� (JEE ADVANCED)

Sol: Apply Newton’s second law of motion in vertical direction for the motion of center 
of mass of bar. Write the equation of torque due to force of friction acting on disc, for 
rotational motion about fixed axis through center of disk. Acceleration of rod will be equal to 
the tangential acceleration of the disc in the case of no slipping.

(a) Equation of center of mass of rod,

mg – 4f = ma�  ….(i) 

(where f is frictional force from one disk)

Torque acting on each disk due to frictional force is
2m'r afr =  

2 r
 � ….(ii)

From (i) and (ii) we get

mg – 2m’ a = ma � ….(iii)

5g = (5 + 2 × 2)a;	 a = 5g
9

(b) Putting m’=0 in eqn. (iii) we get a = g

(c) Putting m = 0 in eqn. (iii) we get a = 0

(a) 5g
9
↓  	

(b) g ↓  	 c) 0

Bar

A

B

Figure 7.34
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7.1 Work Done and Power Delivered by Torque
If a torque τ rotates a body through an angle dθ, the work, dW done by it is given by

dW  d.= θτ
The total work done W in rotating a body from the initial angle 1θ  to the final angle 2θ , is

2 22

11 1

2 2
2 1

dI
dt

1 1W .d  = dt  = I  d   =  I  I
2 2

ω

ω

θ ω

θ ω

ω
−= τ θ ω ω ω ω ω∫∫ ∫

So the work done by torque is equal to the change in the rotational kinetic energy.

2
rotW K 1 I

2
=

 
∆ = ∆ 

 
ω � …(i)

This is called the Work-Energy Theorem for rotation of rigid body.

The rate at which work is done is called power P, given by

dW dP =    = 
dt dt

τ
θ= τω � …(ii)

Also, the power P delivered by the torque on the rigid body is equal to the rate of change of kinetic energy

21K =  I
2

ω  	 ∴ 2P dK d 1 =  I
dt dt 2

 
=  

 
ω

∴  I  1 d dP = I  2  =  
2 dt dt

= ω
ω ω× × ω τ ω

8. EQUILIBRIUM OF RIGID BODIES 

A rigid body can be in linear equilibrium as well as in rotational equilibrium. If a rigid body is in linear equilibrium, 
then the vector sum of all the forces acting on it should be zero.

i.e. ext F  = 0Σ


 

Taking scalar components along the three axes x, y and z we get x y z F  = 0, F  = 0, F  = 0Σ Σ Σ

If a rigid body is in rotational equilibrium then the vector sum of all the external torques acting on it with respect 
to an axis in a given reference frame must be zero.

	 Στext = 0  ⇒ Στx = 0, Στy = 0, Στz = 0

Illustrations 20: Two boys weighing 20 kg and 25 kg are trying to balance a seesaw of total length 4 m, with the 
fulcrum at the center. If one of the boys is sitting at an end, where should the other sit? � (JEE MAIN)

Figure 7.35

Sol: For rotational equilibrium, the net torque about the fulcrum of all the forces acting on the boys and the seesaw 
should be zero.

It is clear that the 20 kg kid should sit at the end and the 25 kg kid should sit closer to the center. Suppose his 



Physics  |   7 .19

distance from the center is x. As the boys are in equilibrium, the normal force between a boy and the seesaw equals 
the weight of that boy. Considering the rotational equilibrium of the seesaw, the torque of the forces acting on it 
should add to zero. The forces are 

(a) (25kg) g downward by the 25 kg boy

(b) (20kg) g downward by the 20 kg boy 

(c) Weight of the seesaw and 

(d) The normal force by the fulcrum. 

Taking torques about the fulcrum. 

(25 kg) g x = (20 kg) g (2 m) or x = 1.6 m

9. ANGULAR MOMENTUM

9.1 Angular Momentum of a Particle About a Point 
If p  is the linear momentum of a particle in a given reference frame, then angular momentum of the particle about 
an origin O in this reference frame is defined as 

L = r  p×
  

� …(i)

where r
  is the position vector of the particle with respect to origin O (see Fig. 7.36). 

Magnitude of angular momentum is L  rpsin= θ

or	 L = r  p⊥ 	or	 L = p  r⊥

θ = angle between vectors r


 and p

r⊥  = component of position vector r


 perpendicular to vector p .

p⊥  = component of vector p  perpendicular to position vector r


.

SI unit angular momentum is kg 2m s-1.

Relation between Torque and Angular Momentum 

∵	 L = r  p×
  

Differentiating with respect to time we get
dpdL dr =   p + r   = v  (mv) + r  F = 0 + r  F = 

dt dt dt
× × × × × τ

 

        

dL  =  
dt

⇒ τ




	�  …(ii)

For a single particle moving in a circle of radius r with angular velocity ω we have

	 v = ωr and p = mωr

So angular momentum comes out to be L = r p= mr2ω

Illustration 21: A particle of mass m is projected at time t = 0 from a 
point O with a speed u at an angle of 45° to the horizontal. Calculate the 
magnitude and direction of the angular momentum of the particle about 
the point O at time t = u/g. � (JEE ADVANCED)

Sol: Express the position and velocity of particle in Cartesian coordinates 
in terms of unit vectors î  and ĵ  and then calculate the cross product in 

Pcos�

�

P
�

Psin�
r
�

o

Figure 7.36: Angular 
momentum about a point

Y

v

r

O
X

Figure 7.37
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Cartesian coordinates.

Let us take the origin at O, X –horizontal axis and

Y – Axis along the vertical upward direction as shown in Fig 7.37 for horizontal during the time 0 to t. 

xv  = u cos45°=u/ 2 and x = xv t = 
2u u u.  = 

g2 2g
 

For vertical motion, 

yv  = u sin 45° - gt = (1 2 )

2

u  u = u
2

−−  

and 		  y = (u sin 45 º) 21 gt
2

t −  = 
2 2 2

( 2 1)u u u = 
2g 2g2g

−−  

The angular momentum of the particle at time t about the origin is

L   vr  P = m r= ××
   



 = x y y x
ˆ ˆ ˆ ˆ ˆ ˆm(ix + jy)  (iv  + jv )  = m(kxv kyv )× −

 = 
2 2 2 3u u u u muˆ ˆm k (1 2) ( 2 1)  = k

2g2g 2 2 2 2g

  
  
    

− − − −  

Thus, the angular momentum of the particle is 
3mu

2 2g
 in the negative z – direction i.e., perpendicular to the plane 

of motion, going into the plane.

