Electronegativity	Be > Mg > Ca > Sr > Ba				
	As the electropositive character increases from top to bottom due to decrease in ionization energy, electronegativity decreases from top to bottom.				
Metallic character	Be < Mg < Ca < Sr < Ba				
	Metallic character increases as we go down the group due to increase in electropositive character.				
Density	Generally density increases from top to bottom as the atomic mass increases.				
Melting point and boiling point	They show higher values of melting and boiling points as compared to alkali metals because of the smaller size and stronger metallic bonds.				
	There is no regular trend down the group. It depends upon packing.				
Flame coloration	Except Be and Mg (due to small size and higher ionization enthalpy) all other alkaline earth metals impart characteristic colours to the Bunsen flame.				
	Ca Sr Ba				
	Brick red Crimson Red Sea green				

Solved Examples

JEE Main/Boards

Hydrogen

Example 1: When Ionic hydrides react with water it gives?

Sol: s-block elements form ionic hydrides which form basic hydroxide with water. Ex – NaOH

Example 2: H_2O_2 reduces $K_3[Fe(CN)_6]$ in which medium and give complete reaction ?

Sol: Potassium Ferricyanide is reduced by H_2O_2 in basic medium

 $2 \text{ K}_3[\text{Fe}(\text{CN})_6] + 2 \text{ KOH} + \text{H}_2\text{O}_2 \rightarrow 2\text{K}_4[\text{Fe}(\text{CN})_6] + 2\text{H}_2\text{O} + \text{O}_2$ (basic medium)

Example 3: In alkaline medium, H_2O_2 reacts with Fe³⁺ and Mn²⁺ separately give reaction?

Sol: $K_3Fe(CN)_6$ is reduced by H_2O_2 in alkaline medium. $2K_3Fe(CN)_6 + 2KOH + H_2O_2 \rightarrow 2K_4Fe(CN)_6 + 2H_2O + O_2$ $Mn(OH)_2$ is oxidised by H_2O_2 in alkaline medium $Mn(OH)_2 + H_2O_2 \rightarrow MnO_2 + 2H_2O$ **Example 4:** Give chemical reaction of H₂ formation by Bosch and Lane process?

Sol: (i) Bosch process

$$C + H_2O \rightarrow CO + H_2$$

(ii) Lane process

$$3\text{Fe} + 4\text{H}_2\text{O} \xrightarrow{1000^\circ\text{C}} \text{Fe}_3\text{O}_4 + 4\text{H}_2$$

Example 5: What is the physical property of H₂?

Sol: (i) Colourless, odourless, tasteless gas

(ii) Sparingly soluble in water due to non-polar nature

(iii) Density is 0.09 gm/t

(iv) B.P is 20.4 K

(v) Pd metal can adsorb H_2 gas.

JEE Advanced/Boards

Hydrogen

Example 1: Which metals can adsorb largest volumes of hydrogen gas?

Sol: Acc. to amount of hydrogen occluded metal in decreasing order are - Colloidal Pd > Pt > Au > Ni

Example 2: Give one method of removal of Permanent hardness of water.

Sol: Permanent hardness of water can be removed by adding calgon $(NaPO_3)_n$. $(NaPO_3)_n$ is used in calgon process, it forms soluble complex with Ca²⁺ and Mg²⁺ ions.

Example 3: What is the ratio of volumes of hydrogen evolved under similar conditions of pressure and temperature?

Sol: 2g of aluminium is treated separately with excess of dilute H_2SO_4 and excess of NaOH.

 $2AI + 3H_2SO_4 \rightarrow AI_2(SO_4)_3 + 3H_2;$

 $2AI + 2NaOH + 2H_2O_2 \rightarrow 2NaAIO_2 + 3H_2$

Thus, ratio of volumes of hydrogen evolved is 1:1

Example 4: What is the degree of hardness of a sample of water containing 24 mg of $MgSO_4$ (molecular mass 120) per kg of water?

Sol: 24 mg of MgSO₄ present in 103 g of water 106g water will contain 24000 mg of MgSO₄ = 24g of MgSO₄

So, 24g of MgSO₄ = 10 g of CaCO₃
So, 24g of MgSO₄ =
$$\frac{100}{120} \times 24 = 20$$
 g of CaCO₃
Hardness of water = 20 ppm

Example 5: Define ortho and para hydrogen

Sol: Ortho and para hydrogen: When the spins of both the protons (nucleus) in the hydrogen molecule are in the same direction then this form is known as ortho hydrogen. The molecule of hydrogen in which both the protons are spinning in opposite directions known as para hydrogen. These are nuclear isomers. At normal temperature the ratio of ortho and para hydrogen is 3: 1, but as the temperature is lowered, the proportion of para hydrogen increases (at 20°C).

JEE Main/Boards

Hydrogen

Exercise 1

Q.1 What is the importance of heavy water with regard to nuclear power generation?

Q.2 Name two compounds which retard the decomposition of H_2O_2 solution?

Q.3 What is water gas? How is it prepared?

Q.4 What is meant by autoprotolysis of water?

Q.5 Explain why electrolysis of ordinary water occurs faster than heavy water?

Q.6 How is dihydrogen obtained from:

(i) Water, (ii) Dilute acids, (iii) Alkalis

Q.7 What are interstitial hydrides? Discuss their important uses?

Q.8 Explain why water has high boiling and melting point as compared to H_2 ?

Q.9 What happens when H₂O₂ is treated with

(i) Acidified potassium permanganate.

(ii) Lead sulphide.

- (iii) Alkaine potassium ferricyanide.
- (iv) Acidified ferrous sulphate.
- (v) Sulphurous acid.
- (vi) Sodium arsenite.

Q.10 What is the action of heavy water on

- (i) Sodium
- (ii) Sodium hydroxide
- (iii) Ammonium chloride
- (iv) Sulphur trioxide

Q.11 Find the volume of oxygen gas liberated at STP when 25 ml of '30 volumes' H_2O_2 is completely decomposed.

Q.12 Calculate the volume strength of 13.6% solution of H_2O_2

Q.13 Which solution is used for the removal of AsH₃ and PH₃ present in very small amounts in hydrogen sample?

Q.14 Complete the following reactions

(i) An alkaline solution of potassium ferricyanide is treated with hydrogen peroxide.

(ii) Chromium hydroxide is treated with hydrogen peroxide in the presence of NaOH.

Q. 15 Why are the melting and boiling points of D_2O are higher than those of ordinary water?

Q.16 Why the presence of water is avoided in the preparation of H_2O_2 from Na_2O_2 ?

Q.17 Why a mixture of hydrazine and H_2O_2 is used as a rocket propellant?

Q.18 Why hydrogen peroxide acts as an oxidizing agent as well as a reducing agent.

Q.19 20mL of H_2O_2 after acidification with dilute H_2SO_4 required 30 mL of N/12 KMnO₄ for complete oxidation. Calculate the percentage of H_2O_2 in the solution. Equivalent mass of $H_2O_2 = 17$.

Q.20 Why statues coated with white lead on long exposure to atmosphere turn black & the original colour can be restored on treatment with H_2O_2 ?

Q.21 When a substance A reacts with water, it produces a combustible gas B and a solution of substance C in water. D reacts with this solution C and produces the same gas B on warming. D can also produce gas B on reaction with dilute H_2SO_4 . A imparts a deep golden yellow colour to smokeless flame. A, B, C and D respectively are?

Q.22 What is false about H_2O_2 ?

Q.23 What happens, when H_2O_2 is added to ice cold solution of acidified potassium dichromate in ether and the contents are shaken and allowed to stand?

Q.24 25 mL of H_2O_2 is reacted with excess amount of I⁻ to liberate I_2 . I_2 thus liberated reacts completely with 20 mL of 0.3 N Na₂S₂O₃. Calculate volume strength of H_2O_2 .

Q.25 The electrolysis of water for manufacturing hydrogen gas is always carried out in presence of acid (H_2SO_4) or alkali (KOH), yet no SO_4^{2-} or K⁺ ions are discharged. Explain.

Q.26 Painting coated with white lead on long exposure to atmosphere turns black and the original colour can be restored on treatment with H_2O_2 . Explain.

Q.27 Why H₂O₂ is stored in wax lined amber coloured bottles?

Q.28 A small amount of phosphoric acid or glycerol or acetanilide is added in H_2O_2 during its storage. Explain.

