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18. ELECTRIC CHARGES,
FORCES AND FIELDS

1. INTRODUCTION

You must have felt the attraction of hair of your hand when you bring it near to your Television screen. Did you ever
think of cause behind it? These all are the electric charges and their properties. Now we will extend our concept to
electric charges and their effects.

1.1 Nature of Electricity

The atomic structure shows that matter is electrical in nature i.e. matter contains particles of electricity viz. protons
and electrons. Whether a given body shows electricity (i.e. charge) or not depends upon the relative number of
these particles in the body.

(a) If the number of protons is equal to the number of electrons in a body, the resultant charge is zero and the
body will be electrically neutral. For example, the paper of this book is electrically neutral (i.e. exhibits no
charge) because it has the same number of protons and electrons.

(b) If from a neutral body, some *electrons are removed, the protons outnumber the electrons. Consequently, the body
attains a positive charge. Hence, a positively charged body has deficit of electrons from the normal due share.

2. TYPES OF CHARGES

Depending upon whether electrons are removed or added to a body, there are two types of charges viz
(i) Positive charge (ii) Negative charge

If a glass rod is rubbed with silk, some electrons pass from glass rod to silk. As a result,
the glass rod becomes positively charged and silk attains an equal negative charge as
shown in Fig. 18.1. It is because silk gains as many electrons as lost by the glass rod. It
can be shown experimentally that like charges repel each other while unlike charges
attract each other. In other words, if the two charges are of the same nature (i.e., both Silk Glass rod
positive or both negative), the force between them is of repulsion. On the other hand, if
one charge is positive and the other is negative, the force between them is of attraction.
The following points may be noted:

++++

Figure 18.1
(a) The charges are not created by the rubbing action. There is merely transfer of electrons from one body to
another.

(b) Electrons are transferred from glass rod to silk due to rubbing because we have done external work. Thus law
of conservation of energy holds.

() The mass of negatively charged silk will increase and that of glass rod will decrease. It is because silk has
gained electrons while glass rod has lost electrons.



18.2 | Electric Charges, Forces and Fields

3. PROPERTIES OF CHARGE

(@) Charge is a scalar quantity

(b) Charge is transferable

(c) Chargeis conserved

(d) Charge is quantized

(e) Like point charges repel each other while unlike point charges attract each other.

(f) A charged body may attract a neutral body or an oppositely charged body but it always repels a similarly
charged body

(g) Note: Repulsion is a sure test of electrification whereas attraction may not be.

(h) Charge is always associated with mass, i.e. charges cannot exist without mass though mass can exist without
charge.

(i) Charge is relatively invariant: This means that charge is independent of frame of reference, i.e, charge on a
body does not change whatever be its speed. This property is worth mentioning as in contrast to charge, the
mass of a body depends on its speed and increases with increase in speed.

(j) A charge at rest produces only electric field around itself; a charge having uniform motion produces electric
as well as magnetic field around itself while a charge having acceleration emits electromagnetic radiation also
in addition to producing electric and magnetic fields.

4. ELECTROSTATICS

The branch of physics which deals with charges at rest is called electrostatics. When a glass rod is rubbed with
silk and then separated, the former becomes positively charged and the latter attains equal negative charge. It is
because during rubbing, some electrons are transferred from glass to silk. Since glass rod and silk are separated by
an insulating medium (i.e. air), they retain the charges. In other words, the charges on them are static or stationary.
Note that the word ‘electrostatic’ means charges at rest.

5. CONDUCTORS AND INSULATORS

In general, the substances are divided into the following two classes on the basis of their ability to conduct electric
charges:

(a) Conductors: Those substances through which electric charges can flow easily are called conductors e.g., silver,
copper, aluminum, mercury, etc. In a metallic conductor, there are a large number of free electrons which act as
charge carries. However, in a liquid conductor, both positive and negative ions are the charge carries. When a
positively charged body is brought close to or touches a neutral conductor (metallic), the free electrons (charge
carriers) in the conductor move quickly towards this positive charge. On the other hand, if a negatively charged
body is brought close to or touches a neutral conductor, the free electrons in the conductor move away from the
negative charge that is brought close.

(b) Insulators: Those substances through which electric charges cannot flow are called insulators e.g., glass, rubber,
mica etc. When such materials are charged by rubbing, only the area that is rubbed becomes charged and there is
no tendency of the charge to move into other regions of the substance. It is because there are practically no free
electrons in an insulator.

6. CHARGING OF A BODY

A body can be charged by means of (a) friction, (b) conduction, (c) induction, (d) thermionic ionization, (e)
photoelectric effect and (f) field emission.
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(a) Charging by Friction: When a neutral body is After rubbing pr=cs s =
rubbed with another neutral body (at least one of | A B|— 4 At EBE
them should be insulator) then some electrons are et E=—==%5

transferred from one body to another. The body which
gains electrons becomes negatively charged and the
other becomes positively charged.

Neutral
Figure 18.2

(b) Conduction (flow): There are two types of materials in nature.

(i) Conductor: Materials which have large number of
free electrons.

(ii) Insulator or Dielectric or Nonconductors: A l B
Materials which do not have free electrons.

When a charged conductor is connected with a A % %

neutral conductor, then charge flows from one body

to another body. In case of two charged conductors, A B
charge flows from higher potential to lower potential. Figure 18.3

The charge stops flowing when the potential of the two

bodies become same.

Note: If two identical shaped conductors kept at large distance are connected to each other, then they will have
equal charges finally.

(c) Induction: When a charged particle is taken near to a neutral Induced charge

object, then the electrons move to one side and there is excess of \ v
electrons on that side making it negatively charged and deficiency on F—

the other side making that side positively charged. Hence charges + + + q +q
appear on two sides of the body (although total charge of the body rr S “«
is still zero). This phenomenon is called induction and the charge

produced by it is called induced charge. Figure 18.4

A body can be charged by induction in following two ways.

Method-I: The potential of conductor A becomes zero after earthing.

+ + +
To make potential zero some electrons flow from the Earth to the Pyt
conductor A and now connection is removed making it negatively

charged.

Method-Il: The conductor which has included charge on it, is
connected to a neutral conductor which makes the flow of charge ot
such that their potentials become equal and now they are + + 4+

disconnected making the neutral conductor charged.

Figure 18.6

(d) Thermo-ionic emission: When the metal is heated at a high temperature then some electrons of metals are
ejected and the metal gets ionized. It becomes positively charged.