Illustration 22: A cylinder is given angular velocity 0ω and kept on a horizontal rough surface the initial velocity is 
zero. Find out distance travelled by the cylinder before it performs pure rolling and work by frictional force. �  
�  (JEE ADVANCED) 
Sol: Due to backward slipping force of friction will act forwards. The cylinder is accelerated forwards. The torque 
due to friction and hence the angular acceleration is opposite to the initial angular velocity. So the angular velocity 
will decrease and the linear velocity of center of mass of cylinder will increase in the forward direction, till the 
slipping stops and pure rolling starts. The work done by frictional force is equal to change in the kinetic energy of 
the cylinder. The kinetic energy includes both rotational kinetic energy and translational kinetic energy.

2MRMg R = 
2
αµ

2 g = 
R
µ

α � … (i) 

Initial velocity u = 0 
2 2v  = u  + 2as  
2v  = 2as  � … (ii) 

Kf  = ma; 	 Mg = Maµ ;	  a = µg� … (iii) 

0 = tω ω −α  

From equation (i) 0
2 g t
R

 = µω ω − ;	  V = u + at 

From equation (iii) v = µ  g t 

0
2v
R

 = ω ω −  ;	 0 = 2ω ω − ω  ;	 0 = 
3
ω

ω  

From equation (ii)

2
0R
3

 
  
 

ω
 = (2as) = 2µ  gs ;	 S = 

2 2
0 R

18 g
 
 
 
 

ω
µ

 

R
a

v

v

�
0

R

f
k

S

Figure 7.38
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Work done by the frictional force 

W = k k( f Rd  + f s)− θ ∆  
2 2
0mg  R

mgR  + 
18 g

µ × ω
−µ ∆θ

µ
= ; 

2
0

1 = t  t
2

∆θ ω × − α  = 
2

0
0 0R R1 2 g

   
3 g 2 R 3 g

 µ
ω ×

µ µ

 ω ω    ×     
     

 = 
2 2
0 0R R

3 g 9 g

ω ω

µ µ

 
 −
 
 

 = 
2
02 R

9 g
ω

µ
 

W = 
2 2 2
0 02 R R

 
9 g 18 g

mg R  + mg 
ω

µ µ

    ω    µ µ ×         
− ×  

2 2
0m R
6
ω

= −

Illustration 23: A hollow sphere is projected horizontally along a rough surface with speed v and angular velocity 

0ω . Find out the ratio 
0

v
ω

, so that the sphere stops moving after some time. � (JEE ADVANCED) 

Sol: For the sphere to stop after sometime, the acceleration should be opposite to velocity, i.e. the force of friction 
should be backwards (forward slipping). Also, the torque due to friction should be opposite to angular velocity, i.e. 
if the torque due to friction is clockwise (see Fig. 7.39), then the initial angular velocity should be anti-clockwise.

Torque about lowest point of sphere 

Kf   R = I× α ;	  22mR
3

mg R αµ × = ;	 3 g = 
2R
ω

α
 
(Angular acceleration in opposite direction of angular velocity)

0 = tω ω −α  		  (Final angular velocity ω  = 0) 

0
3 g = t
2R
ω

×ω ;		
ì

0 2R
3 g

t = 
×ω

 

Acceleration a = μg 

t  v –  at      v =  (Final velocity tv  = 0);

	  = g tv µ × ;		  vt = 
gµ

 

To stop the sphere, time at which v and ω  are zero, should be same.

ì
0R

3 g
2v =

g
ω

µ
; 

0

v 2R=
3

⇒
ω

Illustration 24: A rod AB of mass 2m and length   is lying 
on a horizontal frictionless surface. A particle of mass m 
travelling along the surface hits the end of the rod with a 
velocity 0v  in a direction perpendicular to AB. The collision 
is elastic. After the collision the particle comes to rest. Find 
out after collision 

(a) Velocity of center of mass of rod 

(b) Angular velocity. � (JEE ADVANCED)

Sol: Conserve linear momentum and angular momentum of 
the system constituting “the rod and the particle” before and 
after collision. Here the linear and angular momentum of the 
rod before collision is zero. Angular momenta of the rod and 
particle are calculated about the center of the rod.

�
0

va

f
t

a=0

v=0

v

�
0
R

Figure 7.39
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(a) Let just after collision the speed of COM of rod is v and angular velocity about COM isω .

External force on the system (rod + mass) in horizontal plane is zero. 

Apply conservation of linear momentum in x direction;

0mv  = 2mv  � ….. (i) 

(b) Net torque on the system about any point is zero 

Apply conservation of angular momentum about COM of rod. 

0mv = I
2

ω  
2

0
2m 

12
mv  = 

2
⇒ ω

  � …... (ii) 

From equation (i) velocity of center of mass 0v 
2
v

=

From equation (ii) angular velocity 0 = 
3v

ω


.

9.2 Angular Momentum of a Rigid Body Rotating About Fixed Axis
For a system of particles the total angular momentum about an origin is the sum of the angular momenta of all the 
particles calculated about the same origin.

		  i
i

LL =∑




Differentiating with respect to time we get,

ext ext exti
ik i ik i

i i k i k i
( ) 0

dLdL  = 
dt dt

= τ + τ = τ + τ = + τ∑ ∑ ∑ ∑∑ ∑


    



The double summation term corresponds to the sum of torques due to 
internal forces and as explained earlier, according to Newton’s third law 
of motion these internal torques cancel out in pairs.

So for a system of particles

ext 
dL  = 
dt

τ



 � …(xvii)

Impulse of a torque is defined as extdL  dtJ = = τ∫ ∫




Angular momentum of a rigid body rotating about a fixed axis can be 
calculated as below:

Angular momenta of its individual particles about the axis are
2 2 2 2

1 1 1 2 2 2 3 3 3 n n nL = m r , L  = m r ,  L  = m r , .... L  = m rω ω ω ω  where ω is the instantaneous angular velocity of the 
rigid body

Total angular momentum of the body
2 2 2 2

1 1 2 2 3 3 n+ ............+ nL = m r   m r  + m r   m rω ω ω ω  
2

i i
i

m (r )  = I L = ω ω∑

So L = I ω

Remember: This formula is applicable only for rotation of the rigid body about a fixed axis.