Q.29 Find out the normality of the hydrogen peroxide bottle labelled as '10 V H_2O_2 '

Q.30 When electrolysis of 50% H_2SO_4 is done compound (A) is obtained which acts as oxidising agent as well as reducing agent. (A) when reacted with Cr⁺³ in basic medium gives (B) and which reacted with PbS gives (C). Find out (A),(B) and(C)

Exercise 2

Single Correct Choice Type

Q.1 Calgon (a water softener) is:

(A) $Na_{2}[Na_{4}(PO_{3})_{6}]$ (B) $Na_{4}[Na(PO_{3})]_{6}$ (C) $Na_{2}[Na_{4}(PO_{4})]_{6}$ (D) $Na_{4}[Na_{2}(PO_{4})_{6}]$

Q.2 Which gas in cold, liquid form expands when it is further cooled:

(A) Liquid He	(B) Liquid NH ₃
(C) Liquid H ₂	(D) Liquid O ₂

Q.3 Hydrogen has a tendency to gain one electron in order to acquire helium configuration. It thus resembles:

(A) Alkali metals	(B) Noble gases
(C) Halogens	(D) Alkaline earth metals

Q.4 When a molten metal hydride is electrolysed?

(A) H⁺ ions produced move towards the cathode

- (B) H^- ions produced move towards the anode
- (C) H_2 is liberated at anode
- (D) H_2 is liberated at cathode

Q.5 Which is true statement?

(A) The layer of ice on the surface of river in the winter acts as a thermal insulator between the water below and the air above

(B) The fish and other marine organism are enabled to survive long periods of freezing water due to the fact that ice is lighter than water

(C) Both is correct

(D) None is correct

Q.6 A sample of water contains sodium chloride. It is

(A) Hard water	(B) Soft water
(C) Moderately hard	(D) None of these

Q.7 The bleaching properties of H_2O_2 are due to its

(A) Reducing properties (B) Oxidising properties

(C) Unstable nature (D) Acidic nature

Q.8 When 50% solution of H_2SO_4 is electrolysed by passing a current of high density at low temperature the main products of electrolysis are

(A) Oxygen and hydrogen

(B) H₂ and peroxy disulphuric acid

(C) H_2 and SO_2

(D) O₂ and peroxy disulphuric acid

Q.9 Hardness producing salt, whose solubility in water decreases with rise of temperature is-

(A) $CaCl_2$ (B) $CaSO_4$ (C) $Ca(HCO_3)_2$ (D) MgSO₄

Q.10 Hydrolysis of one mole of peroxy disulphuric acid produces:

(A) Two moles of sulphuric acid

(B) Two moles of peroxymono sulphuric acid

(C) One mole of sulphuric acid and one mole of peroxy mono sulphuric acid

(D) One mole of sulphuric acid, one mole of peroxy monosulphuric acid and one mole of hydrogen peroxide.

Q.11 Which of the following is not a redox reaction

(A) KCl +
$$K_2Cr_2O_7$$
 + con. $H_2SO_4 \longrightarrow CrO_2Cl_2 + K_2SO_4$
+ H_2O
(B) $K_2Cr_2O_7$ + H_2O_2 + con. $H_2SO_4 \longrightarrow K_2SO_4$ + CrO_5
+ H_2O
(C) $K_2Cr_2O_7$ + H_2O_2 + dil. $H_2SO_4 \longrightarrow K_2SO_4$ + $Cr_2(SO_4)_3$
+ $7H_2O$ + $3O_2$
(D) $K_2Cr_2O_7$ + $2KOH \longrightarrow 2K_2CrO_4$ + H_2O

Q.12 A sample of water containing some dissolved table sugar and common salt is passed through organic ion exchange resins. The resulting water will be -

(A) Tasteless (B) Sweet (C) Salty (D) None of these

Q.13 Which of the following reaction does not take place

(A) $CuSO_4 + Zn \longrightarrow ZnSO_4 + Cu$

(B) HgCl_2 + Fe \longrightarrow FeCl₂ + Hg

(C) NaH + $H_2O \longrightarrow NaOH + H_2$

(D) $Na_2SO_3 + CO_2 \longrightarrow Na_2CO_3 + SO_2$

Q.14 If -O-H bond is weaker than -O-D bond,

(A) The biological growth of a plant which is fed by D_2O is fast

(B) The biological growth of a plant which is fed by $\rm H_2O$ is fast

(C) The biological growth of a plant which fed both by H_2O or D_2O are same

(D) Water does not have any role in plant growth.

Q.15 Water obtained by purification with organic ion Exchange resins is -

(A) Pure water

(B) Free from only Ca2+, Mg2+ ions

(C) Free from HCO_3^- , SO_4^{2-} and CI^- ions only

(D) None of these

Q.16 When two ice cubes are pressed over each other, they unite to form one cube. Which of the following forces is responsible to hold them together?

(A) Hydrogen bond formation

- (B) Vander Waals' forces
- (C) Covalent attraction
- (D) Ionic interaction

Q.17 Which of the following can effectively remove all types of hardness of water

(A) Soap	(B) Washing soda
(C) Slaked lime	(D) None of these

Q.18 Fenton reagent is

(A) $FeSO_4 + H_2O_2$	(B) Zn + HCl
(C) Sn + HCl	(D) None of the above

Q.19 Which of the following is used as rocket fuel?

(A) Liquid O ₂	(B) Liquid N ₂
(C) Liquid NH ₃	(D) Liquid H_2

Q.20 Which of the following could act as propellant for rockets?

(A) Liquid oxygen + liquid argon

(B) Liquid nitrogen + liquid oxygen

(C) Liquid hydrogen + liquid oxygen

(D) Liquid hydrogen + liquid nitrogen

Q.21 Water is oxidised to oxygen by

(A) Ozone	(B) KMnO₄
() = = = =	(-)

(C) H_2O_2 (D) F_2

Q.22 H₂O₂ on reaction with PbS gives

(A) PbO	(B) PbSO ₄
(C) PbO ₂	(D) PbHSO ₄

Q.23 Hydrogen burns in air with a

(A) Light bluish flame	(B) Yellow flame
(C) Green flame	(D) None of these

Q.24 What is the product of the reaction of H₂O with Cl₂

(A) O_2 + HOCI	(B) HCl + O_2
(C) H ₂ O + HCl	(D) HCl + H_2

Q.25 When electric current is passed through an ionic hydride in molten state

(A) Hydrogen is liberated at anode

(B) Hydrogen is liberated at cathode

(C) Hydride ion migrates towards cathode

(D) Hydride ion remains in solution

Q.26 Among CaH ₂	NH ₃ , NaH	and	$B_{2}H_{6'}$	which	are
covalent hydrides ?					
(A) $\rm NH_3$ and $\rm B_2H_6$	(B) NaH	and C	aH ₂		

(C) NaH and NH_3 (D) CaH_2 and B_2H_2

Q.27 Hydrogen is not obtained when zinc reacts with

(A) Steam	(B) Hot NaOH solution
(C) Cone. H ₂ SO ₄	(D) Dilute HCl

Q.28 The hardness of water sample containing 0.002 mole of magnesium sulphate dissolved in a litre is expressed as

(A) 20 ppm	(B) 200 ppm
(C) 2000 pM	(D) 120 ppm

Q.29 The bond angle and dipole moment of water respectively are -

(A) 109.5°, 1.84D	(B) 107.5°, 1.56D
(C) 104.5°, 1.84 D	(D) 102.5°, 1.56 D

Q.30 Blackened oil painting can be restored into original form by the action of-

(A) Chlorine	(B) BaO ₂
(C) H ₂ O ₂	(D) MnO ₂

Q.31 Ortho and para hydrogen have

(A) identical chemical properties but different physical properties

(B) identical physical and chemical properties

(C) identical physical properties but different chemical properties

(D) different physical and chemical properties

Q.32 CO + H₂
$$\frac{300^{\circ}\text{C} / 300 \text{ atm}}{\text{X(catalyst)}}$$
 CH₃OH

The catalyst X is-

(A) Fe (B) Cr₂O₃/ZnO

(C) V_2O_5 (D) Al_2O_3

Q.33 Which one of the following undergoes reduction with H_2O_2 in an alkaline medium ?