—O[trtrrt|e—

++ + + + +

N\

Heat
Figure 18.7
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(e) Photoelectric effect: When light of sufficiently high frequency is incident on Light

metal surface then some electrons come out and metal gets ionized. A
+ 4+ + + e
+ + + +
+ + + +
Figure 18.8

(f) Field emission: When electric field of large magnitude is applied near the
metal surface then some electrons come out from the metal surface and hence
the metal gets positively charged.

044
|

Figure 18.9

7. UNIT OF ELECTRIC CHARGE

We know that a positively charged body has deficit of electrons and a negatively charged body has excess of
electrons from normal due share. Since the charge on an electron is very small, it is not convenient to select it as the
unit of charge. In practice, coulomb is used as the unit of charge, i.e., Sl unit of charge is coulomb abbreviated as C.

The charge on one electron in coulomb is =—1.6x10-"°C

Note that charge on an electron has been found experimentally.

8. QUANTIZATION OF ELECTRIC CHARGE

The charge on an electron (—e=1.6x10""°C) or on a proton (+e=+1.6x107"°C) is minimum. We know that charge on a
body is due to loss or gain of electrons by the body. Since a body cannot lose or gain a fraction of an electron, the
charge on a body must be an integral multiple of electronic charge e . In other words, charge on a body can only
be q=+ne where n=1, 2, 3, 4, and e=1.6x10""°C. This is called quantization of charge.

The fact that all free charges are integral multiple of electronic charge (e=1.6x10"°C) is known as quantization of
electric charge.

.. Charge on a body, q=+ne
Where n=1, 2, 3........ and e=1.6x107"°C

Suppose you measure the charge on a tiny body as +4.5x107"°C. This measurement is not correct because measured
value is not an integral multiple of minimum charge (i.e., 1.6x10-'°C).

Note: (i) The quantization of charge shows that charge is discrete in nature and not of continuous nature.

(ii) Since the charge on an electron is so small (e=1.6x107"°C), we normally do not notice its discreteness in
macroscopic charge (1uC charge requires about 10" electrons) which thus seems continuous.

9. CONSERVATION OF ELECTRIC CHARGE

Just as total linear momentum of an isolated system always remains constant, similarly, the total electric charge
of an isolated system always remains constant. This is called law of conservation of charge and may be stated as
under: The total electric charge of an isolated system always remains constant.

In any physical process, the charges may get transferred from one part of the system to the other but total or net
charge remains the same. In other words, charges can neither be created nor destroyed. No violation of this law
has ever been found and it is as firmly established as the laws of conservation of linear momentum and energy.
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Electrostatic Force-Coulomb’s Law

F = Electrostatic force

_ %

r2

q = Electric charge F,

r= Distance between charge centers
k= Coulomb constant 9.0x10°N.m?/C?

Far O C F
Unlike charges attract. O Q2
o} 92
Like charges repel.
D= =0
ql 21 12 q2

Figure 18.10

r

F,, is the force on charge 1 due to 2 and M2 =r1—r2 =1

PLANCESS CONCEPTS

In few problems of electrostatics, Lami’s theorem is very useful. f;
According to this theorem, “if three concurrent forces Y =
F1,F2and F3 as shown in Fig. 18.11 are in equilibrium or if o '
Fi+F2+F3 =0, then B

R _ R _ E F;
sino  sinf  siny .

Nivvedan (JEE 2009 AIR 113) Figure 18.11

10. RELATIVE PERMITTIVITY OR DIELECTRIC CONSTANT

Permittivity is the property of a medium and affects the magnitude of force between two point charges. Air or vacuum
has a minimum value of permittivity. The absolute (or actual) permittivity of air or vacuum is 8.854 x 1072 C°N*m™
. The absolute permittivity ¢ of all other insulating materials is greater thane,. The ratio &/ ¢, is called relative
permittivity of the material and is denoted by K or (&,).

Absolute permittivity of medium . T
K== P y It may be noted that the relative permittivity is also called

g ~ Absolute permittivityofair(orvacuum)

dielectric constant.

1 99
2

Another Definition. Force between two charges in air (or vacuum) is F, = [See Fig. 18.12]

TCSO r

Force between the same two charges held same distance apart in a medium of absolute permittivity ¢ is
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199 1 99

F = = see Fig. 18.12
" ame 2 dmek 2 Ceer9 1814
q: & 9 d; K 2]
e r » e r »
(i) (i)
Figure 18.12
F.
s = & _ K =Relative permittivity of the medium
I:m €y

Hence, relative permittivity (or dielectric constant) of a medium may be defined as the ratio of force between two
charges separated by a certain distance in air (or vacuum) to the force between the same charges separated by the
same distance in the medium.

Discussion. The following points may be noted:

(@) Forair orvacuum,K = ¢, / ¢, = 1. For all other insulating materials, the value of K is more than 1.
F., =F,, /K.This implies that force between two charges is decreased when air is replaced by other insulating
medium. For example, K for water is 80. It means that for the same charges (ql,qz) and same distance (r), the
force between two charges in water is 1/80™ of that in air.

(b)

() Kis number; being the ratio of two absolute permitivities. [K =-2"| K = £
€
0

Fmed

Comparison of Electrical Force with the Gravitational Force.

(a) Both electrical and gravitational forces follow the inverse square law.

(b) Both can act in vacuum also.

(c) Electrical forces may be attractive or repulsive but gravitational force is always attractive.
(d) Electrical forces are much stronger than gravitational forces.

(e) Both are central as well as conservative forces.

(f) Both the forces obey Newton'’s third law.

11. SUPERPOSITION OF ELECTROSTATIC FORCE

If in a region, more than 2 charges are present, then the net force acting on a particular charge will be the vector
sum of the individual contribution of all other charges present in region, presence of any other charge in space
cannot affect the force applied by a particular charge.

Finet =F12 + F13 +F14 +F15 +......... +Fin,

lllustration 1: Two identical balls each having a density p are suspended from a common point by two insulating
strings of equal length. Both the balls have equal mass and charge. In equilibrium, each string makes an angle 0
with vertical. Now, both the balls are immersed in a liquid. As a result, the angle 8 does not change. The density of
the liquid is & . Find the dielectric constant of the liquid. (JEE ADVANCED)

Sol: Inside the liquid, up thrust would act but simultaneously, electric force would also weaken due to dielectric of
the liquid.
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In vacuum each ball is in equilibrium under the
following three forces:

(i) Tension, (ii) Electric force and (iii) Weight.