Again differentiating this relation with respect to time we get,

	 ext
dL dI I
dt dt

ω
= = α = τ

A

m
2

m
1

r
1

r
n

r
2

m
n

B
Axis of rotation

�

Figure 7.41: Angular momentum  
of rigid body
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Illustration 25: Two small balls of mass m each are attached to a light rod of length  , one at its center and the 
other at its free end. The rod is fixed at the other end and is rotated in horizontal plane at an angular speed ω . 
Calculate the angular momentum of the ball at the end with respect to the ball at the center. �  (JEE MAIN)

Sol:Both the balls A and B have same angular velocity but different linear velocities.

The situation is shown in Fig 7.42. The velocity of the ball A with respect to 
the fixed end O is Av  =  ( /2)ω   and that of B with respect to O is Bv =ω

. Hence the velocity of B with respect to A is Bv – Av  = ( /2)ω  . The angular 
momentum of B with respect to A is, therefore, 

	 21 = mL  mvr
2 2 4

  m
 

ω ω 


=


=
 

  

along the direction perpendicular to the plane of rotation. 

9.3 Conservation of Angular Momentum 
In the previous article we have proved the relation

	 ext 
dL   
dt

τ=


  where L


 and extτ
  are evaluated about the same origin.

From the above equation we see that if ext 0τ =
  then L



 of the system of particles remains constant.

In some situations the component of external torque about an axis is zero even if the net external torque is not 
zero. So in these cases the component of the total angular momentum, about the particular axis, remains constant.

Illustration 26: A uniform rod of mass m and length   can rotate freely on a smooth horizontal plane about a 
vertical axis hinged at point H. A point mass having same mass m coming with an initial speed u perpendicular to 
the rod strikes the rod in-elastically at its free end. Find out the angular velocity of the rod just after collision? �  
� (JEE MAIN)

Sol: After collision the rod and the particle execute pure rotational motion about vertical axis 
through fixed point H.

Angular momentum is conserved about H because no external force is present in horizontal 
plane which is producing torque about H. 

	
2

2m 3umul = m      = 
3 4

 
+ ω ⇒ ω  

 







 

Illustration 27: A uniform rod of mass 1m  and length   lies on a frictionless horizontal plane. A particle of mass 
2m  moving at a speed 0v  perpendicular to the length of the rod strikes it at a distance  /3 from the center and 

stops after the collision. Calculate (a) the velocity of the center of the rod and (b) the angular velocity of the rod 
about its center just after the collision.�  (JEE ADVANCED) 

Sol: Conserve the linear momentum of the system comprising 
“the rod and the particle” before and after the collision. Conserve 
the angular momentum, about the center of the rod, of the system 
comprising “the rod and the particle” before and after the collision.

The situation is shown in the Fig 7.44. Consider the rod and the 
particle together as the system. As there is no external resultant force, 
the linear momentum of the system will remain constant. Also there 
is no resultant external torque on the system and so the resultant 
external torque on the system and the angular momentum of the 

A
B

�O

Figure 7.42

ml

H

m

u

+

Figure 7.43

A �
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R
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system about the line will remains constant. Suppose the velocity of the center of the rod is V and the angular 
velocity about the center isω  .

(a) The linear momentum before the collision is m2v0 and that after the collision is M1V. 

Thus 2 0 1m v  = m ,v  or 2
0

1

m
V = v

m
 
  
 

 

(b) Let A be the center of the rod when at rest. Let AB be the line perpendicular to the plane of the Fig 7.44. 
Consider the angular momentum of N “the rod plus the particle” system about AB. 

Initially the rod is at rest. The angular momentum of the particle about AB is 

	 2 0L = m v ( /3)

After collision the particle comes to rest. The angular momentum of the rod about a is 

 CM 01L = L  + m r   v×
   

As 0r  || v
 

, 0   = 0r   v×
 

 thus, CML = L
 

 

Hence the angular momentum of the rod about AB is 

L = lwù
2 2

1 2 1L       = Thus,  
m m v m

I
12 3 12

== ω ω
  

 
0

1

2      =Or  
4m v

m
ω



10. RIGID BODY IN COMBINED TRANSLATIONAL AND ROTATIONAL 
MOTION

As discussed earlier, in this type of motion the rigid body is performing pure rotational motion about an axis and 
the axis itself is performing pure translational motion relative to a given reference frame.

Consider a car moving over a straight horizontal road with some instantaneous velocity v with respect to a reference 
frame K fixed to the road. Now let us observe the motion of a wheel of the car from the K frame. This motion of the 
wheel in K frame is an example of combined translational and rotational motion. Let us suppose a reference frame 
K’ which is translating with respect to frame K with same instantaneous velocity v. In other words frame K’ is rigidly 
fixed to the body of the car. In this frame the wheel of the car performs pure rotational motion. The body of the car 
itself is performing pure translational motion.

Take another example of motion of a fan fixed inside the car.

If the fan is switched off while the car is moving on the road, the motion of fan is pure translational with respect 
to K frame.

If the fan is switched on while the car is at rest, the motion of fan is pure rotational about its axis, as the axis is at 
rest in the K frame.

If the fan is switched on while the car is moving on the road, the motion of the fan with respect to K frame is neither 
pure translational nor pure rotational but a combination of both. Now if an observer A is sitting inside the car, as 
the car moves, the motion of fan will appear to him as pure rotational while the motion of the observer A with 
respect to K frame is pure translational. Hence in this case we can see that the motion of the fan can be resolved 
into two components, pure rotational motion relative to observer A and pure translational motion of observer A 
relative to K frame.

Such a resolution of motion of a rigid body into components of pure rotational and pure translational motion is an 
important tool used in the study of their dynamics.

10.1 Kinematics of a General Rigid Body Motion 
For a rigid body the value of angular displacement θ, angular velocity ω, and angular acceleration α is same for 
all points on the rigid body. Also, if we choose any point of the rigid body as origin O and any other point, say A, 
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of the body has a position vector r
  relative to O, and during any 

time interval the vector r
  rotates by an angle θ relative to its initial 

direction, then position vector of any other point, say B, relative to 
any other origin, say O’, inside the rigid body will also rotate by the 
same angle θ. This means the angular variables θ, ω, and α do not 
depend on the choice of origin in the rigid body. 

