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We choose our Gaussian surface to be a sphere of radius r a≤ , as shown in  
Fig. 18.41 (a).

Fig. 18.41 (b) shows Gaussian surface for uniformly charged solid sphere, for (a)
r a≤ , and (b) r a> .
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Which is proportional to the volume enclosed by the Gaussian surface. Applying 
Gauss’s law 
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Case 2: r a≥

In this case, our Gaussian surface is a sphere of radius r a≥ , as shown in Fig. 18.44 
. Since the radius of the Gaussian surface is greater than the radius of the sphere 

all the charge is enclosed in our Gaussian surface: encq Q= . With the electric flux 

through the Gaussian surface given by ( )2
E E 4 rΦ = π , upon applying Gauss’s law, 

we obtain
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The field outside the sphere is the same as if all the charges were concentrated 
at the center of the sphere. The qualitative behavior of E as a function of r is 
plotted in Fig. 18.45. 

PROBLEM-SOLVING TACTICS

The following steps may be useful when applying Gauss’s law:

(a) Identify the symmetry associated with the charge distribution.

(b) Determine the direction of the electric field, and a “Gaussian surface” on which the magnitude of the electric 
field is constant over portions of the surface.

(c) Divide the space into different regions associated with the charge distribution. For each region, calculate encq
, the charge enclosed by the Gaussian surface.

(d) Calculate the electric flux EΦ through the Gaussian surface for each region.

(e) Equate EΦ with encq / οε , and deduce the magnitude of the electric field.

In this chapter, we have discussed how electric field can be calculated for both the discrete and continuous charge 

distributions. For the former, we apply the superposition principle: i
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For the latter, we must evaluate the vector integral 
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Where r is the distance from dq to the field point P and r̂  is the corresponding unit vector. To complete the 
integration, we shall follow the procedure outlined below:

(a) Start with 
2

1 dq ˆdE r
4 rο

=
πε



(b) Rewrite the charge element dq as 
( )
( )

( )

d length

dq dA area

dV volume

λ
= σ
ρ



Depending on whether the charge is distributed over a length, an area, or a volume.

(c) Substituting dq into the expression for dE


.

(d) Specify an appropriate coordinate system (Cartesian, cylindrical or spherical) and express the differential 
element ( )d ,dAordV  and r in terms of the coordinates (see table below for summary.)

Cartesian (x,y,z) Cylindrical ( ), , zρ φ Spherical ( )r, ,θ φ

Dl dx, dy, dz
d , d , dzρ ρ φ dr,rd ,r sin dθ θ φ

dA dxdy, dydz, dzdx
d dz, d dz, d dρ ρ φ ρ φ ρ 2rdrd ,r sin drd ,r sin d dθ θ φ θ θ φ

dV dxdydz
d d dzρ ρ φ 2r sin drd dθ θ φ

Differential elements of length, area and volume in different coordinates

(a) Rewrite dE


 in terms of the integration variable(s), and apply symmetry argument to identify non-vanishing 
component(s) of the electric field.

(b) Complete the integration to obtain E


.

In the Table below we illustrate how the above methodologies can be utilized to compute the electric field for an 
infinite line charge, a ring of charge and a uniformly charged disk.

Line charge Ring of charge Uniformly charged disk
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(2) Express dq in 
terms of charge 
density

dq dx'= λ dq d= λ  dq dA= σ

(3) write down dE
e '2

dx'dE k
r
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dldE k
r
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r
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=
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Line charge Ring of charge Uniformly charged disk

(4) Rewrite r and 
the differential 
element in terms 
of the appropriate 
coordinates
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(5) Apply symmetry 
argument 
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component(s) of dE
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System Infinite line of charge Infinite plane of charge Uniformly Charged solid 
sphere
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Identify the symmetry Cylindrical Planar Spherical

Determine the 
direction of E
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Divide the space into 
different regions

r>0 Z >0 and z<0
r a and r a≤ ≥
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Choose Gaussian 
surface
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Calculate electric flux
E E(2 rl)Φ = π E EA EA 2EAΦ = + =

2
E E(4 r )Φ = π

Calculate enclosed 
charge inq encq l= λ encq A= σ

3(r /a)
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Q r aq
Q r a

 ≤= 
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Apply Gauss’s law 

E in 0q /Φ = ε to find 
E

0
E

2 r
λ

=
πε 0

E
2
σ

=
ε

3
0

2
0

Qr , r a
4 a

E
Q r a

4 r


≤

πε= 
 ≥
 πε

FORMULAE SHEET

Electric Charges, Forces and Fields

S. No Term Description

1

Charge Charges are of two types

(a) Positive charge (b) Negative charge

Like charges repel each other and unlike charges attract each other.