So, Lami’s theorem can be applied.

. F
In the liquid, F, =E‘3Where, K=dielectric constant

of liquid and W'=W-up thrust

In vacuum In liquid
Applying Lami’s theorem in vacuum Figure 18.13
F F

w _ o or W —_e ()

sin(90° +e) sin(180° -e) cosb  sin®
' F'
Similarly in liquid w == .. (i)
cos6 sinB
w F W F
Dividing Eq.(i) by Eq.(ii), we get —=-% orK=———— |as £ =k
9 Ea.() by Eq.() 9 W' F(; W —upthrust [ F; ]
Vpg p

———= (V=volume of ball) OrK=—
Vpg-Vog p—oC

Note: In the liquid F, and W have been changed. Therefore, T will also change.

lllustration 2: A non-conducting rod of length L with a uniform positive charge density A and a total charge Q is
lying along the x-axis, as illustrated in Fig. 18.14. (JEE ADVANCED)

Calculate the force at a point P located along the axis of the rod and a distant x, from one end of the rod.
Sol: Consider rod as large number of small charges and apply y
principle of superposition of forces. dg=rdx’

The linear charge density is uniform and is given by A =Q /L. PR -
The amount of charge contained in a small segment of length dF X

dx' is dg=dx'. < 7.P — X
<€)
Since the source carries a positive charge Q, the force at P points  Q X

in the negative x direction, and the unit vector that points from

N
—
v

the source to Pis 7 = i . The contribution to the electric field due Figure 18.14
todqis

- o 2401 .
gFo_Q da._ Q ?»C‘JX (—i):— 1 Qdx's

2 ‘2
47'[280 r 47'[80 X 4T[380 Lx

Integrating over the entire length leads to

- N 2 4 N 2 R 2 R
sz-sz_lQIxoLd_xi_ 1Q[1 1}: 1 Q@

Ame, Lo x2 dme, L(x, x L)  4me x (L+x,)
, . : = 1 Q-
Notice that when P is very far away from the rod, x, >> | and the above expression becomes F ~ - 2 =i
TESO Xo

The result is to be expected since at sufficiently far distance away, the distinction between a continuous charge
distribution and a point charge diminishes.
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12. ELECTRIC FIELD

A charged particle cannot directly interact with another particle kept at a distance. A charge produces something
called an electric field in the space around it and this electric field exerts a force on any other charge (except the
source charge itself) placed in it.

Thus, the region surrounding a charge or distribution of charge in which its electrical effects can be observed is
called the electric field of the charge or distribution of charge. Electric field at a point can be defined in terms of
either a vector function E called ‘electric field strength’ or a scalar function V called ‘electric potential’. The electric
field can also be visualized graphically in terms of ‘lines of force'. The field propagates through space with the
speed of light, c. Thus, if a charge is suddenly moved, the force it exerts on another charge a distance r away does
not change until a time r/c later. In our forgoing discussion we will see that electric field strength E and electric
potential V are interrelated. It is similar to a case where the acceleration, velocity and displacement of a particle are
related to each other.

12.1 Electric Field Strength (E)

Like its gravitational counterpart, the electric field strength (often called electric field) at a point in an electric field is
defined as the electrostatic force Fe per unit positive charge. Thus, if the electrostatic force experienced by a small

- . S . - . F

test chargeqyis Fe, then field strength at that point is defined as, E= |Im0—e

P—0q,
(9o = 0 so that it doesn't interfere with the electrical field)
The electric field is a vector quantity and its direction is the same as the direction of the force Fe ona positive test
charge. The Sl unit of electric field is N/C. Here it should be noted that the test charge q, does not disturb other
charges which producesE . With the concept of electric field, our description of electric interactions has two parts.
First, a given charge distribution acts as a source of electric field. Second, the electric field exerts a force on any
charge that is present in this field.

An electric field leads to a force

Suppose there is an electric field strength E at some point in an electric field, then the electrostatic force acting on
a charge +q is qE in the direction of E, while on the charge —q it is gE in the opposite direction of E .

The electric field at a point is a vector quantity. Suppose E1 is the field at a point due to a charge g, and E2
is the field at the same point due to a charge q, . The resultant field when both the charges are present is
E=E+E2

If the given charges distribution is continuous, we can use the technique of integration to find the resultant electric
field at a point.

lllustration 3: A uniform electric field E is created between two parallel charged plates as shown in Fig. 18.15. An
electron enters the field symmetrically between the plates with a speed v . The length of each plate is I. Find the
angle of deviation of the path of the electron as it comes out of the field. (JEE MAIN)

Sol: Electron gains velocity in the vertical direction due to field between the plates.

. . ek . " . . . .
The acceleration of the electron is a=— in the upward direction. The horizontal velocity remains v _ as there is
m

no acceleration in this direction. Thus, the time taken in crossing the field is t = VL ()

The upward component of the velocity of the electron as it emerges , ) | ,

from the ﬁ:IEdI region is + + +¢ +++‘4
v Vo TR

The horizontal component of the velocity remains v, =v_. i 18.15
igure 18.
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The angle 6 made by the resultant velocity with the original direction is given by
v

E
tan=—L =2 5 - Thus, the electron deviates by an angle 0 = tan™! e_EI.
Vx mVO mvo
PLANCESS CONCEPTS

Charge Densities
It is of three types:

(i) Linear charge density: It is defined as charge per unit length, i.e.

A :% its S.I. unit is coulomb/ metre and dimensional formula is [ATL‘l}

(ii) Surface charge density: It is defined as charge per unit area, i.e.

c =% its S.I. unit is coulomb / metre? and dimensional formula is [ATL‘Z}

(iii) Volume charge density: It is defined as charge per unit volume i.e.

p :% its S.I. unit is coulomb / metre® and dimensional formula is [ATL‘ﬂ

Nitin Chandrol (JEE 2012 AIR 134)

12.2 Electric Fields Due to Continuous Charge Distributions

1 dg.
TCSO r2

The electric field at a point P due to each charge element dq is given by Coulomb’s law: dE =

Where r is the distance from dq to P and t is the corresponding unit vector. Using the superposition principle, the
dq.
[

total electric field E is the vector sum (integral) of all these infinitesimal contributions: E= 2 >
% r
o v

This is an example of a vector integral which consists of three separate integrations, one for each component of
the electric field.