(A) Mn ²⁺	(B) HOCI

(C) PbS	(D) Fe ²⁺
---------	----------------------

Q.34 The reagent(s) used for softening the temporary Previous Years' Questions hardness of water is/are

(A) Ca ₃ (PO ₄) ₂	(B) Ca(OH) ₂
(C) Na ₂ CO ₃	(D) NaOCl

Q.35 Polyphosphates are used as water softening agents because they:

- (A) Form soluble complexes with anionic species
- (B) Precipitate anionic species
- (C) Form soluble complexes with cationic species
- (D) Precipitate cationic species

Q.36 Pick out the correct statement-

(A) By decreasing the temperature pure parahydrogen can be obtained

(B) By increasing the temperature pure orthohydrogen can be obtained

(C) By decreasing the temperature pure orthohydrogen can be obtained

(D) By increasing the temperature pure parahydrogen can be obtained

Q.37
$$H_2SO_5 + H_2O^{18} \rightarrow \text{product}$$

(A)
$$H_2SO_4 + HO - O - H$$

(B)
$$H_2SO_4 + H - O - O - H$$

(C)
$$H - O - S - O - H$$

(D)
$$H - O - S = O - H + H_2O_2$$

Q.38 Which of the following statement is incorrect

(A) Germination of seeds in heavy water stops or slowdown

(B) The growth of plant slows down in heavy water

(C) Small fish die in heavy water

(D) In heavy water, NaCl solubility is more than normal water

Previous Ye	ars' Ques	stions	
Q.1 Polyphospha because they	ites are used a	as water so	oftening agents (2002)
(A) Form soluble	complexes w	ith anionic	species
(B) Precipitate an	ionic species		
(C) Forms soluble	e complexes v	with cation	ic species
(D) Precipitate ca	tionic species	5	
Q.2 One mole of excess water give	•	osphide o	n reaction with (1999)
(A) One mole of	phosphine		
(B) Two moles of	phosphoric a	icid	
(C) Two moles of	phosphine		
(D) One mole of	phosphorus p	pentoxide	
Q.3 Hydrogen wi	ill not reduce		(1985)
(A) Heated cupri	c oxide		
(B) Heated ferric	oxide		
(C) Heated stann	ic oxide		
(D) Heated alum	nium oxide		
Q.4 HCl is added give H_2O_2	to following	oxides. W	hich one would (1998)
(A) MnO ₂	(B) Pb0	D ₂	
(C) BaO ₂	(D) No	ne of thes	е
Q.5 Which of the following pair will not produce dihydrogen gas (1994)			
(A) Cu + HCl(dil.)	(B) Fe	+ H ₂ SO ₄	
(C) Mg + steam	(D) Na	+alcohol	
Q.6 The amount of H_2O_2 present in 1L of 1.5 N H_2O_2 solution is (1991)			
(A) 2.5 g	(B) 25.	5 g	
(C) 3.0 g	(D) 8.0	g	
Q.7 Hydrogen is evolved by the action of cold dil. HNO_3 on (1998)			
(A) Fe (B)	Mn (C) Cu	(D) Al

Read the following questions and answer as per the direction given below:

(A) Assertion is true; reason is true; reason is the correct explanation of assertion.

(B) Assertion is true; reason is true; reason is not the correct explanation of assertion.

- (C) Assertion is true; reason is false.
- (D) Assertion is false; reason is true

Q.8 Assertion: Decomposition of H_2O_2 is a disproportionate reaction. (1999)

Reason: H_2O_2 molecule simultaneously undergoes oxidation and reduction.

Q.9 Assertion: H_2O_2 has higher boiling point than water. (1997)

Reason: H_2O_2 has stronger dipole-dipole interactions than water.

Q.10 In which of the following pairs of molecules / ions, both the species are not likely to exist? (2013)

(A) H_2^+, He_2^{2-} (B) H_2^-, He_2^{2-} (C) H_2^{2+}, He_2 (D) H_2^-, He_2^{2+}

Q.11 In which of the following reactions H_2O_2 acts as a reducing agent? (2014)

(a) $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$ (b) $H_2O_22e^- \rightarrow O_2 + 2H^+$ (c) $H_2O_2 + 2e^- \rightarrow 2OH^-$ (d) $H_2O_2 + 2OH^- - 2e^- \rightarrow O_2 + 2H_2O$ (A) (a), (c), (B) (b), (d) (C) (a), (b) (D) (c), (d)

Q.12 From the following statements regarding H_2O_2 choose the **incorrect** statement : (2015)

(A) It can act only as an oxidizing agent

(B) It decomposes on exposure to light

(C) It has to be stored in plastic or wax lined glass bottles in dark

(D) It has to be kept away from dust

JEE Advanced/Boards

Exercise 1

Q.1 What is understood by "Water gas shift reaction"? Discuss its use for the preparation of hydrogen.

Q.2 A solution of ferric chloride acidified with HCl is unaffected when hydrogen is bubbled through it, but gas gets reduced when zinc is added to acidified solution. Why?

Q.3 What is r_{μ} value?

Q.4 Neutron diffraction data can usually give quite precise location of H-bonding but X-ray diffraction does not, why?

Q.5 Explain the H-bond formed between NH₃ and H₂O.

Q.6 Presence of water is avoided in the preparation of H_2O_2 from Na_2O_2 .

Q.7 Write down disproportionation reaction in H₂O₂

Q.8 Calculate the hardness of water sample which contains 0.001 mole of $MgSO_4$ dissolved per litre of water.

Q.9 What mass of CaO will be required to remove the hardness of 1000 litres of water containing 1.62 g of calcium bicarbonate per litre?

Q.10 100 mL of tap water containing $Ca(HCO_3)$ was titrated with N/50 HCl with methyl orange as indicator. If 30 mL of HCl were required, calculate the temporary hardness as parts of $CaCO_3$ per 10⁶ parts of water.

Q.11 When 1.823 g of the hydrogen $CaCrO_4.XH_2O$ was heated to 200°C, 1.479 of anhydrous $CaCrO_4$ was formed. What is the formula of hydrate?

Q.12 What happens when

(i) Chromium hydroxide is treated with hydrogen peroxide in the presence of sodium hydroxide. Write the chemical equation.

(ii) Concentrated caustic potash solution is spilled on granulated zinc. Write the chemical equation.

(iii) Hydrolith is treated with water. Write the chemical equation.

(iv) Heavy water reacts with aluminium carbide. Write the chemical equation.

Q.13 An aqueous solution of an unknown compound (X) gives the following reactions:

(i) It gives brown ppt. with alkaline $KMnO_4$ solution.

(ii) It forms HCl and evolves O_2 when reacts with Cl_2 gas.

(iii) It liberates I₂ form an acidified KI solution.

(iv) It gives orange yellow colour with acidified titanic sulphate solution.

Identify (X) and give the chemical equations for the reactions (i), (ii), (iii).

Q.14 (i) Convert 20 vol. H_2O_2 into % strength.

(ii) Convert 6.8 % strength H_2O_2 into volume strength.

Q.15 What is the volume strength of 1 molar solution of H_2O_2 ?

Q.16 Half litre each of three samples of H_2O_2 labelled 10 vol., 15 vol., 20 vol., are mixed and then diluted with equal volume of water. Calculate relative strength of resultant H_2O_2 solution.

Q.17 What mass (in mg) of available per litre is present in a solution of H_2O_2 . 10 mL of which when treated requires 25 mL of N/20 KMnO₄ for complete oxidation of it.

Q.18 25 mL of hydrogen peroxide solution were added to excess of acidified potassium iodide solution. The iodine so liberated required 20 mL of 0.1 N sodium thiosulphate solution. Calculate strength in terms of normality, percentage and volume.

Q.19 Excess of KI and dil. H_2SO_4 were mixed in 50 mL H_2O_2 . The I_2 liberated requires 20 mL of 0.1 N $Na_2S_2O_3$. Find out the strength of H_2O_2 in g/litre.

Q.20 20 mL of H_2O_2 after acidification with dilute H_2SO_4 required 30 mL of N/12 KMnO₄ for complete oxidation. Calculate the percentage of H_2O_2 in g/litre. Equivalent mass of $H_2O_2 = 17$.

Q.21 What happens when?

(i) An alkaline solution of potassium ferricyanide reacts with $\rm H_2O_2.$

(ii) Hydrogen peroxide is added to acidified potassium permaganate

(iii) Hydrogen peroxide is added to ferrous ammonium sulphate solution.

