He. Helium obtained as a result of decay of $^{238}_{92}$ U has almost certainly been formed from α -particles. Thus, if 238 U and He contents are known in a rock we can determine the age of rock sample (1 g of 238 U in equilibrium with its decay products produces about 10⁻⁷ g He in a year). Also, by assuming that initially the rock does not contain 206 Pb and it is present in rock due to decay of 238 U, we can calculate the age of rocks and mineral by measuring the ratio of 238 U and 206 Pb. The amount of 206 Pb is supposed to be obtained by decay of 238 U Thus, $^{238}_{92}$ U $\longrightarrow ^{206}_{82}$ Pb+8 $^{4}_{2}$ He+6 $^{-1}_{-1}$ e Mole of 238 U left = N at time t i.e. N_t; Mole of 206 Pb formed = N' at time t

: Initial mole of 238 U = N + N' (at time 0) i.e., (N₀)

Thus, time t can be evaluated by t = $\frac{2.303}{\lambda} log \frac{N_0}{N_t}$

Illustration 31: On analysis, a sample of uranium are was found to contain 0.277 g of ${}^{206}_{82}$ Pb and 1.667 g of ${}^{238}_{92}$ U. The half-life period of 238 U is 4.51 × 10⁹ years. If all the lead were assumed to have come from decay of ${}^{238}_{92}$ U, what is the age of earth? (JEE ADVANCED)

Sol: Given, at time t; $^{238}_{92}$ U = 1.667 g = (1.667/238) mole ; $^{206}_{82}$ Pb =0.277 g = (0.277/206) mole

Since, all lead has been formed from ²³⁸U, therefore moles of U decayed = Moles of Pb formed = (0.277 / 206)

:. Total moles of U before decay (N_0) = Moles of U at time t (N) + Moles of U decayed

$$= \frac{1.667}{238} \times \frac{0.277}{206} \quad \because t = \frac{2.303}{\lambda} \log \frac{N_0}{N} = \frac{2.303 \times 4.51 \times 10^9}{0.693} \log \frac{(1.667/238) + (0.277/206)}{(1.667/238)} \qquad \therefore t = 1.147 \times 10^9 \text{ years}$$

Illustration 32: The activity of the hair of an Egyptian mummy is 7 disintegrations minute⁻¹ of ¹⁴C. Find the age of the mummy, given $t_{0.5}$ of ¹⁴C is 5770 years and disintegration ratio of fresh sample of ¹⁴C is 14 disintegration minute⁻¹ (JEE MAIN)

Sol:
$$r_0 = 14 \text{ dpm and } r_1 = 7 \text{ dpm} \therefore \frac{r_0}{r} = \frac{14}{7} = 2 = \frac{N_0}{N}$$
 (: $r_0 \propto N_0$)
 $t = \frac{2.303}{\lambda} \log \frac{N_0}{N} = \frac{2.303 \times 5770}{0.693} \log 2 = 5771 \text{ year}$

Illustration 33: The half period of ¹⁴C is 5760 years. A piece of wood when buried in the earth had 1% ¹⁴C. Now as charcoal it has only 0.25% ¹⁴C. How long has the piece of wood been buried? (JEE MAIN)

Sol: Given, $N_{0_{14_c}} = 1\%$; $N_{14_c} = 0.25\%$ and $t_{1/2} = 5760$ year

$$t = \frac{2.303}{\lambda} log \frac{N_0}{N} = \frac{2.303 \times 5760}{0.693} log \frac{1}{0.25} = 11524 \text{ year}$$

PROBLEM SOLVING TACTICS

Nuclear radius (r)= $R_0 A^{1/3}$, where A= Mass no. , = 1.4×10^{-15} m For calculation of geological dating :

- (i) Calculation λ from $t_{1/2}$, $\lambda = \frac{0.693}{t_{1/2}}$
- (ii) Calculate uranium converted into lead
- (iii) Calculate total initial amount of uranium initially present

(iv) Apply,
$$t = \frac{2.3030}{\lambda} log \frac{N_0}{N}$$

For calculation in carbon dating method

(i) Calculated from
$$t_{1/2}$$

(ii) m% activity of C-14 now present means $\frac{N_0}{N} = \frac{m}{100}$

(iii) Apply,
$$\lambda = \frac{2.3030}{t} \log \frac{N_0}{N}$$

POINTS TO REMEMBER

Kinetics of Radioactive Disintegration: All radioactive isotopes decays spontaneously following first order kinetics, i.e, rate of decay (-dN/dt) is directly proportional to the amount of radioactive isotope (N).	$\begin{array}{ll} -\frac{dN}{dt} \propto N & \Rightarrow & -\frac{dN}{dt} \lambdaN & \text{Where, '}\lambda' \text{ is decay} \\ \text{constant. Integrating the above rate law gives } \lambda t = In \left(\frac{N_0}{N} \right); \\ N_0 = \text{Initial number of nuclides} \\ \text{N} = \text{Number of nuclides remaining after time t. Also } N = N_0 e^{-\lambda t}. \end{array}$
Half-life $(t_{1/2})$: Time in which half of the nuclides are decayed	$t_{1/2} = \frac{1}{\lambda} In\left(\frac{N_0}{N_0/2}\right) = \frac{In2}{\lambda}$
Activity (A) It is the instantaneous rate of decay.	$A = -\frac{dN}{dt} = \lambda N \implies \text{Initial activity} (A_0) = \lambda N_0$ Also $A = A_0 e^{-\lambda t}$
Units of Radioactivity: Curie (Ci) and Rutherford (Rd) Gray (Gy): 1Gy = 1 kg tissue receiving 1 J energy. If w0 gram of a radioisotope decay for 'n' half-lives, the amount of radio-iso- tope remaining undecayed (w) is given by the expression. It is a derived unit of ionizing radiation.	$1\text{Ci}=3.7 \times 10^{10} \text{ dps}$ $1\text{Rd} = 10^{6} \text{ dps}$ $w = w_0 \left(\frac{1}{2}\right)$

Total Binding Energy (BE) : It is the total energy released when a nucleus is formed from nucleons. BE is determined from mass defect (Δm) as BE = (Δm)C²

 $\Delta m = \sum$ (Mass of nucleons – Mass of nucleus) ($\Delta m = 1u$ correspond to BE=931 MeV)

Unstable nuclei decay by spontaneous emission of radioactive rays. Stability of a nucleus is accounted qualitatively by its N/P ratio (N=Number of neutrons and P=number of protons).

Up to Z=20, for stable nuclei, N/P=1 is required.

Above Z=20, more neutrons are required to shield the strong electrostatic repulsion between large number of like charged protons in a small nuclear volume, hence N/P> 1 is required for stability in case unstable nuclei, if N/P ratio is greater than that required for stability, β -emission takes place, eg,

$$_7 N^{16} \rightarrow_8 O^{16} + \beta \Big(_{-1} e^0\Big)$$

If N/P ratio is less than that required for stability, radio nuclide may decay by one of the following modes:

(i) Positron emission

(ii) Electron capture

 $_{5}B^{8} \rightarrow_{4} Be^{8} + _{+_{1}}\beta^{0} (Positron +_{+_{1}} e^{0})$ $_{20}Ca^{38} + _{-_{1}}e^{0} \rightarrow_{19} K^{38}$

Alpha (α) emission occurs when Z>82.