12.3 Electric Field Due to a Point Charge

v
-n

The electric field produced by a point charge q can be obtained in general g O e
terms from Coulomb’s law. First note that the magnitude of the force exerted
by the charge q on a test charge q,is,

N
f_ 1 ag a( s > E
¢ dne, 2 R
E
Then divide this value by q to obtain the magnitude of the field: E = ! g q O < )

2
41t80

—

. .. = ... o ) Figure 18.16
If q is positive, E is directed away from qg. On the other hand, if q is negative,

then E is directed towards q.

12.4 Electric Field Due to a Ring of Charge

A conducting ring of radius R has a total charge q uniformly distributed over its circumference. We are interested
in finding the electric field at point P that lies on the axis of the ring at a distance x from its center. We divide the
ring into infinitesimal segments of length dl. Each segment has a charge dq and acts as a point charge source of
electric field.
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Let dE be the electric field from one such segment; the net
electric field at p is then the sum of all contributions dE
from all the segments that make up the ring. If we
consider two ring segments at top and bottom of the
ring, we see that the contributions dE to the field at P
from these segments have the same x-component but
opposite y-components. Hence, the total y-component
of field due to this pair of segments is zero. When we add
up the contributions from all such pairs of segments, the
total field E will have only a component along the ring’s
symmetry axis (the x-axis) with no component
perpendicular to that axis (i.e. no y or z component). So Figure 18.17
the field at P is described completely by its x component

E

X

o
.
.~
~

o
.
.~
.~

1 dg
4nme 2

T

Calculation of E,_ dq = (%}.dl; dE =

) _ 1 dq X |2 (da)x
dEx —dECOSe—{4n80J(X2 +R2J[WJ _[47580}()(2 +R2)3/2

X

o - ) 1 gx
~E, —IdEX = e, (x2 +R2)3/2 qu,or E, _(47:80J(X2 +R2)3/2

From the above expression, we can see that

(@) E =0 atx=0, i.e, field is zero at the center of the ring. We E A
should expect this, charges on opposite sides of the ring would
push in opposite directions on a test charge at the center, and
the forces would add to zero.

(b) E = 1 % for x >> R i.e, when the point P is much farther

X 4ne X
o
from the ring, its field is the same as that of a point charge.

Xy

To an observer far from the ring, the ring would appear like a

point, and the electric field reflects this.
Figure 18.18

dE
() E, will be maximum where 3 * = 0. Differentiating E, w.rt. x
X

. R
and putting it equal to zero we get x=—= and E_,

V2

12.5 Electric Field Due to a Line Charge

X

comes out to be, i ii .
33\ 4ne, R2

Positive charge q is distributed uniformly along a line with length 2a, lying along the y-axis between y=-a and
y=+a. We are here interested in finding the electric field at point P on x-axis.

1 dg_ ¢ dy
4ne, r2  A4me, 2a(x2 n y2)

A =charge per unit length= a dg=2Ady = idy ; dE =
2a 2a

dEX=dEc059=4q . xdy 3
o 2a(x2 +y2)
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dEy = —dEsin0 = 4q . ydy 7
&, 2a(x2 +y2)
5 _ 1 %J‘a dy _ q 1
X 4ne, 2a--2 (Xz +y2)3/2 4ne x4 52 y
dEy
andE -1 ApP_ Yy 4 0 >

y 4,-580 2a —a(X2+y2)3/2

Thus, electric field is along x-axis only and which has a
magnitude,

q .
E =—— 0] Fi 18.19
" gure 18.
4neOX\/x2 +a’

From the above expression, we can see that:

(@ Ifx>>a E = y L &2 i.e., if point P is very far from the line charge, the field at P is the same as that of a
TESO X
point charge.

(b) Now assume that, we make the line of charge longer and longer, adding charge in proportion to the total
length so that A, the charge per unit length remains constant. In this case Eq(i) can be written as,

1 ( aq ] 1 - A

* 2me, (2a x\/x2 /a’+1 2nsox\/x2 /a’+1
A

27‘CSOX

Now, :xz/a2—>0asa>>x, E, =

13. ELECTRIC FIELD LINES

An electric line of force is an imaginary smooth curve in an electric field along which a free, isolated unit positive
charge moves.

Properties

(a) Electric lines of force start at a positive and terminate at a negative charge.

(b) Atangentto a line of force at any point gives the direction of the force on positive charge and hence direction
of electric field at that point.

(¢) No two lines of force can intersect one another.
(d) The lines of force are crowded in the region of larger intensity and further apart in the region of weak field.
(e) Lines of force leave the surface of a conductor normally.

(f) Electric lines of force do not pass through a closed conductor.



18.12 | Electric Charges, Forces and Fields

Field of some special classes

We here highlight the following charge distributions.

(a) Single positive or negative charge (Fig. 18.20 ‘
(a) and (b))- The field lines of a single positive or—
charge are radially outward while those of a 4

single negative charge are radially inward.

field lines around a system of two positive
charges (q, q) give a vivid pictorial description
of their mutual repulsion.

(c) Two equal and opposite charges (Fig18.20
(d))-The field around the configuration of two
equal and opposite charges (g,-q), a dipole,
show clearly the mutual attraction between
the charges.

Y
(b) Two equal positive charges (Fig18.20 (c))- the @)
+q

*q
v
(

9

Properties:

(a) Lineofforceoriginates outfroma positive charge and terminates on a negative
charge. If there is only one positive charge then lines start from positive
charge and terminate at . If there is only one negative charge then lines
start from <o and terminate at negative charge.

(b) The electric intensity at a point is the number of lines of force streaming
through per unit area normal to the direction of the intensity at that point.
The intensity will be more where the density of lines is more.

(c) Number of lines originating (terminating) from (on) is directly proportional
to the magnitude of the charge.

Note: A charge particle need not follow an Electric field lines.

(a) Electric field lines of resultant electric field can never intersect with each other.
(b) Electric field lines produced by static charges do not form close loop.

(c) Electric field lines end or start perpendicularly on the surface of a conductor.

(d) Electric field lines never enter in to conductors.

lllustration 4: Consider the situation shown in Fig. 18.22. What are the signs of
g, and q,? If the lines are drawn in proportion to the charge, what is the ratio
q; /9,7 (JEE MAIN)

Sol: Use properties of field lines.