Exercise 2

Single Correct Choice Type

Q.1 Nascent hydrogen consists of:

(A) Hydrogen atoms with excess energy

(B)Hydrogen molecules with excess energy

(C) Hydrogen ions in excited state

(D) Solvated protons

Q.2 30 volume hydrogen peroxide means:

(A) 30% H_2O_2 solution

(B) 30 cm³ of the solution contains 1 g of H_2O_2

(C) 1 cm³ of the solution liberates 30cm³ of O₂ at STP

(D) 30 cm³ of the solution contains 1 mole of H_2O_2

Q.3 The molarity of a 100 mL solution containing 5.1 g hydrogen peroxide is:

(A) 0.15M (B) 1.5 M (C) 3.0M (D) 50.0M

Q.4 Moist hydrogen cannot be dried over concentrated H_2SO_4 because:

(A) It can catch fire

- (B) It is reduced by H_2SO_4
- (C) It is oxidised by H_2SO_4
- (D) It decomposes H₂SO₄

Q.5 An aqueous soluti	on of hydrogen peroxide is:
(A) Alkaline	(B) Neutral

(C) Strongly acidic (D) Weakly acidic

Q.6 The structure of H_2O_2

(A) In gas phase as well as in solid phase is same with the same dihedral angle

(B) In gas phase, is with dihedral angle of 111.5°

(C) Both (A) and (B)

(D) In solid phase, is with the dihedral angle of 180°

Q.7 Which is not reduced by H_2 in hot solution:

(A) Fe_2O_3 (B) CuO (C) K_2O (D) Ag_2O

Q.8 Hydrogen is evolved by the action of cold dilute HNO_3 on:

(A) Fe (B) Mg or Mn (C) Cu (D) Al

Q.9 H_2O_2 when added to a solution containing KMnO₄ and H_2SO_4 acts:

(A) As an oxidising agent

(B) As a reducing agent

(C) Both as an oxidising as well as a reducing agent

(D) $KMnO_4$ will not react with H_2O_2 in acidic in medium.

Q.10 Hydrogen can be produced by heating

(C) Sodium oxalate (D) None of these

Q.11 Which of the following chemical reaction is not feasible?

(A) $PbO_2 + dil. H_2SO_4 \longrightarrow PbSO_4 + H_2O + O_2$ (B) $H_2SO_5 + H_2O_2 \longrightarrow H_2SO_4 + H_2O_2$ (C) $H_2O_2 + N_2H_4 \longrightarrow N_2 + H_2O$ (D) Ti $(SO_4)_2 + H_2O_2 + 2H_2O \longrightarrow H_2TiO_3 + H_2SO_4$

Q.12 The reaction involved during the removal of temporary hardness of water is:

(A) $2CaCl_2 + (NaPO_3)_6 \longrightarrow Na_2(Ca_2(PO_3)_6) + 4NaCl$ (B) $CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 \downarrow + 2NaCl$ (C) $MgSO_4 + Na_2Al_2Si_2O_8.xH_2O \longrightarrow MgAl_2Si_2O_7.xH_2O$ $+ Na_2SO_4$

(D) Ca(HCO₃)₂
$$\longrightarrow$$
 CaCO₃ + H₂O + CO₂ \uparrow

Q.13 Plumbosolvency is a health hazard in the transportation of

(A) Hard water only

(B) Soft water only

(C) Both (A) and (B)

(D) Water containing plum juice

Q.14 In the laboratory, H_2O_2 is prepared by the action of

(A) Cold dilute H_2SO_4 on hydrated BaO_2

(B) Dil. HCl on MnO₂

- (C) Cold H_2SO_4 on MnO_2
- (D) Aqueous alkali on Na_2O_2

Q.15 When 50% solution of H_2SO_4 is electrolysed by passing a current of high density at low temperature the main products of electrolysis are

(A) Oxygen and hydrogen

(B) H_2 and peroxy disulphuric acid

(C) H_2 and SO_2

(D) O₂ and peroxy disulphuric acid

Multiple Correct Choice Type

Q.16 Which of the following will give hydrogen peroxide on hydrolysis

(A)
$$H_2S_2O_8$$
 (B) H_2SO_5 (C) H_3PO_5 (D) $HCIO_4$

Q.17 When zeolite, which is hydrated sodium aluminium silicate, is treated with hard water the sodium ions are exchanged with

(A) H⁺ ion (B) Ca⁺⁺ ions

(C) SO₄⁻ ions (D) Mg⁺⁺ions

Q.18 Hydrogen can be obtained from water, by the action of water on-

(A) Calcium carbide	(B) Calcium hydride
---------------------	---------------------

(C) Calcium oxide (D) Calcium

Q.19 What is true about ice

- (A) Its density is more than water
- (B) It is a good conductor of heat
- (C) It is a thermal insulator
- (D) Its density is less than water

Q.20 Hydrogen is obtained when zinc reacts with

(A) Cold water	(B) Hot NaOH solution
----------------	-----------------------

(C) Conc, sulphuric acid (D) Dilute HCl

Assertion Reasoning Type

(A) Statement-I is true, statement-II is true and statement-II is correct explanation for statement-I.

(B) Statement-I is true, statement-II is true and statement-II is NOT the correct explanation for statement-I.

(C) Statement-I is true, statement-II is false.

(D) Statement-I is false, statement-II is true

Q.21 Statement-I: ZrH₂ is a non-stoichiometric hydride.

Statement-II: The composition of ZrH₂ is exact same as its chemical formula.

Q.22 Statement-I: D₂ molecules are more stable than H₂.

Statement-II: The bond dissociation energy of D₂ is more than of H_2 .

Q.23 Statement-I: Acetanilide acts as a negative catalyst for the decomposition of H₂O₂.

Statement-II: In the presence of acetanilide, the stability of H₂O₂ increases

Q.24 Statement-I: Polarity of $H_2O_{2'}$ is more than H_2O but H₂O is a better solvent.

Statement-II: In chemical reactions, H₂O₂ is decomposed but H₃O does not.

Q.25 Statement-I: When blood is added to a solution of H_2O_2 , the solution bubbles furiously

Statement-II: Catalase (an enzyme) present in blood decomposes H_2O_2 and produces bubbles of O_2 .

Q.26 Statement-I: Pure zinc reacts slowly with sulphuric acid to produce hydrogen.

Statement-II: Hydrogen produced initially forms an extremely thin layer on zinc surface which prevents its dissolution in sulphuric acid.

Comprehension Type

Paragraph 1: Hydrogen peroxide is a powerful oxidizing agent. It is an electron acceptor in acidic and alkaline mediums.

$$H_2O_2+2H^+ + 2e^- \longrightarrow 2H_2O$$

(in acidic medium)
 $H_2O_2 + 2e^- \longrightarrow 2OH^-$ (in alkaline medium)

It can also act as a reducing agent towards powerful oxidizing agents.

$$H_2O_2 \longrightarrow 2H^+ + O_2 + 2e^{-2}$$

((

In alkaline medium, however, its reducing nature is more effective.

 $H_2O_2+2OH^2 \longrightarrow 2H_2O + O_2 + 2e^2$

Q.27 In which of the following reaction, H₂O₂ acts as a reducing agent.

(A)
$$PbO_2 + H_2O_2 \longrightarrow PbO + H_2O + O_2$$

(B) $Na_2Sb_3 + H_2O_2 \longrightarrow Na_2SO_4 + H_2O$
(C) $2KI + H_2O_2 \longrightarrow 2KOH + I_2$
(D) $KNO_2 + H_2O_2 \longrightarrow KNO_3 + H_2O$

Q.28 What is the product of the reaction of H_2O_2 with Cl_2 ?

(A) O ₂ + HOCI	(B) HCl + O_2
(C) $H_2O + HCI$	(D) HCl + H_2

Paragraph 2: Be and Mg, some amongst the p-block elements and most of the d-block elements give metallic or interstitial hydrides on reacting with hydrogen. The density of each compound is less than that of the metal itself and the properties are not much different from that of the metal. They give out hydrogen easily and are strong reducing agents. This suggests that hydrogen is present in the atomic state. These compounds are nonstoichiometric. The f-block elements (i.e., lanthanide and actinides) also form non-stoichiometric hydrides. These hydrides have lower densities than their respective metals. The metals of group 7, 8 and 9 do not form hydrides. This region of the periodic table is called 'hydride gap'.

Q.29 Which type of hydride is formed by the clement having atomic number, Z = 43?

(A) Metallic hydride (B) Saline hydride

(C) Covalent hydride (D) No hydride **Q.30** Which of the following has highest electrical conductance?

(A) BeH_2 (B) MgH_2 (C) CaH_2 (D) ZrH_2

Q.31 Interstitial hydride can not be used as,

(A) Storage of H₂

- (B) Catalysts for hydrogenation reaction
- (C) Rocket propellant
- (D) Electric conductor

Paragraph 3: Hydrogen peroxide can be prepared in the laboratory by the action of dilute acids on metallic peroxide. In one method, sodium peroxide is added in small amount at a time to a dilute solution of sulphuric acid in cold. Sodium peroxide can be replaced by barium peroxide. In this case, a paste of BaO₂.8H₂O is prepared and added gradually to an ice-cold dilute sulphuric acid. Barium sulphate precipitates out leaving behind a dilute solution of hydrogen peroxide. Phosphoric acid can also be used in place of sulphuric acid.