The above concept is very important as it enables us to calculate 
the velocity of each point of the rigid body if we know the velocity 
of any one point (say A) in the rigid body with respect to a reference 
frame K and angular velocity of any point in the rigid body relative 
to any other point in the rigid body.

Suppose we want to calculate the velocity of a point B in the rigid 
body which has a position vector BAr



 relative to A (see Fig. 7.45).

The velocity of point A is Av
 , so we have velocity of B as

B A BA A BAv = v v  v + × r+ = ω
   



Direction of ù is given by right hand thumb rule. If we curl the fingers of the right hand in the direction of rotation 
of the body, thumb gives the direction of ω .
Similarly the acceleration of point B is: BAB A =  +  × a a rα

   

Illustration 28: Consider the general motion of a wheel (radius r) which can be viewed as pure translation of its 
center O (with the velocity v) and pure rotation about O (with angular velocity ù )

Find out AO BO CO DO, , , v  v v v
   

 and A B C D, , ,v v v v
   

 � (JEE MAIN)

Sol:  Express the angular velocity, linear velocity of point O and 
position vectors of points A, B and C relative to O in Cartesian 
coordinates.

	 		  AOv


 = AO( r )ω×
 

 = ( )ˆ( k) OAω − ×


 

			    = ( )ˆ ˆ( k) r( j)ω − × −  = ri−ω  

Similarly 	 BOv


 = rω ˆ( j)−  ; COv


 = ˆr(i)ω  ; DOv


 = ˆr( j)ω  

			   Av


 = O AO +v  v
 

 = ˆ ˆi riv  − ω  ;	

			    Bv


= O BO +v  v
 

 = ˆ ˆi rjv  + ω  

			   Cv


 = O CO +v  v
 

 = ˆ ˆi r iv  + ω  ;		  Dv


 = O DO +v  v
 

 = ˆ ˆi rjv  + ω

10.2 Dynamics of a General Rigid Body Motion
Combined rotation and translation of a rigid body is considered as combination of pure rotation in C frame about 
an axis passing through the center of mass and translation of center of mass in a reference frame K. Dynamics of 
combined rotational and translational motion of a rigid body in K frame is defined by two vector equations. One 
of them describes the dynamics of the center of mass of the rigid body in the K frame, and the other the equation 
of dynamics of pure rotation of the body about center of mass in the C frame.
So if the total mass of the rigid body is M and the net external force acting on it is extF



 then we have in the K frame,

C
ext

dV
M  = F

dt





	�  …(i)

If CI  is the moment of inertia of the rigid body about the axis passing through center of mass and Cτ


 is the net 
torque of all external forces about the axis passing through the center of mass, then we have in the C frame,

C C C
d = I = I
dt
ω

τ α


 � …(ii)
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Figure 7.45: Kinematics of rigid body
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If totalP


 is the total linear momentum of the rigid body in the K frame, CL


 is angular momentum of the body in C 
frame about center of mass and Cr



 is the position vector of center of mass relative to some origin in K frame, then 
we have,

	 total CP MV=




Total Kinetic energy

K = 2 2
C C

1 1MV I
2 2

+ ω 	� …(iii)

CL


 = CI  ω  	�  …(iv)

Angular momentum in K frame = CL


 about C.O.M + L


 of the C.O.M about some origin in K frame

L


 = CI


 ω


 + Cr


 × CMV


� …(v)

10.3 Pure Rolling (Rolling Without Slipping) 
Pure rolling is a special case of combined translational and rotational motion of a rigid body with circular cross 
section (e.g. wheel, disc, ring, cylinder, sphere etc.) moving on a surface. Here, 
there is no slipping between the rolling body and the surface at the point of 
contact.

Suppose a sphere rolls on a stationary surface and the point of contact between 
the sphere and the surface is A (see Fig. 7.47). Let the velocity of the center of 
sphere be v, radius be R and its angular velocity be ω. For pure rolling the relative 
velocity between the point A of the sphere and the surface must be zero. As the 
surface is at rest, the velocity of point A is also zero. 

A  = v - R = 0v ω∴  
v = Rω∴

If sphere is rolling on a plank moving velocity v0, then for pure rolling, A 0 = v - R = vv ω  (see Fig. 7.48)

Same is true for the tangential acceleration of the point of contact in case 
of pure rolling. 

Now let’s discuss the case where a rolling cylinder of mass m moves forward 
on a rough plate of same mass with acceleration “a” and the rough plate 
moves forward with an acceleration “a0” under action of force F on a smooth 
surface.

As the cylinder accelerates in the forward direction, so by Newton’s second 
law, the friction on the cylinder at the point of contact will be in forward 
direction and on the plate in backward direction by Newton’s third law (see 
Fig. 7.50).

Equation of torque about center of cylinder:
2

C
mRfR

2
= =τ α

2f
mR

= ⇒α  � ……. (i)

Equation of motion of center of cylinder: 

f = ma � …… (ii) 

From (i) and (ii) we get
Ra

2
α

=  

R

�

V

A

Figure 7.47: Sphere rolling on a 
stationary surface.

V
0

A

�

V

Figure 7.48: Sphere rolling on a 
moving surface.
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Figure 7.49: Cylinder rolling on an accelerating plate.



Physics  |   7 .27

At contact point 

a0 = a + aR = 3 R
2
α  = 3a� …… (iii)

Equation of motion of plate:

	 F – f = ma0

	 F = m(a + a0)

	 F = 4ma	 ; a = F
4m

; 	  a0 = 3F
4m

 

Illustration 29: A wheel of radius r rolls (rolling without slipping) on a level 
road as shown in fig 7.51. 

Find out velocity of point A and B. � (JEE MAIN)

Sol: Linear velocity of any point on the rim of the wheel has magnitude ωr in 
the reference frame of center of wheel (C-frame). Velocity in ground frame is 
the vector sum of velocity in C-frame and the velocity of center of wheel.

Contact point at surface is in rest for pure rolling 

Velocity of point is A zero. 

So v = ω r 

Velocity of point B = v + ω r = 2v 

Illustration 30: A uniform sphere of mass 200 g rolls without slipping on a plane surface so that its center moves 
at a speed of 2.00 cm s-1. Find its kinetic energy.� (JEE MAIN)

Sol: The kinetic energy of sphere is the sum of the translational kinetic energy and the rotational kinetic energy.