The basic concept of this question is that number density is directly proportional
to electric field. If we take the entire area of the sphere around the charge, then
area will be the same. Now, we just have to count the number of lines originating
from the two charges.

In case of point charges, E « q
Thus,E, /E, =q,/q,=n,/n,=6/18=1/3

However, this problem can also be seen by flux. Why don’t you try it as an
exercise?Plus, 9 has to be negative, while d, would be positive.

Figure 18.20

Figure 18.21

A

2

2 P~

J1

Figure 18.22
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14. ELECTRIC FLUX

The strength of an electric field is proportional to the number of field lines per unit area.
The number of electric field lines that penetrates a given surface is called an “electric
flux,” which we denote as ®;. The electric field can therefore be thought of as the
number of lines per unit area.

my

In Fig. 18.23 shows Electric field lines passing through a surface of area A.

>|

Consider the surface shown in Fig. 18.24. Let A = Afbe defined as the area vector

having a magnitude of the area of the surface, A, and pointing in the normal

direction, n. If the surface is placed in a uniform electric field E that points in the

same direction as n, i.e,, perpendicular to the surface A, the flux through the surface is Figure 18.23
®, =EA =EAA =EA

On the other hand, if the electric field E makes an angle 0 with n, the electric flux

becomes ®, =EA =E Acos® =E A

Where E = EA is the component of E perpendicular to the surface.

Note that with the definition for the normal vector n, the electric flux @, is positive if «
the electric field lines are leaving the surface, and negative if entering the surface.

>

ml

We shall be interested in the case where the surface is closed. A closed surface is a
surface which completely encloses a volume. In order to compute the electric flux, we
divide the surface into a large number of infinitesimal area elements AAi = AAR,, as Figure 18.24

shown in Fig. 18.25. Note that for a closed surface, the unit vector A, is chosen to point
in the outward normal direction.

In general, a surface S can be curved and the electric field E may vary over the surface. ‘

— -
Electric field is passing through an area elementAAi, making an angle 6 with the AR 34
normal of the surface.
The electric flux through AA; s AD, = EL.AA = E.AA, cos6 “.
The total flux through the entire surface can be obtained by summing over all the
area elements. Taking the limit AAi — 0and the number of elements to infinity, we
have A®, = lim Y EdAi = [EdA

E AAI—)OZ I I J‘
In order to evaluate the above integral, we must first specify the surface and then
Figure 18.25

sum over the dot product EdA..
Let AA; = AAT be
Anareaelementonthesurface ofasphere S, ofradiusr,,asshowninFig. 18.26.

The area element AA subtends a solid angle AQ.The solid angle AQ
subtended by AA1 = AAf at the center of the sphere is defined as

AQ=—21

I

Solid angles are dimensionless quantities measured in steradians (sr). Since
the surface area of the sphere S, is 4nr? , the total solid angle subtended by
the sphere is

47'trl2 ;
Q= 5= 4n Figure 18.26
r.
1

In Fig. 18.26, the area element AA2 makes an angle 0 with the radial unit vector r, then the solid angle subtended
by AA, is
2
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_AAP AA,cos®  AA,
Z 2 i

AQ

lllustration 5: A non - uniform electric field given by E=3.0xi+ 4.0] pierces the Gaussian cube shown in Fig. 18.28
(E is in newton per coulomb and x is in meters.) What is the electric flux through the right face, the left face, and
the top face? (JEE ADVANCED)

Sol: We can find the flux through the surface by integrating the scalar product EdA over each face.

Right face: An area vector A is always perpendicular to its surface and always points away from the interior of a
Gaussian surface. Thus, the vector dA for the right face of the cube must point in the positive direction of the x
axis. In unit-vector notation,

dA = dAi. The flux @, through the right face is then
® = [EdA = [(3.0xi + 4.0]) (dAT) = [[ (3.0x)(dA)i-1+(40)(dA)] ] = [(3.0xdA +0) =3.0[ xdA.

We are about to integrate over the right face, but we note that x has the same value everywhere on that face-
namely, x=3.0m. This means we can substitute that constant value for x. Then

®,=3.0[(3.0)dA =9.0[dA.

The integral J'dA merely gives us the area A=4.0 m?of the right face; so
®, =(9.0N/C)(4.0m? ) = 36Nm’ / C.

Left face: The procedure for finding the flux through the left face

is the same as that for the right face. However, two factors change. | — Gaussian
(i) The differential area vector dA points in the negative direction of surface
the x axis, and thus dA = —dAi. (ii) The term x again appears in our

integration, and it is again constant over the face being considered. —X
However, on the left face, x=1.0m. With these two changes, we find

that the flux @, through the left face is
x=1.0m x=3.0m

_— . 2
@, =-12N-m* /C. Figure 18.27

Top face: The differential area vector gK points in the positive
direction of the y axis, and thus dA = +dAj. The flux @, through the
top face is then

®, = [(3.0xi+4.0)-(dAj) = [ [(3.0x)(dA)? e+ (4.0)(dA)].j] = [(0+4.0dA)=40[dA =16 N-m? / C.

15. GAUSS’ LAW
da _ P

Consider a positive point charge Q located at the center of a sphere of radius r, as 0
shown in Fig. 18.28. The electric field due to the charge Q is E:(Q/4n80r2)f, < r

which points in the radial direction. We enclose the charge by an imaginary sphere
of radius r called the “Gaussian surface”.

v

A spherical Gaussian surface enclosing a charge Q. Gaussian
v
surface

Figure 18.28
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In spherical coordinates, a small surface area element on the sphere is given by

— z
dA =r? sinfdod¢f
A small area element on the surface of a sphere of radius r. S
VZsin0dode
Thus the net electric flux through the area element is
G rdo
do, —EdA=Fda=| - 2 (*sinodedy) = 2_ginododgya’ +b? o7
e, r? 4me Vi
:'.:/e y
The total flux through the entire surface is
0
- - 2n
¢ = {PEA = —2—[“sinode["dg -2
4me_Jo o € N
S o o
Figure 18.29

The same result can also be obtained by noting that a sphere of radius r has
a surface area A = 4nr?, and since the magnitude of the electric field at any
point on the spherical surfaceis E=Q / 47:80r2 , the electric flux through the
surface is

5 x 1 Q 2_Q
®. = {PE-dA =EfpdA =EA = = 4pr? = =
(- i effon-a- (1R - 2

In the above, we have chosen a sphere to be the Gaussian surface. However,
it turns out that the shape of the closed surface can be arbitrarily chosen. For
the surfaces shown in Fig. 18.30, the same result (CDE = Q/go) is obtained.
Whether the choice is S,,S, or S;.