Q.32 The oxide that gives hydrogen peroxide on treatment with a dilute acid is:

(A) PbO_2 (B) SrO_2 (C) MnO_2 (D) TiO_2

Q.33 The correct increasing order of the acidity of CO_2, $\rm H_2O$ and $\rm H_2O_2$ is

(A) $CO_2 < H_2O_2 < H_2O$ (B) $H_2O < H_2O_2 < CO_2$ (C) $H_2O < H_2O_2 > CO_2$ (D) $H_2O_2 > CO_2 > H_2O$

Q.34 Which of the following is used for the preparation of H_2O_2 ?

(A) Anhydrous BaO₂
(B) Anhydrous Na₂O₂
(C) TiO₂
(D) PbO₂

Paragraph 4: Hydrogen peroxide has an ability to function as an oxidant as well as reductant in both acid and alkaline solutions. Hydrogen peroxide provides an atom of oxygen (Nascent oxygen) readily for oxidation and takes up an atom of oxygen to give water and oxygen gas. The strength of commercially available H_2O_2 sample is described as volume strength. 30 volumes of H_2O_2 means 30 cm1 O_2 is obtained at STP by decomposing 1 cm³ of H_2O_2 solution. Dark paraffin bottles are used for storage of H_2O_2 as it is decomposed in light and catalysts

Q.35 The normality of 30 volume H_2O_2 solution is (A) 5.3 N (B) 11.2 N (C) 2 N (D)1 N

Q.36 $xK_2Cr_2O_7 + y H_2SO_4 + z H_2O_2 \longrightarrow K_2SO_4 + Cr_2(SO_4)_3 + w H_2 O + jO_2, x, y, z are$ (A) 4,1,3 (B) 2,4,8 (C) 1,8,2 (D) 1,4,3

Q.37 H_2O_2 + $Na_3AsO_3 \longrightarrow X + Y. X$ and Y respectively are

(A) $Na_3AsO_4 + H_2O$	(B) $As_2O_3 + H_2O$
(C) $As(OH)_3 + H_2$	(D) $As(OH)_{5} + H_{2}$

Q.38 For the decomposition of H_2O_2 in H_2O and O_2 , ΔG is (A) +ve (B)-ve (C) Zero (D) Either +ve or zero

Paragraph 5: Ordinary water is an oxide of common isotope of hydrogen called Protium while heavy water is oxide of heavier isotope of hydrogen called Deuterium. It is represented as D_2O and as molecular weight of D_2O is more than H_2O , there are slightly stronger Vander der Waals forces between D_2O molecules. Like ordinary water, heavy water is a colorless, odorless and tasteless mobile liquid.

Q.39 Heavy water is used in atomic reactor as

- (A) Coolant
- (B) Moderator
- (C) Both moderator and coolant
- (D) Neither coolant nor moderator.

Q.40 Heavy water freezes at

(A) 0° C (B) 3.8° C (C) 38°C (D) -0.38°C

Q.41 The pH of D₂O and H₂O at 298 K is

(A) 7.0,7.0	(B) 7.35,7.0
(C) 7.0,6.85	(D) 6.85, 7.35

Q.42 Which of the following is not true?

(A) Ordinary water is electrolysed more rapidly than D₂ O

(B) Reaction between $\rm H_{2}$ and $\rm Cl_{2}$ is much faster than $\rm D_{2}$ and $\rm Cl_{2}$

(C) D_2O freezes at lower temperature than H_2O

(D) Bond dissociation energy for D_2 is greater than H_2 .

Match the Columns

Q.43

Column I	Column II
(For the production of H_2O_2)	
(A) BaO ₂ .8H ₂ O	(p) Reduction and oxidation
(B) Na ₂ O ₂	(q) reacts with NaOH
(C) H ₂ SO ₄	(r) electrolysis then hydrolysis
(D) Ethyl derivative of anthraquinone	(s) Reacts with H_2SO_4

Q.44

Column –I	Column – II	
(Compound)	(Properties)	
(A) Perhydrol	(p) Dilute solution of H_2O_2	
(B) Water gas	(q) Manufacture of H ₂	
(C) Bosch's process	(r) CO+ H ₂	
(D) $CH_4 + H_2O$	(s) Antiseptic and germicide	

Q.45

Column –I	Column - II	
(Compound)	(Properties)	
(A) LiAlH ₄	(p) Binary hydride	
(B) NaBH ₄	(q) Reducing agent	
(C) CaH ₂	(r) Complex hydride	
(D) LiH	(s) Alanate	

Q.46 Match the List I with List II and select the correct answer using the codes given below in the lists:

List I	List II
(A) Heavy water	(p) Bicarbonates of Mg and Ca in water
(B) Temporary hard water	(q) No foreign ions in water
(C) Soft water	(r) D ₂ O
(D) Permanent hard water	(s) Sulphates and chlorides of Mg and Ca in water

Previous Years' Questions		
Q.1 A sample of water contains sodium chloride. It is (1986)		
(A) Hard water (B) Soft water	,	
(C) Moderately hard (D) None of these		
Q.2 Pick out the correct statement (2008))	
(A) By decreasing the temperature pure para-hydroger can be obtained	ı	
(B) By increasing the temperature pure ortho-hydroger can be obtained	ı	
(C) By decreasing the temperature pure ortho-hydroger can be obtained	ı	
(D) By increasing the temperature pure para-hydroger can be obtained	ı	
Q.3 Hydrogen can be produced by heating (1992))	
(a) Cu with H_2SO_4 (B) Sodium formate		
(C) Sodium oxalate (D) None of these		
Q.4 Plumbosolvancy is a health hazard in the transportation of (1994)		
(A) Hard water only (B) Soft water only		
(C) Both (a) and (B) (D) Water containing plum juice	•	
Q.5 The critical temperature of water is higher than that of O, because the H ₂ O molecule has (1997)		
(A) Fewer electrons than O ₂ (B) Two covalent bonds		
(C) V-shape (D) Dipole moment		
Q.6 When zeolite, which is hydrated sodium aluminium silicate, is treated with hard water, the sodium ions are exchanged with (1990)	e	
(A) H ⁺ ions (B) Ca ²⁺ ions		
(C) SO_4^{2-} ions (D) Mg^{2+} ions (E) OH^{-} ions		
Q.7 The reagent (s) used for softening the temporary hardness of water is (are) (2010)		

(A) $Ca_3(PO_4)_2$ (B) $Ca(OH)_2$ (C) Na_2CO_3 (D) NaOCI

Q.8 $H_2O_2 \rightarrow 2H^++O_2+2e^-$; $E^\circ = -0.68$ V. This equation represents which of the following behaviour of H_2O_2 (1995)

(A) Reducing	(B) Oxidising
(C) Acidic	(D) Catalytic

15.54 | s-block Elements -

Q.9 The structure of H	$_{2}O_{2}$ is	(1999)	Q.11 Hydrogen peroxide in its reaction with KI	
(A) Open book like	(B) Linear		NH ₂ OH respectively, is acting as a	(2014)
(C) Closed book	(D) Pyramidal		(A) Reducing agent, oxidising agent	
			(B) Reducing agent, reducing agent	
Q.10 On shaking			(C) Oxidising agent, oxidising agent	
dichromate and ether,	ethereal layer bec	comes (1998)	(D) Oxidising agent, reducing agent	
(A) Green (B) Red	(C) Blue	(D) Black		

JEE Main/Boards

s-block Elements

Exercise 1

Q.1 Why Alkali and alkaline earth metals, cannot be obtained by chemical reduction methods?

Q.2 Why sodium cannot be prepared by the electrolysis of aqueous solution of sodium chloride using platinum cathode?

Q.3 Which of the two, sodium or potassium has higher melting point?

Q.4 Complete the following equations for the reaction between.

(A) Ca + H_2O	(B) $Ca(OH)_2 + Cl_2$
(C) BeO + 2NaOH	(D) $BaO_2 + H_2SO_4$

Q.5 Differentiate between (a) quick lime (b) lime water (c) Slaked lime

Q.6 Arrange the following in the order or increasing covalent character; MCl, MBr MF & MI, where M is alkali metal.

Q.7 Ionization enthalpies of alkali metals decrease as the atomic number increases.

Q.8 State as to why:

(i) Lithium on being heated in air mainly forms monoxide and not peroxide.

(ii) An aqueous solution carbonate is alkaline in nature.

(iii) Sodium is prepared by electrolytic reduction method and not by chemical reduction method.

Q.9 How would you explain Lil is more soluble than KI?

Q.10 Identity the following

$$Na_2CO_3 \xrightarrow{SO_2} A \xrightarrow{Na_2CO_3} B \xrightarrow{Elemental S} \Delta$$

 $C \xrightarrow{I_2} D$

Also mention the oxidation state of S in all the compounds.

Q.11 Why is sodium metal kept under kerosene oil?

Q.12 What is the formula of gypsum? What happens when it is heated?