As the sphere rolls without slipping on the plane surface its angular speed about center is

 ω  = cm
r

v
. The kinetic energy is 2 2 2 2 2

cm cmcm
1 1 1 2 1K =  I  + Mv  = . Mr Mv
2 2 2 5 2

ω ω +  

2 2 2 -1 2 5
cm cm cm

1 1 7 7= Mv  + Mv  =  Mv  = (0.200 kg)(0.02 m s )  = 5.6  10 J
5 2 10 10

−×

Illustration 31: A constant force F acts tangentially at the highest point of a uniform disc of mass m kept on a 
rough horizontal surface as shown in Fig 7.52. If the disc rolls without slipping, calculate the acceleration of the 
Center C and point A and B of the disc. � (JEE ADVANCED)

Sol: Apply Newton’s second law for the motion of center of mass of the disc. 
Find the torque of the force F and the force of friction acting on the disc at point 
A about the center of mass of the disc and thus obtain the equation relating 
the angular acceleration in the C-frame to the torques of all the external forces.

The situation is shown in Fig 7.52. As the force F rotates the disc, the point of 
contact has a tendency to slip towards left so that the static friction on the 
disc will act towards right. Let r be the radius of the disc and be the linear 
acceleration of the center of the disc. The angular acceleration about the center 
of the disc is 

	  α  = a/r, as there is no slipping. 

a
0

Fm

f

m a

f

�

Figure 7.50: (a) FBD of Cylinder. (b) FBD of Plate.

B

r

�

v

A

Figure 7.51

Figure 7.52

C

r

F

A

B

rough surface



7.28  |   Rotational Mechanics

For the linear motion of the center, 

	 F + f = ma � …….. (i)

And for the rotation motion about the center, 

	 Fr – f r = I α  = 21 amFr r–
2 r

 f  r  I 
  
  
 

=


=  or	  	 F –  f  1 ma
2

=
�

 …….. (ii)

From (i) and (ii), 

	 32F = ma
2

 	 or 	 4Fa = 
3m

	

Acceleration of point A is zero

Acceleration of point B is 2a = 2 4F
3m

 
 
 

 = 8F
3m

 
 
 

 . 

Illustration 32: A circular rigid body of mass m, radius R and radius of gyration (k) rolls without slipping on an 
inclined plane of an inclination θ. Find the linear acceleration of the rigid body and force of friction on it. What must 
be the minimum value of coefficient of friction so that rigid body may roll without sliding?�
� (JEE ADVANCED)

Sol: Apply Newton’s second law for the motion of center of mass of the rigid 
body. Find the torque of the force F and the force of friction acting on the rigid 
body about the center of mass of the disc and thus obtain the equation relating 
the angular acceleration in the C-frame to the torques of all the external forces.

If a is the acceleration of the center of mass of the rigid body and f the force of 
friction between sphere and the plane, the equation of translational and rotational 
motion of the rigid body will be

Mg sin –  f   maθ =  (Translational motion)

		   fR  I = α  (Rotational motion)

	  If = 
R
α  	 I = m 2k , due to pure rolling a = α R 

mg sin I 
R

θ
α

−  m  R  m R I
R

= α = α +
α 2

   ma mk
R

= +
α  

2 2

2R
a R k 
 +
 


=
 

 

2 2

2

gsin

R k
R

a   θ
 +
 

=


 

  = 
2

2

gsin

k1
R

θ
 

+  
 

;           f  I
R

=
α   =  

22

2 2 2  
mg k sinmk a

R R k
⇒

θ
+

f ≤ mN;	  
2

2 amk
R

  mg cos ≤µ ≤ θ

( )2 2

2
2

2
g sin     
k R

kR g cos 
R

θ
× ≤ µ θ

+
; 

2

2

tan

R1+
k

θ
µ ≥

 
 
  

 ;	
2

2

min
tan

R1+
k

θ
µ ≥

 
 
  

 

a/R

mg mgsin�

mgcos�

�

f

Figure 7.53
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PLANCESS CONCEPTS

•• From above example if rigid bodies are solid cylinder, hollow cylinder, solid sphere and hollow sphere 
(having radius ‘r’ and mass ‘m’) 

•• Increasing order of acceleration

	 a  > a  >  a  > asolid sphere hollow sphere solid cylinder hollow cylinder

•• Increasing order of required friction force for pure rolling

	 f  > f  > f  > fhollow cylinder hollow sphere solid cylinder solid sphere

•• Increasing order of required minimum friction coefficient for pure rolling

	  >  >  > hollow cylinder hollow sphere solid cylinder solid sphereµ µ µ µ

•• I would advise you to derive these, verify and remember!

Anand K (JEE 2011 AIR 47)

10.4 Instantaneous Axis of Rotation
The combined translational and rotational motion of a rigid body can be reduced to a purely rotational motion. 
When we know the velocity VC of the center of mass and the instantaneous angular velocity ω of the body then 
we can find a point whose velocity comes out to be zero at a given moment of time. The axis passing through this 
point at the given moment is called instantaneous axis of rotation and the rigid body performs pure rotation about 
this axis with same angular velocity at that moment.

The position of the instantaneous axis of rotation changes with time. E.g. in pure rolling the point of contact with 
the surface is the instantaneous axis of rotation (see Fig. 7.54). 

(l.A.R.)

rig
id

 ro
d

V
2

V
1

�

V+ r=2v�

Instantaneous axis

v

2v

P

Figure 7.54: IAR (a) pure rolling; (b) Rod slipping down a wall

Geometrical construction of instantaneous axis of rotation (I.A.R). If we know the velocity vectors of any two 
points in the rigid body then the I.A.R. is the axis passing through the point of intersection of the perpendiculars 
drawn to the velocity vectors at those points.

Once location of I.A.R is known, we find the moment of inertia of the body about this axis, and then the equations 
of rotation about fixed axis can be used for this axis.

Illustration 33: Prove that kinetic energy = 1/2 2
PI ω � (JEE MAIN) 

Sol: Kinetic energy is the sum of the translational kinetic energy and the rotational kinetic 
energy.