The statement that the net flux through any closed surface is proportional Figure 18.30
to the net charge enclosed is known as Gauss's law. Mathematically, Gauss's
law is expressed as

80

O, = @E-dx — Gene (Gauss's law)

S
Where q,,, is the net charge inside the surface. One way to explain why Gauss’s law holds is that the number
of field lines that leave the charge is independent of the shape of the imaginary Gaussian surface we choose to

enclose the charge.

lllustration 6: Fig. 18.31 shows five charged lumps of plastic and an electrically
neutral coin. The cross section of a Gaussian surface S is indicated. What is the
net electric flux through the surface if q, =q, =+3.1nC, g, =q; =-5.9nC,
and g; = -3.1nC? Five plastic objects, each with an electric charge, and a coin,
which has no net charge. A Gaussian surface, shown in cross section, encloses
three of the charged objects and the coin. (JEE MAIN)

Sol: In Gauss's law, only enclosed charges used to calculate the flux. q

The net flux @ through the surface depends on the net charge g, enclosed )
by surface S. Figure 18.31

The coin does not contribute to @ because it is neutral and thus contains equal amounts of positive and negative
charge. Charges g, and g; do not contribute because they are outside surface S. Thus, q,,. is q; +q, +q; and
gives us

@ denc _ 919 +d3 _+31x107°C-59x10°C-31x107°C

= —670N.m? / C.
€, €, 8.85x107C% /N-m?
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Conclude: The minus sign shows that the net flux through the surface is inward and thus that the net charge within
the surface is negative.

lllustration 7: Find the flux through the disk shown in Fig. 18.32. The line joining the charge to the center of the
disk is perpendicular to the disk. (JEE MAIN)

Sol: The electric flux through the disk cannot be found by the equation

d= E-A =EAcos0 If we wish to use the basic formula, we can divide the
disk into small rings as shown in Fig. 18.33 and find the electric field due
to charge at all the rings:

o= IEas Here we divide the entire disk into thin ring and find the flux
due to the charge through the thin ring. Figure 18.32

the electric field due to the point charge at the location of the ring shown is given by
_ kq

(16/9)R? +x*

As we discussed before, the area of the ring is 2axdx . But

the electric field is not normal to the ring. The angle can be

found as shown:

cosO:L, ¢:IEdg,

(16R2 /9) +x2

_(075R qu(4R/3)Xandx g

. [ + (1687 /9) |« \/m 10z, Figure 18.33

lllustration 8: An infinitely long rod of negligible radius has a uniform
charge density A . Calculate the electric field at a distance r from the wire.
(JEE MAIN)

m

Sol: We shall solve the problem by following the steps outlined above.

(a) Aninfinitely long rod possesses cylindrical symmetry.
(b) The charge density is uniformly distributed throughout the length,

and the electric field E must point radially away from the symmetry

axis of the rod (Fig. 18.34). The magnitude of the electric field is Figure 18.34
constant on cylindrical surface of radius r. Therefore, we choose a

coaxial cylinder as our Gaussian surface.

(c) Field lines for an infinite uniformly charged rod (the symmetry axis
of the rod and the Gaussian cylinder are perpendicular to plane of
the page.)

(d) The amount of charge enclosed by the Gaussian surface, a cylinder
of radius r and length ¢ (Fig. 18.35), is q . = AL.

(e) As indicated in Fig. 18.36, the Gaussian surface consists of three
parts: a two ends S, and S, plus the curved side wall S,. The flux
through the Gaussian surface is

O, = Sf]SEdK = ”El -dA1 +HE -dA; + HE3 -dA3=0+0+EA; = E(Z’TM)
S S1 Sy S3 Figure 18.35

! .
y Gaussian
surface



Where we have set E; =E. As can be seen from the Fig. 18.35, no flux

passes through the ends since the area vectors dA1 .and dA; are perpendicular

to the electric field which points in the radial direction.

(f) Applying Gauss's Law gives E(anlf) =M/g,, or E= e T
KSO

The result is in complete agreement with that obtained in equation

using Coulomb’s law. Notice that the result is independent of the

length ¢ of the cylinder, and only depends on the inverse of the

distance r from the symmetry axis. The qualitative behavior of E as a

function of r is plotted in Fig. 18.36.
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r—>

Figure 18.36

lllustration 9: Consider an infinitely large non-conduction plane in the xy-plane with uniform surface charge

density o . Determine the electric field everywhere in space. (JEE MAIN)

Sol: (i) An infinitely large plane possesses a planar symmetry.
(i) Since the charge is uniformly distributed on the surface, the electric

field E must point perpendicularly away from the plane, E=EKk. The
magnitude of the electric field is constant on planes parallel to the non-
conducting plane.

We choose our Gaussian surface to be a cylinder, which is often referred
to as a "pillbox”

The pillbox also consists of three parts: two end-caps S, and S,, and a
curved side S,.

(i) Since the surface charge distribution is uniform, the charge enclosed
by the Gaussian “pillbox” isq,,. = cA, where A=A =A, is the area of the
end-caps.

(iv) The total flux through the Gaussian pillbox flux is
D, = gﬁ)ﬁﬁdﬂ =SEJ)E1 ~dK1 +4‘;BE2 ~dK2 +#E3 ~dK3
s S S5 S3
=EA, +E,A, +0 =(E, +E,)A
Since the two ends are at the same distance from the plane, by symmetry,

the magnitude of the electric field must be the same: E; =E, =E. Hence,
the total flux can be rewritten as

O, = 2EA
(v) BX applying Gauss’'s law, we obtain 2EA = Genc _ ﬁWhich gives
E=— € €
2,
ilz, z>0
- e
In unit-vector notation, we have E = °
G »
-——k, z<0
280

Thus, we see that the electric field due to an infinite large non-conducting
plane is uniform in space. The result, plotted in Fig. 18.39, is the same
as that obtained using Coulomb’s law. Note again the discontinuity in
electric field as we cross the plane:

c o c
AE =E —E = ——- | = —
2T 26 [ ZSOJ €

o

Gaussian pillbox

Figure 18.38

(e}

2¢0

Figure 18.39
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lllustration 10: A thin spherical shell of radius a has a charge +Q evenly
distributed over its surface. Find the electric field both inside and outside
the shell. (JEE MAIN)

Sol: Apply Gauss's law, as the charge distribution is symmetric.