Q.13 What is dead burnt plaster? What is formula of plaster of paris?

Q.14 Why super oxide of alkali metals are para magnetic while normal oxides are diamagnetic?

Q.15 It is necessary to add gypsum in the final stages of preparation of cement Explain why?

Q.16 Why are potassium and caesium, rather than lithium used in photoelectric cells?

Q.17 Explain the following:

(i) Alkali metals are not in free form in nature

(ii) Alkali metals are good reducing agents.

Q.18 Explain the following:

(i) The softness of group IA metals increases down the group with increasing atomic number.

(ii) Lithium salts have a greater degree of covalent character than other halides of the group.

Q.19 Explain the following:

(A) Alkali metals are obtained by the electrolysis of the molten salts and not by the electrolysis of their aqueous solutions.

(B) Calcium chloride is added to NaCl in the electrolytic manufacture of sodium.

(C) On exposure to air, sodium hydroxide becomes liquid and after sometimes it changes to white powder.

(D) Sodium Carbonate is made by Solvay process but the same process is not extended to the manufacture of potassium carbonate,

(E) An aqueous solution of iodine becomes colorless on adding excess of sodium hydroxide

Q.20 Complete and balance the following equations

(A) $KO_2 + H_2O \rightarrow \dots + O_2$ (B) $PbO_2 + NaOH \xrightarrow{Heat} \dots + H_2O$ (conc.) (C) $KI + H_2SO_4 + H_2O_2 \rightarrow I_2 + \dots + H_2O$ (D) $NaOH + I_2 \rightarrow \dots + NaIO_2 + H_2O$

Q.21 Answer the following:

(i) What is meant by black ash?

(ii) What is the action of NaOH on ammonium salts?

(iii) What is washing soda?

Q.22 What happens when?

(i) Hot and concentrated caustic soda solution reacts with iodine.

(ii) White phosphorus is heated with caustic soda.

(iii) Excess of caustic soda reacts with zinc sulphate solution

(iv) Excess of NaOH is added to AICl₃ solution

(v) Anhydrous potassium nitrate is heated with excess of metallic potassium

(vi) Sodium is strongly heated in oxygen and the product is treated with $\rm H_2SO_4$

Q.23 Write the balanced equations of the reactions of Caustic soda on the following

(i) Zinc, (ii) Silver nitrate, (iii) Phosphorus

Q.24 Give one test each to make distinction between the folio wing pairs:

(i) NH₄Cl and KCl (ii) Na₂SO₃ and Na₂SO₄

(iii) NaCl and KCl

Q.25 Arrange the following as indicated:

(A) LiOH, NaOH, KOH (Increasing solubility in water)

(B) LiHCO₃, NaHCO₃, KHCO₃ (Increasing solubility in water)

(C) Li₂CO₃, Na₂CO₃, K₂CO₃ (Increasing solubility in water)

(D) Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺ (Increasing size of hydrated ion)

Q.26 What happen when the following are heated?

(A) Hydrated magnesium chloride,

(B) Gypsum,

(C) Bicarbonates of alkaline earth metals,

(D) Epsom salt, (v) Barium nitrate.

Q.27 How would you explain?

(i) BeO is insoluble but $BeSO_4$ is soluble water.

(ii) BaO is soluble but $BaSO_4$ is insoluble water.

Q.28 Explain the following:

(i) Alkali metals salts impart color to the flame.

(ii) Sodium is kept under kerosene

(iii) Potassium and caesium are used photoelectric cells.

Q.29 Explain the following:

(i) Li^+ ion is far smaller than the other alkali metal ions but it moves through a solution less rapidly than the others.

(ii) Lithium fluoride has the lowest solubility of the group IA metal halides.

(iii) Salts of lithium having small anions are more stable than the salts having larger anions.

Q.30 Answer the following:

(A) What is the intermediate product in Solvay's process?

(B) Which chloride of an alkali metal is soluble in alcohol?

(C) Which substance is added to sodium chloride as to reduce its fusion temperature during manufacture of sodium?

(D) What product is formed when carbon monoxide is passed through sodium hydroxide under high pressure?

Exercise 2

Single Correct Choice Type

Q.1 NaNO₃ on heating gives

(A) O_2 (B) O_2 and NO_2 (C) NO_2 (D) N_2O and O_2

Q.2 Sodium metal is prepared commercially by electrolysis of fused NaCl by

(A) Down's process	(B) Nelson cell
(C) Solvay process	(D) Castner and Kellner's cell

Q.3 When hydrated magnesium chloride is heated

(A) MgO is formed

(B) Mg (OH) $_{2}$ is formed

(C) Mg (OH) Cl is formed

(D) Anhydrous MgCl₂ is formed

Q.4 Magnesium bums in air to give

(A) MgO (B) Mg_3N_2 (C) $MgCO_3$ (D) Both (A) and (B)

Q.5 Which of the following is a Magnesite ore?

(A) $CaCO_3$. MgCO $_3$	(B) MgSO ₄ . 7H ₂ O
(C) KCl. MgCl ₂ .6H ₂ O	(D) MgCO ₃

Q.6 On mixing with an adequate quantity of water, Plaster of Paris sets into a hard solid having the composition

(A) $CaSO_4.2H_2O$ (B) $CaSO_4.H_2O$ (C) $CaSO_4.Ca$ (OH) (D) $(CaSO_4)_2.H_2O$

Q.7 Which of the following are arranged in correct increasing order of solubility?

(A) $CaCO_3 < KHCO_3 < NaHCO_3$ (B) $NaHCO_3 < KHCO_3 < CaCO_3$ (C) $KHCO_3 < NaHCO_3 < CaCO_3$ (D) $CaCO_3 < NaHCO_3 < KHCO_3$ Q.8 Nitrolim is

(A) $CaCN_2 + C$ (B) $Ca(CN)_2 + C$ (C) $CaC_2 + C$ (D) All of these

Q.9 Sodium sulphate is soluble in water but barium sulphate is sparingly soluble because

(A) The hydration energy of Na_2SO_4 is more than its lattice energy while the lattice energy of $BaSO_4$ is more than its hydration energy

(B) The lattice energy has no role to play in solubility

(C) The lattice energy of $\mathrm{Na_2SO_4}$ is more than its hydration energy

(D) None of these

Q.10 The following are some of the methods commonly employed for the extraction of metals from their ores. Which of the following methods is generally employed for the extraction of sodium?

- (A) Reduction of an oxide with coke
- (B) Electrolysis of an aqueous solution of a chloride
- (C) Electrolysis of a molten chloride
- (D) Reduction of a chloride with more reactive Metal

Q.11 Anhydrone is the name given to

(A) Mg (OH) ₂ . 6H ₂ O	(B) MgSO ₄ .7H ₂ O
(C) Mg (OH). 7H ₂ O	(D) Mg (ClO ₄) ₂

Q.12 The smallest alkali metal cation is

(A) Li^{+} (B) Na^{+} (C) K^{+} (D) Fr^{+}

Q.13 Considering greater polarization in LiCl compared to that in NaCl, which of the following statements you would expect to be wrong?

(A) LiCl has lower melting point that NaCl

(B) LiCl dissolves more in organic solvents

(C) LiCl will ionize in water more than NaCl

(D) Fused LiCl would be less conducting than fused NaCl

Q.14 Amongst the alkali metals, lithium is the strongest reducing agent in the aqueous solution. This is because within the group, it has the highest

(A) Ionization energy (B) Electrode potential

(C) Hydration energy (D) Electronegativity

Q.15 A solid is a compound of group 1 element and it gives a bright red color in the flame test.

The solid is

(A) NaCl (B) KCl (C) LiBr (D) CsCl

Q.16 Alkali metals readily dissolve in liquid ammonia to give blue colored solutions. The blue color is believed to be due to

(A) Ammoniated cations

(B) Ammoniated anions

(C) Ammoniated electrons

(D) Ammoniated cations and ammoniated electrons

Q.17 Which of the following compounds possesses the largest lattice energy?

(A) LiF (B) NaCl (C) KH (D) Csl

Q.18 On heating sodium metal in a current of dry ammonia, the compound formed is

(A) Sodium nitride (B) Sodium hydride

(C) Sodium amide (D) Sodium azide

Q.19 The pair of compounds which cannot exist together in solution is

(A) NaHCO₃ and NaOH
(B) NaHCO₃ and H₂O
(C) NaHCO₃ and Na₂CO₃
(D) Na₂CO₃ and NaOH

Q.20 Among alkali metal salts, the lithium salts are the poorest conductors of electricity in aqueous solution because of

(A) Easy diffusion of Li⁺ ions

(B) Lower ability of Li⁺ ions to polarize water molecules

(C) Lowest charge to radius ratio

(D) Higher degree of hydration of Li⁺ ions

Q.21 The order of decreasing polarity in the compounds CaO, CsF, KCI, and MgO is

(A) CaO, CsF, KCl, MgO
(B) MgO, KCl, CaO, CsF
(C) KCl, CaO, CsF, MgO
(D) CsF, KCl, CaO, MgO

Q.22 One of the following statements is incorrect.