2 Properties of charge 1. Quantization:-q=ne where n=0, 1, 2…… and e is charge of an electron.

2. Additive: netq q− = ∑
3. Conservation: - total charge of an isolated system is constant

3 Coulomb’s law The mutual electrostatic force between the charges 1q and 2q separated by a 
distance r is given by Force on the charge 1q 2

1 1 2 12F Kq q r / r=

Where 12r  is the unit vector in the direction from 2q and 1q .

For more than two charges in the system, the force acting on any charge is 
vector sum of the coulomb force from each of the other charges. This is called 
principle of superposition for 1q , 2q , 3q ….. nq Charges are present in the system. 
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S. No Term Description

4 Electric Field -The region around a particular charge in which its electrical effects can be 
observed is called the electric field of the charge

-Electric field has its own existence and is present even if there is no charge to 
experience the electric force.

5 Electric field 
Intensity E=F/ 0q Where F is the electric force experienced by the test charge 0q  at this 

point. It is a vector quantity.

Some points to note on this

1. Electric field lines extend away from the positive charge and towards the 
negative charge.

2. Electric field produces the force so if a charge q is placed in the electric field 
E, the force experienced by the charge is F=qE

3. Principle of superposition also applies to electric field so

1 2 3 4E E E E E .....= + + + +

Electric field intensity due to point charge 
2

KQ r
E

r
=





Where r is the distance from the point charge and r is the unit vector along the 
direction from source to point.

Electric Field Intensities due to various Charge Distributions

Name/Type Formula Note Graph

Point Charge

2 3

Kq Kqr r
rr

=






 • q is source charge

 • r
  is vector drawn from source 
charge to the test point. E

r

Infinitely long line 
charge

0

2Kr r
2 r r
λ λ

=
πε

 

 • λ is linear charge density 
(assumed uniform)

 • r is perpendicular distance of 
point from line charge

 • r is radial unit vector drawn from 
the charge to test point

E

r

Uniformly Charged Ring

2 2 3/2

centre

KQxE
(R X )

E 0

=
+
=

 • Q is total charge of the ring

 • x=distance of point on the axis 
from centre of the ring.

 • Electric field is always along the 
axis.

E

E
max

R

2

r
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Infinitely large non-
conducting thin sheet

0
n̂

2
σ
ε

 • σ  is surface charge density 
(assumed uniform)

 • n is unit normal vector

 • Electric field intensity is 
independent of distance

E

r

� �/2
0

Infinitely large charged 
conducting sheet

0
n̂σ

ε

 • σ  is surface charge density 
(assumed uniform)

 • n  is unit normal vector

 • Electric field intensity is 
independent of distance

E

r

� �/
0

Uniformly charged 
hollow conducting/non 
conducting sphere or 
solid conducting sphere

(i) for r R≥

2

KQ ˆE r
r

=




(ii) for r<R

E 0=


 • R is radius of the sphere

 • r
 is vector drawn from centre of 
the sphere to the test point.

 • Sphere acts like a point charge 
placed at the centre for point 
outside the sphere.

 • E


is always along radial direction.

 • Q is total charge 2( 4 R ).= σ π

(σ = Surface charge density)

E

R r

KQ/R
2

Uniformly charged solid 
non conducting sphere 
(insulating material)

(i) for r R≥

2

KQ ˆE r
r

=




(ii) for r R≤

3
0

KQE r r
3R
ρ

= =
ε



 

 • r
 is vector drawn from centre of 
the sphere to the test point.

 • Sphere acts like a point charge 
placed at the centre for points 
outside the sphere.

 • E


is always along radial direction

 • Q is total charge 34( R ).
3

= ρ π

(ρ=volume charge density)

 • Inside the sphere E r∝

 • Outside the sphere 2E 1 / r∝

E

R r

KQ/R
2

Note: (i) Net charge on a conductor remains only on the outer surface of a conductor.

(ii) On the surface of spherical conductors charge is uniformly distributed.