The charge distribution is spherically symmetric, with a surface charge
densityc=Q/A, =Q/ 4na?, Where A_= 4na’ is the surface area of
the sphere. The electric field E must be radially symmetric and directed
outward (Fig. 18.40). We treat the regions r <a and r > a separately.

Electric field for uniform spherical shell of charge

Case 1: r <aWe choose our Gaussian surface to be a sphere of radius
r<a, as shown in Fig. 18.41 (a).

The charge enclosed by the Gaussian surface is q,,. =0 since all the
charge is located on the surface of the shell. Thus, from Gauss's law,
®, =q,, /¢, we conclude E=0, r<a

Case 2: r > aIn this case, the Gaussian surface is a sphere of radiusr > a
, as shown in Fig. 18.42 (b). Since the radius of the "Gaussian sphere” is
greater than the radius of the spherical shell, all the charge is enclosed:

Qenc = Q

Since the fluxthrough the Gaussian surfaceis @ = cﬁ}ﬁ ‘dA =EA = E(4nr2)
S

sze%, r>a

By applying Gauss's law, we obtainE =
4n80r2 r

Note that the field outside the sphere is the same as if all the charges
were concentrated at the center of the sphere. The qualitative behavior
of E as a function of r is plotted in Fig. 18.42 showing electric field as a
function of r due to a uniformly charged spherical shell.

As in the case of a non-conducting charged plane, we again see a
discontinuity in E as we cross the boundary at r=a. The change, from
outer to the inner surface, is given by