Figure 7.55

v

P

v= R�

�
0
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2 2 2 2 2
cm cm c.E  mK . 1 1 1 1 I  +  Mv   = I  +  M R

2 2 2 2
= ω ωω  2 2)cm

1 (I  + MR
2

= ω  =  ( ) 2
contact point

1 I
2

ω

Notice that in pure rolling of uniform object, equation of torque can also be applied about the contact point. 

Illustration 34: A uniform bar of length   and mass m stands vertically 
touching a vertical wall (y – axis). When slightly displaced, its lower end 
begins to slide along the floor (x – axis). Obtain an expression for the angular 
velocity (ω ) of the bar as a function of θ . Neglect friction everywhere.�  
� (JEE ADVANCED)

Sol: As the rod falls, it executes pure rotational motion about the instantaneous 
axis of rotation. The loss in gravitational potential energy is equal to the gain 
in the rotational kinetic energy.

The position of instantaneous axis of rotation (IAOR) is shown in Fig 7.57.

cos , sin
2 2

C =  
θ θ 

 

  ;	  r = 
2
  = half of the diagonal 

All surfaces are smooth, therefore, mechanical energy will remain conserved. 

∴ Decrease in gravitational potential energy of bar = increase in rotational 
kinetic energy of bar about IAOR. 

mg
2
  (1 – sinθ) = 21 I

2
ω � ... (i) 

Here, I = 2
2m  +mr

12
  (about IAOR) or I 

=
2 2 2m m m +  = 

12 4 3
    Substituting in Eq. (i) 

We have mg
2
  (1 – sinθ) = 2

21
2

m
3

 
ω  

 

  or ω  = 3g(1 sin )− θ


  

Nature of friction for rigid bodies: 

•• A rigid body rolling with a speed of v and angular velocity of ω at an instant. Then it falls under one of the 
following cases. 

Cases Rough/Smooth Diagram Inference

V < r ω Rough Surface

Rough surface

v

�

f
k

1. There is relative motion at point of contact. 
With respect to the body the surface moves 
slower than itself. So the surface tries to 
decrease its angular velocity by a frictional force 
in forward direction. And this friction is kinetic 
friction. 

2. It increases v and decreases ωSo, after 
sometime, v =rωand pure rolling will resume. 

�

A

O

�

(lAOR)

r

C

B

�

Figure 7.56

Figure 7.57
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Cases Rough/Smooth Diagram Inference

Smooth Surface

Smooth surface

v

�

No friction is possible and it is not pure rolling.

v r> ω

Rough surface

Rough surface

v

�

With respect to the COM of the cylinder, the 
surface moves at a higher speed than itself. So 
the surface tries to increase its angular velocity 
by exerting a frictional force in backward 
direction. And this friction would be kinetic 
friction. 

2. The friction tries to reduce V and increase ω

V > r ω Smooth Surface

Smooth surface

v

�

No friction and no pure rolling.

V = r ω Rough Surface

Smooth surface

v

�

This is pure rolling. However there might be 
static friction acting on the body.

Smooth Surface

Smooth surface

v

�

No friction is possible and it is pure rolling

Rohit Kumar (JEE 2012 AIR 79)

Illustration 35: A rigid body of mass m and radius r rolls without slipping on a surface. A force is acting on the rigid 
body at x distance from the center as shown in Fig 7.58. Find the value of x so that static friction is zero. �
� (JEE MAIN) 

Sol: For static friction to be zero, the linear and angular accelerations a and α  
caused by the force F should be related as a = α R, for rolling without slipping.

Torque about center of mass Fx = cmI α  � … (i)

				    F = ma � … (ii) 

From equation (i) & (ii)	  max = cmI α 	 (a = α R) ; 

cmI
x =

mR
 

Figure 7.58

a

a= R�

Rough surface

F
x

o

P
�

f
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Illustration 36: There are two cylinders of radii R₁ and R2 having moments of 
inertia I₁ and I2 about their respective axes as shown in Fig 7.59. Initially, the 
cylinders rotate about their axes with angular speed w1 and w2 as shown in the 
Fig 7.59. The cylinders are moved close to touch each other keeping the axes 
parallel. The cylinders first slip over each other at the contact but the slipping 
finally ceases due to the friction between them. Calculate the angular speeds 
of the cylinders after the slipping ceases. � (JEE ADVANCED)

Sol: The force of friction acting on the cylinder moving faster will be such that its angular velocity decreases. The 
force of friction acting on the cylinder moving slower will be such that its angular velocity increases. When slipping 
ceases, the linear speeds of the points of contact of the two cylinders will be equal.

If w'1 and w'2 be the respective angular speeds at the instant slipping ceases, we have

	 w'1 R1 = w'2 R2 � …(i)

The change in the angular speed is brought about by the frictional force which acts as long as the slipping exists. If 
this force f acts for a time t. the torque on the first cylinder is fR1 and that on the second is fR2. Assuming w1 > w2. 
The corresponding angular impulses are – fR1 t and fR2 t,

We therefore, have 

– f 1R t = 1 1 1I ( ` )ω −ω  and f 2R t = 2 2 2I ( ` )ω −ω  

 or 1 2
1 1 2 2

1 2

I I
( ` ) = ( ` )

R R
− ω −ω ω −ω  � …(ii)

Solving (i) and (ii) 1 1 2 2 2 1
1 22 2

2 1 1 2

I R  + I R
' R

I R I R

ω ω
ω =

+
 and 1 1 2 2 2 1

2 12 2
2 1 1 2

I R  + I R
' R

I R I R

ω ω
ω =

+
 . 

10.5 Energy Method in Solving Problems of Rolling Body
We can conserve energy in case of pure rolling of a rigid body because the point of 
contact between the surfaces remains at rest and so the frictional forces acting at 
the point of contact do not do any work. Thus only conservative force do work on 
the body.

Thus Potential energy + total K.E. = constant 

As shown in the Fig. 7.60, a disc is rolling down on an inclined plane. Then we can 
conserve total mechanical energy. If the disc falls a height h then loss in potential 
energy is equal to gain in kinetic energy. 

Mgh = 1 12 2I  + MV
C2 2

ω � … (i) 

Its total kinetic energy = 1 12 2MV  +  I
C2 2

ω  = 
21 K2MV  1+

C 22 R

 
 
 
 

 � …(ii)

where K is the radius of gyration of the disc and VC the velocity of center of mass.