(A) Elements of group 2 are good conductors of electricity and heat

(B) Compounds of group 2 elements are diamagnetic in nature

(C) The salts of group 2 elements are highly hydrated than those of elements of group 1

(D) Elements of group 2 are more electropositive than group 1 elements.

Q.23 Alkaline earth metals form dipositive ions instead of unipositive ions because

(A) Dipositive ions carry more charge

(B) Their second ionization energies are not different from first ionization energy

(C) Unipositive ions do not have stable configuration

(D) Compounds containing dipositive ions have more lattice energy

Q.24 Which element possesses maximum electropositive character?

(A) Mg (B) Be (C) P (D) Al

Q.25 BeF_2 is highly soluble in water whereas the fluorides of other alkaline earth metals are almost insoluble because

(A) BeF₂ is ionic in nature

(B) BeF_2 is covalent in nature

(C) Hydration energy of BeF_2 is much higher than its lattice energy

(D) Lattice energy of BeF_2 is much higher than that of its hydration energy.

Q.26 Both Be and Al become passive on treatment with cone. HNO_3 due to

(A) Non-reacting nature of the metals

(B) Non-oxidizing nature of the acid

(C) The formation of an inert layer of the oxide on the surface of the metals

(D) All are correct

Q.27 The value of x is maximum for

(A) MgSO₄. xH₂O
(B) CaSO₄. xH₂O
(C) BaSO₄. xH₂O
(D) All have the same value of x

Q.28 The name 'Blue John' is given to which of the following compounds

(A) CaH_2 (B) CaF_2 (C) $Ca_3 (PO_4)_2$ (D) CaO

Q.29 Amongst LiCl, RbCl, BeCl₂ and MgCl₂ the compounds with greatest and the least ionic character, respectively, are

(A) LiCl and RbCl	(B) RbCl and BeCl ₂
-------------------	--------------------------------

(C) RbCl and MgCl₂ (D) MgCl₂ and BeCl₂

Q.30 Among the following: NaOH, Ca (OH),

KOH and Zn (OH)₂, the weakest base is

(A) NaOH	(B) Ca (OH) ₂
(C) KOH	(D) Zn (OH) ₂

Q.31 The decreasing order of the second ionization potential of K, Ca and Ba

(A) K > Ca > Ba	(B) Ca > Ba > K
(C) Ba>K>Ca	(D) K>Ba>Ca

Previous Years' Questions

Q.1 Aqueous solution of $Na_2S_2O_3$ on reaction with Cl_2 gives: (2008)

(A) $Na_2S_4O_6$ (B) $NaHSO_4$ (C) NaCI (D) NaOH

Q.2 Which of the following chemicals, in addition to water, are used in the manufacture of Na_2CO_3 by Solvay process: (1999)

(A) NaCl, CO and NH_3 (B) NaCl, CO₂ and NH_3

(C) NaCl, $\rm NH_4Cl$ and $\rm CO_2~(D)~NaHCO_3,~CO$ and $\rm NH_3$

Q.3 When KI is added to acidified solution of sodium nitrite: (2008)

(A) NO gas is liberated & I_2 is set free

(B) N₂ gas is liberated & HI is produced

(C) N_2O gas is liberated & I_2 is set free

(D) N₂ gas is liberated & HOI is produced

Q.4 The metallic lustre exhibited by sodium is explained by: (1987)

(A) Diffusion of sodium ions

(B) Oscillation of loose electrons

(C) Excitation of free protons

(D) Existence of body centered cubic lattice

Q.5 Which of the following pair can't exist in solution: (1999)

(A) NaHCO₃ and NaOH (B) Na₂CO₃ and NaOH (C) Na₂CO₃ and NaCl (D) NaHCO₃ and NaCl

Q.6 Sodium thiosulphate is prepared by: (1996)

(A) Reducing Na_2SO_4 solution with H_2S

(B) Boiling Na₂SO₃ solution with S in alkaline medium

(C) Neutralizing H₂S₂O₃ solution with NaOH

(D) Boiling Na₂SO₃ solution with S in acidic medium

Read the following questions and answer as per the direction given below:

(A) Assertion is true; reason is true; reason is the correct explanation of assertion.

(B) Assertion is true; reason is true; reason is not the correct explanation of assertion.

(C) Assertion is true; reason is false.

(D) Assertion is false; reason is true.

Q.7 Assertion: Radium is most abundant s-block element. (1997)

Reason: s-block elements are non-radioactive in nature.

Q.8 Assertion: LiCl is predominantly a covalent compound. (1998)

Reason: Electronegativity difference between Li and Cl is too small.

Q.9 Assertion: The first ionization energy of Be is greater than that of B. (2001)

Reason: 2p-orbital is lower in energy than 2s orbital.

Q.10 Assertion: The alkali metals can form ionic hydrides which contains the hydride ion. (1994)

Reason: The alkali metals have low electronegativity, their hydrides conduct electricity when fused and liberate hydrogen at the anode.

Q.11 Assertion: Be does not impart any characteristic color to the Bunsen flame. (1990)

Reason: Due to its very high ionization energy, beryllium requires a large amount of energy for excitation of the electrons.

Q.12 The coagulating power of electrolytes having ions Na^+ , Al^{3+} and Ba^{2+} for arsenic sulphide sol increases in the order: (2013)

Q.13 Which one of the following alkaline earth metal sulphates has its hydration enthalpy greater than its lattice enthalpy? (2015)

(A) $CaSO_4$ (B) $BeSO_4$ (C) $BaSO_4$ (D) $SrSO_4$

JEE Advanced/Boards

Exercise 1

Q.1 For the alkali metals, which of the following increases with increasing atomic number?

(A) First ionization energy

(B) Electronegativity

(C) Hydration energy of the univalent ion

(D) Atomic radius

Q.2 Which of the following statement about the sulphate of alkali metal is correct?

(A) Except Li_2SO_4 all sulphate of other alkali metals are soluble in water

(B)All sulphate salts of alkali metals except lithium sulphate forms alum.

(C) All sulphate salts of alkali metals except lithium sulphate do not decompose at high temperature

(D) All of these

Q.3 Which metal bicarbonates does not exist in solid state?

(i) $LiHCO_{3}$ (ii) $Ca(HCO_{3})_{2}$ (iii) $Zn(HCO_{3})_{2}$ (iv) $AgHCO_{3}$ (A) i, ii, iii, iv (B) i, ii, iii (C) i, ii, iv (D) ii, iii, iv

Q.4 When a standard solution of NaOH is left in air for a few hours:

(A) A precipitate will form

(B) Strength of solution will decrease

(C) The strength of solution will increase

(D) The concentration of Na $^{\scriptscriptstyle +}$ ion in solution will remains same

Q.5 CaCl₂ is preferred over NaCl for clearing ice on roads particularly in very cold countries. This is because:

(A) CaCl, is less soluble in H₂O than NaCl

(B) CaCl₂ is hygroscopic but NaCl is not

(C) Eutectic mixture of $CaCl_2/H_2O$ freezes at -55°C while that of NaCl/H₂O freezes at -18°C

(D) NaCl makes the road slippery but CaCl, does not

Q.6 Calcium imide on hydrolysis gives gas (B) which on oxidation by bleaching powder gives gas (C) Gas (C) on reaction with magnesium give compound (D) which on hydrolysis gives again gas (B). Identify (B), (C) and (D).

(A) $NH_{3'}$, $N_{2'}$, $Mg_{3}N_{2}$ (B) $N_{2'}$, $NH_{3'}$, MgNH(C) $N_{2'}$, $N_{2}O_{5'}$, Mg (NO_{3})₂ (D) $NH_{3'}$, $NO_{2'}$, Mg (NO_{2})₂

Q.7 Which of the following statement is false?