AE=E, -E = Q .o
4n80a2 €,

lllustration 11: Non-Conducting Solid Sphere

m

Figure 18.40

“ Gaussian

~~~~~~

.

e hY
#

&
.. e
_______

sufface

Figure 18.42

An electric charge +Q is uniformly distributed throughout a non-conducting solid sphere of radius a. Determine
(JEE MAIN)

the electric field everywhere inside and outside the sphere.

Sol: For non-conducting object. Charge distributed thoughout the mass.

The charge distribution is spherically symmetric with the charge density given by

,-Q__Q
V. (4/3)na’

Where V is the volume of the sphere. In this case, the electric field Eis radially
symmetric and directed outward. The magnitude of the electric field is constant on
spherical surfaces of radius r. The regions r < aandr > a shall be studied separately.

Case1:r<a



We choose our Gaussian surface to be a sphere of radiusr <a, as shown in
Fig. 18.41 (a).

Fig. 18.41 (b) shows Gaussian surface for uniformly charged solid sphere, for (a)
r<a,and (b) r>a.

The flux through the Gaussian surfaceis @ = cﬂ)ﬁ dA =EA = E(4rcr2 ) With uniform
> 3

4 r

charge distribution, the charge enclosed is Ggnc = _[PdV =pV :P(ETWSJ = Q[—gj

v a

Which is proportional to the volume enclosed by the Gaussian surface. Applying
Gauss's law

r<a

O =q,, /€, We obtain E(4nr2) :£(§Rr3j or |E :?’p_r: Qr 3
€, 47‘[803

Case2:r>a

In this case, our Gaussian surface is a sphere of radiusr > a, as shown in Fig. 18.44
. Since the radius of the Gaussian surface is greater than the radius of the sphere

all the charge is enclosed in our Gaussian surface: q,,. = Q. With the electric flux
through the Gaussian surface given by @, = E(4nr2), upon applying Gauss's law,

we obtain

E(4nr2):Q/a,or -9 Q0 .,
¢ 4TCSOI’2 € r?

The field outside the sphere is the same as if all the charges were concentrated
at the center of the sphere. The qualitative behavior of E as a function of r is
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Gaussian suface

Figure 18.43

l' m

S
.,
e

Gaussian surface

Figure 18.44

plotted in Fig. 18.45.

PROBLEM-SOLVING TACTICS

The following steps may be useful when applying Gauss's law:

(a) Identify the symmetry associated with the charge distribution.

Figure 18.45

(b) Determine the direction of the electric field, and a “Gaussian surface” on which the magnitude of the electric

field is constant over portions of the surface.

(c) Divide the space into different regions associated with the charge distribution. For each region, calculate g,

, the charge enclosed by the Gaussian surface.
(d) Calculate the electric flux @ through the Gaussian surface for each region.

(e) Equate @ withq,, /¢, , and deduce the magnitude of the electric field.

In this chapter, we have discussed how electric field can be calculated for both the discrete and continuous charge

q -
2
4ne, T

distributions. For the former, we apply the superposition principle: E=

J5

For the latter, we must evaluate the vector integral E= >
e r
]
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Where r is the distance from dq to the field point P and t is the corresponding unit vector. To complete the
integration, we shall follow the procedure outlined below:
1 dq,

2"

(a) Start with dE =
o I ade (Iength)
(b) Rewrite the charge element dqg as dq =< cdA (area)

pdV  (volume)

Depending on whether the charge is distributed over a length, an area, or a volume.
(c) Substituting dq into the expression for dE .

(d) Specify an appropriate coordinate system (Cartesian, cylindrical or spherical) and express the differential
element (dé,dAordV) and r in terms of the coordinates (see table below for summary.)

Cartesian (x,y,2) Cylindrical (p,¢,z) Spherical (r,e,d))
DI dx, dy, dz .
dp, pd¢, dz dr,rd6,rsin6d¢
dA dxdy, dydz, dzdx
dpdz, pddz, pdodp rdrd6,rsin6drd,r? sinodedo
dV | dxdydz
pd pd¢dz r?sin6drdodd

Differential elements of length, area and volume in different coordinates

(a) Rewrite dE in terms of the integration variable(s), and apply symmetry argument to identify non-vanishing
component(s) of the electric field.

(b) Complete the integration to obtain E.

In the Table below we illustrate how the above methodologies can be utilized to compute the electric field for an
infinite line charge, a ring of charge and a uniformly charged disk.

Line charge Ring of charge Uniformly charged disk
t dE
P /
0%
. yl %
HF A
(1) Figure r X )
XY
X X
o dx
«— L
Figure 18.46 Figure 18.47 X
Figure 18.48
(2) Express dq in ‘
terms of charge dq = Adx dq=2Ad/ dg=cdA
density
(3) write down dE '
dE =k, 29X dE—k M e O9A
r? ¢ “r
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Line charge Ring of charge Uniformly charged disk
(4) Rewrite r and , . _ Vg
the differential dx d/ =Rd¢ dA = 2nr'dr
element in terms Y z 7
of the appropriate cost = r cosf = " cosf = "
coordinates o[22

F=yxoty r=+R? + 72 r=vr+z°
(5) Apply symmetry
argument dEy =dEcos6 dEy =dEcoso dEy =dEcos9
to identify
non-vanishing —k Aydx i ARzd¢' k 2nozr'dr!
component(s) of dE ¢ (X'z n yz )3/2 T e (Rz 2 )3/2 € (r'2+ 22 )3/2
(6) Integrate to 2 dx Riz N dr

t E = ) = ———————————— ! = —_—
ge E, =kay[ —7 | BTk $do E, = 2nokz[ — "
(x +y) (R +z) (r +z)
2nRA )z z z
2k A /2 = ( ) = 2nck {__—J
e = =
= e 3/2 €l Iz 2 | p2
2,2 +R
Ve ey (fe22) NG
K — &
e 3/2
(R2 +7° )

System Infinite line of charge Infinite plane of charge Uniformly Charged solid

sphere

Frsr+rrrr+++++]

+ +++ + ++

+ + ++ + + +
+ +++ ++ 4+
+ + 4+ 4+ + + 4+

Figure Figure 18.49 o+t
+ ++ + + + +
+ + + + + + +
"
Figure 18.50 Figure 18.51
Identify the symmetry | Cylindrical Planar Spherical
Determine the
. ) — A -
direction of E \ fE g
had Nad
rr++++++++++]
v
Figure 18.52 Figure 18.54
Figure 18.53
Divide the space into | r>0 Z >0 and z<0

different regions

r<aandr>a
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Choose Gaussian R
surface £ dA,
E3
Gaussian pillbox
i - dA, Gaussian
+ +[+ ] [+ + + shere
N '
Gaussian Concentric shpere
N
E] surface
Figure 18.57
Figure 18.55
Figure 18.56
Calculate electric flux 5
D, =EQ2nrl) @, =EA +EA = 2EA O, =E(4nr?)
Calculate enclosed (+/a)3 <
charge q;, Qenc = M Jenc = OA Oenc = Q r=a
Q r>a
Apply Gauss's law Qr
(DE:qin/gOtofind , r<a
c 4re a’
2me,r 2g, = Q
> r>a
Ame,r

FORMULAE SHEET

Electric Charges, Forces and Fields

S. No | Term Description
Charge Charges are of two types
1 (a) Positive charge (b) Negative charge

Like charges repel each other and unlike charges attract each other.

2 Properties of charge

1. Quantization:-q=ne where n=0, 1, 2...... and e is charge of an electron.
2. Additive: —q,,, = >.q

3. Conservation: - total charge of an isolated system is constant

3 Coulomb’s law

The mutual electrostatic force between the charges 9; and 92
distance r is given by Force on the charge q; F =Ka,q,n, / r2

separated by a

Where 1, is the unit vector in the direction from g, and g .

For more than two charges in the system, the force acting on any charge is
vector sum of the coulomb force from each of the other charges. This is called
principle of superposition forq, ,q,, g5 ....q, Charges are present in the system.




Physics | 18.23

S.No | Term Description
4 Electric Field -The region around a particular charge in which its electrical effects can be
observed is called the electric field of the charge
-Electric field has its own existence and is present even if there is no charge to
experience the electric force.
5 Electric field
Intensity E=F/q, Where F is the electric force experienced by the test charge q, at this

point. It is a vector quantity.
Some points to note on this

1. Electric field lines extend away from the positive charge and towards the
negative charge.

2. Electric field produces the force so if a charge q is placed in the electric field
E, the force experienced by the charge is F=qE

3. Principle of superposition also applies to electric field so
E=E +E, +E; +E, +....
KQr
2
Where r is the distance from the point charge and r is the unit vector along the

Electric field intensity due to point charge E =

direction from source to point.

Electric Field Intensities due to various Charge Distributions

Name/Type Formula Note
Point Charge e qis source charge
Kq Kq e [ is vector drawn from source
WF == charge to the test point.
P r
-
Ir;1f|n|tely long line e MAis linear charge density
charge A~ 2Kh - (assumed uniform)
r=—-r
! 2me,r r e r is perpendicular distance of
point from line charge r
<o | o>
e risradial unit vector drawn from
: the charge to test point
Uniformly Charged Ring e Qis total charge of the ring E
e x=distance of point on the axis max
E= KQx from centre of the ring. >
(R2 + X2)3/2 & r
<= -> e Electric field is always along the 2
centre 0 axis.
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T

(p =volume charge density)
Inside the sphere Eccr

Outside the sphereEccl /12

Infinitely large non- c is surface charge density el
conducting thin sheet o (assumed uniform)
—n L .
; 2g, n is unit normal vector o/2¢
<o | o> Electric ~ field intensity is ~ r
independent of distance
Infinitely large charged c is surface charge density el
conducting sheet 5. (assumed uniform)
! —n . (747 p——
: € n is unit normal vector
<o ‘ —> Electric  field  intensity s 7 r
! independent of distance
Uniformly charged (i) for r=R R is radius of the sphere
hollgw Eonduc:ng/non . KQ T is vector drawn from centre of
conducting sphere or E=—7 the sphere to the test point.
solid conducting sphere |F|2
Sphere acts like a point charge
. placed at the centre for point
(10 forr<R outside the sphere.
E=0 E is always along radial direction.
Q s total charge (= o4nR?).
(o = Surface charge density)
Uniformly chgrged solid (i) for r>R Tt is vector drawn from centre of
rTon cor.wductlng s.phere the sphere to the test point.
(insulating material) E_KQ.
Y Sphere acts like a point charge
|r| placed at the centre for points
. outside the sphere.
(ii) for r<R -
E is always along radial direction
EKQ_ b s O T
R3 3¢, Q is total charge (= pgnR ).

Note: (i) Net charge on a conductor remains only on the outer surface of a conductor.

(i) On the surface of spherical conductors charge is uniformly distributed.