So	
2

C C2
2 2

2

2

K
1   Mgh;

R

2gh1 MV  V  = 
2 K1 + 

R

+ =
 
        

 

 	  

Thus the velocity of center of mass of a body rolling down an inclined plane is given by

�
1

R
1

1
1

�
2

R
2

1
2

Figure 7.59

Figure 7.60

h
S

�
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	 C
2

2

1/2
2gh

V  = 
K1 + 
R

 
  
 

If aC is linear acceleration of center of mass down this plane, and distance covered on the plane is s, then if the body 
starts from rest we have

2
CV  = 2aCs 

2
C

C 2

2

V 2 gh
 a  = 

2 s K h1 + 2
sin R

∴ =
 

× ×   θ 

 or C 2

2

g sin a  = 
K1 + 
R

θ  

Rather than going in a conventional way, using this method greatly simplifies our effort. But take care 
while writing the kinetic energy! 

Nitin Chandrol (JEE 2012 AIR 134)

Illustration 37: A solid sphere is released from rest from the top of an incline of inclination θ and length  . If the 
sphere rolls without slipping. What will be its speed when it reaches the bottom? � (JEE MAIN)

Sol:  The loss in the gravitational potential energy of the solid sphere is equal to the gain in the kinetic energy. 
The kinetic energy of the sphere comprises the rotational kinetic energy as well as the translational kinetic energy.

Let the mass of the sphere be m and its radius be r. Suppose the linear speed of the sphere when it reaches the 
bottom is v. As the sphere rolls without slipping, its angular speed ω about its axis is v/r. The kinetic energy at the 
bottom will be 

	 2 21 1K = I  +  mv
2 2
ω  = 2 2 2 2 2 21 2 1 1 1 7mr + mv  =  mv  +  mv  = mv

2 5 2 5 2 10
 
 
 

ω  

This should be equal to the loss of potential energy mg   sinθ. Thus 

	 2  = mg sin7 mv
10

θ 		 Or	 10 = g sin
7

v θ .  

11. TOPPLING 

When an external force is applied to the upper edge of a body 
with a flat base to cause it to slide along a surface, the body may 
topple before sliding starts. Toppling is more likely to happen 
when the width of the base of the body is small.

Toppling occurs due to the turning effect of torques of applied 
force at the upper edge and frictional force at the base.

Let the surface be quite rough and the force F is applied at 
height h above the base of the block as shown in Fig. 7.61. Width 
of the base is b. The static friction at the base is f = F. The normal 
reaction is N = mg. The couple of forces F and f try to topple 
the block about point S. To cancel the effect of this unbalanced 
torque the normal reaction N shifts towards S by a distance x so 
that torque of N counter balances torques of F and f.

Q R

mg

F
topple

b

Rough surface

P S

N

h
f

Figure 7.61: Block toppling on rough surface
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	 Fh = (mg)x	 or 	 Fhx
mg

=

If F or h or both increase, distance x also increases, but it cannot go beyond the maximum value of xmax = b/2 i.e in 
extreme case N passes through edge S. If F is further increased block will topple. 

So,	 topple
mgb

F
2h

=

Here we assumed that the surface is sufficiently rough so that sliding starts only when 

max topple
bF f mg F or
2h

= = µ > µ >  (toppling before sliding)

If surface is not sufficiently rough, the body slides before F is increased to Ftopple i.e. the body will slide before 
toppling. This is the case when

max topple
bF f mg F or
2h

= = µ < µ <  

Illustration 38: A uniform cube of side ‘a’ and mass m rests on a rough horizontal table. A horizontal force F is 

applied normal to one of the faces at a point directly below the center of the face, at a height a
4

 above the base. 

(i) 	 What is the minimum value of F for which the cube begins to tip about an edge? 

(ii) 	 What is the minimum value of sµ  so that toppling occurs? 

(iii) 	 If 1f


= minµ , find minimum force for toppling. 

(iv) 	 Minimum sµ  so that minF  can cause toppling. � (JEE ADVANCED)

Sol: For part (i) we consider toppling before sliding. The normal reaction will pass through the edge. In part (ii) it 
is not mentioned whether the toppling occurs before sliding or sliding occurs before toppling. So the toppling will 
occur for any value of sµ , sliding or no sliding. Part (iii) is same as part (i). Part (iv) is the case of toppling before 
sliding.

(i) 	 In the limiting case normal reaction will pass through O. The cube will tip about O if torque of F about O 
exceeds the torque of mg.

	 Hence, a aF  > mg
4 2

   
   
   

 	 or	  F > 2 mg

	 Therefore, minimum value of F is 2 mg.

(ii) 	 In this case since it is not acting at COM, toppling can occur even after body started sliding even if there is no 
friction by increasing the torque of F about COM. Hence minµ  = 0.

(iii) 	 Now body is sliding before toppling. O is not I.A.R., torque equation cannot be applied across it. It can be 
applied about COM. 

	 F × a
4

 = N × a
2

 � … (i)

	 N = mg � ... (ii)

	 From (i) and (ii) -> F = 2 mg

(iv)	 F > 2 mg ………………… (i) (From sol. (i))

	 N = mg � … (ii)

	 F = sµ N = sµ mg � … (iii) 

From (i) and (iii) sµ  = 2 

N

a/2 a/4

f
r

O

F

mg

Figure 7.62
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Illustration 39: Find minimum value of 


 so that truck can avoid the dead end, without toppling the block kept 
on it.� (JEE ADVANCED)

b

mh
Sufficiently

rough surface
power breaks

�

v

Figure 7.63

Sol: The block kept on truck will experience pseudo force in forward direction and friction 
force due to the floor of the truck in backward direction. We assume the case of toppling 
before sliding. In extreme case the normal reaction N = mg will pass through the edge.

 h bma mg
2 2
≤  	⇒ ba g

h
≤

Final velocity of truck is zero. So that 0 = 2 bv 2( g)
h

−   

2h v
2b g

=  

PROBLEM-SOLVING TACTICS 

•• Most of the problems involving incline and a rigid body can be solved by using conservation of energy during 
pure rolling. In case of non-conservative forces, work done by them also has to be taken into consideration in 
the equation. Care has to be taken in writing down the Kinetic energy. Rotational Kinetic Energy term has to be 
taken into consideration. And while writing the rotational energy, the axis about which the moment of inertia 
is taken should pass through the COM. 

