10.5 Ostwald Isolation Method

This method is used to find out the order of complex reactions. If $n_{A'}$, n_{B} and n_{C} molecules of substance A, B and C, respectively are present in a reaction, then n_{A} + n_{B} + n_{C} will be the order of reaction:

When B and C are in excess, the order of reaction will be n_A .

When A and B are in excess, the order of reaction will be n_c.

When A and C are in excess, the order of reaction will be n_{B} .

PROBLEM-SOLVING TACTICS

(a) To determine the average rate for change in concentration over a time period.

Average rate of reaction is the change in concentration of reactants (or products) during large interval of time.

Rate =
$$-\frac{[\text{reactant at } t_2] - [\text{reactant at } t_1]}{t_2 - t_1}$$

Square brackets denote concentration.

Negative sign in the above equation is used to make the rate of reaction positive. Minus sign can be ignored when calculating average rates from products.

Rate =
$$-\frac{\Delta [reactant]}{\Delta t}$$
 or $rate = \frac{\Delta [product]}{\Delta t}$

(b) To determine instantaneous rate from a plot of concentration versus time: Instantaneous rate at time t is determined as follows:

(i) Calculate the negative slope of the curve between concentration of a reactant and time at t.

(ii) Calculate the slope of the curve between concentration of a product and time at t.

(c) Problem-solving tactics to determine the initial rate from a plot of concentration versus time: The initial rate of a reaction is the instantaneous rate at the start of the reaction (i.e., when t = 0).

Initial rate is equal to the negative slope of the curve between reactant concentration and time at t = 0.

(d) To determining the order of a reaction from its rate law

Rate law of a reaction is used to determine:

- The order of the reaction with respect to one or more reactants.
- The overall order of the reaction.

rate = $k[A]^n[B]^m[c]^p$

For the rate law: Order with respect to A = n; order with respect to B = m, order with respect to C = p

Reaction or overall order = n + m + p

Note: The stoichiometric coefficient in the balanced equation for a chemical reaction is usually different from the order.

Figure 18.18: Plot of concentration versus time

Reaction	Experimental Rate Law	Order
$NO_2 + CO \rightarrow NO + CO_2$	rate = $k[NO_2]^2$	2nd order reaction 2nd order in NO_2 0 order in CO
$CH_{3}CHO \rightarrow CH_{4} + CO$	rate = $k[CH_3CHO]^2$	2nd order reaction 2nd order in CH ₃ CHO

(e) To determining rate laws from graphs of concentration versus time (integrated rate laws).

To determine the rate law for a reaction for different concentration (or the values of some function of concentration) versus time, make three graphs.

[A] versus t (linear for a zero-order reaction)

In [A] versus t (linear for a 1st order reaction)

1 / [A] versus t (linear for a 2nd order reaction)

The graph that is linear indicates the order of the reaction with respect to A. Then, you can choose the correct rate equation:

For a zero-order reaction,	Rate = k	(k = -ve slope of line)
For a first order reaction,	rate = $k[A]$	(k = -ve slope of line)
For a second order reaction,	rate = $k[A]^2$	(k = slope of line)

(f) Regarding questions of half lives:

For a zero-order reaction $A \rightarrow \text{products}$, rate = k, $t_{\frac{1}{2}} = [A_0] / 2k$

For a first-order reaction A \rightarrow products, rate = k[A], t_{1/2} = 0.693 / k

For a second-order reaction $2A \rightarrow \text{products or } A + B \rightarrow \text{products (when } [A] = [B])$, rate = $k[A]^2$, $t_{\mu} = 1 / k[A_0]$

Graphical Relations and half-lives: Differences in half-lives for reactions of different orders (0, 1st, or 2nd) are determined by plotting graphs between reactant [A] and time (t). Change in time changes the concentration of a reactant to half.

(i) For a zero-order reaction, half-life decreases with decreasing concentration.

(ii) For a 1st order reaction, half-life is constant.

(iii) For a second-order reaction, half-life increases with decreasing concentration.