•• The motion of a body in pure rolling can be viewed as pure rotation about the bottommost point of the body 
or the point of contact with the ground. Hence an axis passing through the point of contact and tangential 
to the point would be the Instantaneous axis of rotation. So problems on pure rolling can be solved easily by 
using the concept of instantaneous axis of rotation. 

•• Problems on toppling can be easily solved by writing the moments on the body and visualizing them as forces 
acting on the body. If the net moment is tending to stabilize the body, then the body doesn’t topple. For any 
condition else it may get toppled. 

•• Problems which include the concept of sliding and rolling can be solved easily by using the concept of 
conservation of angular momentum. But care has to be taken in selecting the proper axis so that net moment 
about that axis vanishes.

Figure 7.64

b

h ma

mg

N
f
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FORMULAE SHEET

S. 
No

Term Description Linear Motion Rotational motion & 
relation

1 Displacement Displacement (linear or angular) is the physical 
change in the position of the body when a body 
moves linearly or angular in position.

(a) The linear displacement s∆  is difference 
between final and initial position measured in 
linear direction.

S.I. unit: meter m

(b) The angular displacement of the body while 
rotating about a fixed axis is the displacement 
∆θ  it swept out with respect to its initial 
position in sense of rotation. It can be positive 
(anti clockwise) or negative (clockwise)

S.I. unit: radians rad,

s θ

r(s = )θ

2 Velocity Velocity of any moving object is the time 
rate of change of position. The velocity is the 
vector quantity. Linear velocity is in the plane 
of motion. Angular velocity can be positive or 
negative & its direction is perpendicular to the 
plane of rotation

Linear velocity is categorized as 

- Average velocity= s / t∆ ∆

- Instantaneous velocity= ds/dt.

S.I. unit: m/s

Angular velocity is categorized as

- Average angular velocity / t∆θ ∆

- Instantaneous angular velocity d / dtω = θ

S.I. unit: rad/s

dsv = 
dt

d = 
dt
θω r(v = )ω

3 Acceleration Acceleration is the time rate change of 
velocity of a body. It’s a vector quantity. Linear 
acceleration can be positive or negative and 
related to direction of motion.

Linear acceleration is categorized as 

- Average acceleration= v / t∆ ∆

- Instantaneous acceleration = dv/dt.

dva = 
dt

d = 
dt
ω

α  (a = r )α
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S. 
No

Term Description Linear Motion Rotational motion & 
relation

S.I. unit: m/s–2

Angular acceleration is categorized as

- Average angular acceleration / t∆ω ∆

- Instantaneous angular acceleration 

d / dtα = ω

S.I. unit: rad/s–2

4 Mass Mass is the basic entity of any body by virtue of 
which the body gains weight.

In linear kinematics the mass of whole body is 
constant. S.I. unit: kilogram kg

In angular kinematics mass of body is 
distributed among various tiny rigid points 
so mass is measured about inertia of rotating 
body- moment of inertia I

M I ( I = ∑mr2)

5 Momentum Momentum of body is product of mass and its 
velocity of motion. It’s a vector quantity.

Linear momentum= mv

S.I. unit: kg m/s

Angular momentum of body is a vector in 
direction perpendicular to plane of rotation 

given by L


 S.I. unit: kg m2/s

p = mv L


 = I

L r p= ×


 

6 Impulse Impulse is the product of force and time period

And it is categorized as

-Linear impulse

-Angular impulse

F dt∫ dtτ∫

7 Force

(Newton’s 
second law of 
motion)

From the newton second law of motion, force is 
time rate of change of momentum. It’s a vector 
quantity.

Linear force F=
dp ma
dt

=

S.I. unit: Newton N

Angular force Iτ = × α


Laws of conservation of momentum

- Linear momentum is said to be conserved if 
dp
dt

= 0, than P remains constant

- Angular momentum is said to be conserved if 
dL
dt



= 0 than L remains constant

F = ma

If = 0 the body is in 
equilibrium with its 
surrounding

r Fτ = ×




 I= × α


 

= dL
dt



 

If = 0 the body is in 
equilibrium with its 
surrounding
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S. 
No

Term Description Linear Motion Rotational motion & 
relation

8 Work Work is the product of displacement of body 
under action of external applied force. W = F ds∫ W = dτ θ∫

9 Power Power is the time rate change of work done P =F P = τ ω

10 Kinetic energy The phenomenon associated with the moving 
bodies K.E. tran = 21

2
mv  K.E. rot =

21 I
2
ω  

11 Kinematics of 
Motion 

Kinematical equation are the interrelation of 
displacement, velocity, acceleration and time 
and are categorized as follows:

-Linear kinematical equation 

-Angular kinematical equation

 v = u + at
21s = ut + at

2
2 2v  = u  + 2as

0 =  + tω ω α

2
0

1 = t + t
2

θ ω α

2 2
0 =  + 2ω ω αθ

12 Parallel Axis 
Theorem

2I  = I +Mdccxx  where Icc  is the moment of 
inertia about the center of mass 

13 Perpendicular 
Axis Theorem

I + I = Iyy zzxx  It is valid for plane laminas 

only. 

14 Work energy 
principle 

Work energy principle is used to determine the 
change in the kinetic energy of moving body 2 21 1mv mu

2 2
W= −

 
2 2

0
1 1W= I I
2 2

−ω ω

R

cm
L

X v
�

Sol: The frictional forces acting on the feet of man will 
provide the necessary centripetal acceleration to move 
in a circular path. Apply the Newton’s second law of 
motion at the center of mass of the man to get the 
equation of motion along the circular path. In the 
vertical plane the man is in rotational and translational 
equilibrium under the action of its weight acting 
vertically downwards and the normal reactions at its 
feet acting vertically upwards. Get one equation each 

JEE Main/Boards

The first five Examples discussed below show us the 
strategy to tackle down any problem in the rigid body 
motion. Hence follow them up properly! They may be 
lengthy but are very learner friendly!!

Example 1: A person of mass M is standing on a railroad 
car, which is rounding an unbanked turn of radius at 
speed v. His center of mass is at a height of L above 
the car midway between his feet, which are separated 
by a distance of d. The man is facing the direction of 
motion. What is the magnitude of the normal force on 
each foot? 

Solved Examples