For a first-order reaction:

 $A \rightarrow products$, rate = k $A \rightarrow products$, rate = k[A]

For a second-order reaction: $2A \rightarrow \text{products/A} + B \rightarrow \text{products}$ (when [A] = [B], rate = k[A]²

18.28 | Chemical Kinetics —

POINTS TO REMEMBER

Торіс	Formula				
Average rate of reaction	Average rate = $\frac{\text{Change in the concentration of reactants or(Products)}}{\text{Time}} = \pm \frac{\Delta C}{\Delta t} = \pm \frac{C_2 - C_1}{t_2 - t_1}$				
Instantaneous rate of reaction	Instantaneous rate = $\lim_{\Delta t \to 0} \frac{\Delta C}{\Delta t} = \frac{dC}{dt}$				
	For the reaction $n_1A + n_2B \rightarrow m_1C + m_2D$				
	Instantaneous Rate of reaction = $-\frac{1}{n_1}\frac{d[A]}{dT} = -\frac{1}{n_2}\frac{d[B]}{dT} = +\frac{1}{m_1}\frac{d[C]}{dT} = +\frac{1}{m_2}\frac{d[D]}{dT}$				
Factors affecting	Nature of reactants and products				
	Concentration	perature n of Reactants			
	Concentration of Reactants Presence of catalyst				
	Effect of Sunlight				
Law of mass action and rate constant	The rate at which a substance is directly proportional to its active mass and the rate at which a reaction proceeds is proportional to the product of the active masses of the reacting substances $ \begin{pmatrix} dx \end{pmatrix} \begin{pmatrix} dx \end{pmatrix} $				
	For a reaction, $aA + bB \rightarrow product rate = \left(\frac{dt}{dt}\right) \propto [A]^a[B]^b; \left(\frac{dt}{dt}\right) = k[A]^a[B]^b$				
	where k is rate constant or velocity constant.				
	When [A] = [B] = 1 mol/L, then $\frac{dx}{dt} = k$				
Unit of rate constant	Unit of rate constant = $\left[\frac{\text{litre}}{\text{mol}}\right]^{n-1} \times \text{sec}^{-1}$				
	When n = order of reaction.				
Various types of reactions	Type of reaction	Integrated rate equation	Unite of rate constant	t _{1/2} Half-life period	t _{3/4} period
	Zero-order reaction	$-\frac{d[A]}{dt} = k_0[A]^0$ Differential form $\frac{dx}{dt} = k$	Concentration time ⁻¹	$\frac{A_0}{2k}$	

	First-order reaction	$k_{1} = \frac{2.303}{t} \log_{10} \frac{a}{(a - x)}$ Differential form $\frac{dx}{dt}$ = k(a - x)	Time ⁻¹	$\frac{0.693}{K_1}$	$2 \times \frac{0.693}{K_1} = \frac{1.382}{k_1}$
	Second-order reaction	$k_{2} = \frac{2.303}{t(a-b)} \log \frac{b(a-x)}{a(b-x)}$ Differential form $\frac{dx}{dt}$ $= k(a-x)^{2}$	Mole ⁻¹ litre time ⁻¹	$\frac{1}{K_2a}$	$\frac{3}{K_2a}$
	Third-order reaction	$k_{3} = \frac{1(2a - x)}{t2a^{2}(a - x)^{2}}$ Differential form $\frac{dx}{dt}$ $= k(a - x)^{3}$	Litre ² mole ⁻² time ⁻¹	$\frac{1}{2}\frac{3}{K_2a}$	
Relationship between Rate of reaction and rate constant	Zero Order r (conc) ⁰	First Order Seco	r (conc) ²	hird Order	
	(Juoj) t	(A) t t t t t t t t t t t t t t t t t t t	t	t	
	t _{1/2} (conc) ⁰	t _{1/2} t _{1/2} t _{1/2}	t _{1/2}	1/a	
Half-Life	$t_{_{1/2}} \propto \frac{1}{a^{n-1}}$ whe	re n = order of reaction			
Arrhenius theory	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303}$	$\overline{R\left[\frac{1}{T_1} - \frac{1}{T_2}\right]}$			
	$k = Ae^{-La/12}$ where k_1 and k_2 are rate constant at temperatures T_1 and T_2 , respectively ($T_2 > T_1$).				