(A) The milk of magnesia used as antacid is chemically MgO + MgCl $_2$

(B) Stability of alkali metal peroxides increases with increase in atomic number

(C) Hydration energy of AgF is higher than its lattice energy

(D) Anhydrous MgCl_ cannot be prepared by direct heating of MgCl_2.6H_2O

Q.8 Nitrogen dioxide cannot be obtained from:

(A) Cu $(NO_3)_2$ (B) Hg $(NO_3)_2$ (C) NaNO₃ (D) AgNO₃

Q.9 On treatment with cold water, an element (A) reacts readily liberating a colorless, odorless gas (B) and a solution (C). Lithium is reacted with (B) yielding a solid product (D) which effervesce with water to give a strongly basic solution (E). When CO_2 gas is bubbled through solution (C), a white ppt. (F) is formed but this redissolved forming solution (G) when more CO_2 is passed. Precipitate (F) effervesced when

moistened with conc. HCl and give deep red coloration to a Bunsen burner flame, (F) on heating with excess of carbon at 2000°C give Answer the following questions on the basis of above passage. Metal (A) may be:

(A) Be (B) Ca (C) Sr (D) Ba

Q.10 solution (G) contains a salt which:

(i) Causes permanent hardness of water

(ii) Cannot be obtained in solid state

(iii) Causes temporary hardness of water

(iv) Can be obtained in solid state

Select the correct statements:

(A) (i) and (ii)	(B) (i) and (iv)
(C) (ii) and (iii)	(D) (ii) and (iv)

Q.11 Solid (H) on hydrolysis gives a gas, which on passing through ammonical AgNO₃ solution, yields:

(A) White ppt.	(B) Red ppt.
(C) No ppt.	(D) Brown ppt.

Q.12 Lithium only forms monoxide when heated in oxygen. Sodium forms monoxide and peroxide in excess of oxygen. Other alkali metals form superoxide with; oxygen, i.e. MO_2 . The abnormal behavior of lithium is due to small size. The larger size of higher alkali metals also decides the role in formation of superoxides. All the three anions abstract proton from water. The three anions are related to each other as follows:

 $O^{2-} \xrightarrow{\frac{1}{2}O_2} O^{2-}_2 \xrightarrow{O_2} 2O_2^-$

Oxide ion peroxide ion superoxide ion

Consider the following reaction:

 $M + O_2 \rightarrow MO_2$

(M = alkali metal) (Stable superoxide)

(A) M cannot be Li and Na

(B) M cannot be Cs and Rb

(C) M cannot be Li and Rb

(D) None of these

Q.13 Which anion is stable towards water?

(A) O^{2-} (B) O^{2-}_2 (C) O^-_2 (D) None of these

Q.14 Which compound will liberate oxygen when reacts with water?

(A) Na_2O_2 (B) KO_2 (C) Na_2O (D) Cs_2O_2

Q.15 Choose the correct statement(s):

(A) $BeCO_3$ is kept in the atmosphere of CO_2 since, it is least thermally stable

(B) Be dissolves in an alkali solution forming $[Be(OH)_{a}]^{2-}$

(C) BeF_2 forms complex ion with NaF in which Be goes with cation

(D) $\mathsf{BeF}_{\!_2}$ forms complex ion with NaF in which B goes with anion

Exercise 2

Single Correct Choice Type

Q.1 When an aqueous solution of sodium chloride is electrolyzed using platinum electrodes, the ions discharged at the electrodes are:

(A) Sodium and hydrogen

(B) Sodium and chloride

(C) Hydrogen and chloride

(D) Hydroxyl and chloride

Q.2 In the Caster-Kellner cell used for the manufacture of NaOH, the cathode in the central compartment is made up of

(A) Carbon (B) Iron (C) Mercury (D) Nickel

Q.3 In the manufacture of NaOH by electrolysis of an aqueous solution of sodium chloride, the cathode and anode are separated by using a diaphragm or slate partitions because

(A) It increases the yield of Cl_2

(B) It prevents the reaction taking place between NaOH and Cl_2

(C) It prevents the mixing of NaOH and NaCl

(D) It prevents the reaction taking place between Na and Cl_{2}

Q.4 A compound X on heating gives a colorless gas. The residue is dissolved in water to obtain Y. Excess CO_2 is passed through aqueous solution of Y when Z is formed. Z on gentle heating gives back X. The compound X is:

(A) NaHCO₃ (C) Ca $(HCO_3)_2$ (B) Na₂CO₃ (D) CaCO₃

Q.5 Potassium metal is commercially prepared by the reduction of molten KCl with metallic sodium at 850°C (1123 K). This method is based upon the following principle

(A) Sodium is more reactive than potassium at this temperature

(B) Potassium being more volatile distils off thus shifting the reaction forward

(C) Sodium prefers to bind to chloride ions in preference to potassium ions

(D) Potassium and sodium form an alloy at this temperature.

Q.6 If Na^+ ion is larger than Mg^{2+} ion and S^2 ion is larger than Cl^- ion, which of the following will be least soluble in water?

(A) Sodium chloride	(B) Sodium sulphide
(C)Magnesium chloride	(D) Magnesium sulphide

Q.7 Magnesium burns in CO₂ to form:

(A) MgO and CO	(B) MgCO ₃
(C) MgO and C	(D) MgO ₂

Q.8 Which one of the following is most soluble in water?

(A) Mg (OH) $_2$ (B) Sr (OH) $_2$ (C) Ca (OH) $_2$ (D) Be (OH) $_2$

Q.9 The right order of the solubility of sulphates of alkaline earth metals in water is:

(A) Be > Ca > Mg > Ba > Sr
(B) Mg > Be > Ba > Ca > Sr
(C) Be > Mg > Ca > Sr > Ba

(D) Mg > Ca > Ba > Be > Sr

Q.10 A metal salt solution forms a yellow precipitate with potassium chromate in acetic acid, a white precipitate with dilute sulphuric acid but gave no precipitate with sodium chloride or iodide. The white precipitate obtained when sodium carbonate is added to the metal salt solution will consist of

(A) Lead carbonate (B) Basic lead carbonate

(C) Barium carbonate (D) Strontium carbonate

Q.11 Which of the following statement is false?

(A) Strontium decomposes water readily than beryllium

(B) Barium carbonate melts at a higher temperature than calcium carbonate

(C) Barium hydroxides is more soluble in water than magnesium hydroxide

(D) Beryllium hydroxide is more basic than barium hydroxide

Q.12 A salt on treatment with dil. HCl gives a pungent smelling gas a yellow precipitate. The salt gives green flame test and a yellow precipitate with potassium chromate. The salt is:

(A) $NiSO_4$ (B) BaS_2O_3 (C) PbS_2O_3 (D) $CuSO_4$

Multiple Correct Choice Type

Q.13 In hydrolysis, the alkali metal oxides, peroxides and superoxides act as:

(A) Bronsted acid (B) Bronsted base

(C) Lewis acid (D) Lewis base

Q.14 Identify the incorrect statement (s):

(A) Magnesium is lighter than calcium

(B) The atomic radius of Mg is greater than that of Ca

(C) Mg alloys are used in the construction of air crafts

(D) Mg is used as a reducing agent

Q.15 Which of the following statements about the elements, Mg, Ca, Sr and Ba and their compounds is true?

(A) Solubility of the hydroxides in water increases with increasing atomic number

(B) Thermal stability of the carbonates increases with increasing atomic number

(C) All given elements react with water or steam to give hydrogen

(D) Metal chlorides are all liquids at room temperature

Q.16 Which statement is correct regarding the diagonal relationship between the Al and Be?

(A) BeO and Al_2O_3 are amphoteric in nature

(B) Both carbide on hydrolysis produce same gas

(C) Both can form complex

(D) Both have nearly close m.p.

Comprehension Type

Paragraph 1: The thermal stability of the salts of the s-block elements is dependent upon three main factors. Firstly, the greater the charge of the ions involved, the stronger the interionic attraction and the more stable the salt. Also, the smaller the ions become in terms of their ionic radii the closer they approach each other in the crystal lattice of their salts and the more stable the salt. Thirdly, if the ions in the lattice are of comparable size, the crystal lattice is arranged in a more uniform fashion and thus possesses greater thermal stability. There is one other factor that affects thermal stability. The larger the anions in the crystal, for example CO_3^{2-} , unless the cation is of comparable size, the anions decompose on heating to give smaller anions such as O²⁻. This point is especially important when considering the thermal stability of the carbonates, nitrates and hydroxides of the s-block elements.

Q.17 Comparing calcium oxide and magnesium oxide, which of the two would be more stable?

(A) Magnesium oxide would be more stable because the Magnesium cation is smaller

(B) Magnesium oxide would be more stable because Magnesium has a lower atomic mass than Calcium

(C) Calcium oxide would be more stable because the calcium anion is smaller than the Magnesium cation

(D) Calcium oxide would be more stable because calcium has a greater atomic mass than magnesium

Q.18 The nitrates of the Group-I elements mainly decompose not to the oxide but to the nitrite (NO_2^-) although O²⁻ is smaller than NO_2^- Why?

(A) Because only doubly charged anion like CO_3^{2-} decompose to the oxide

(B) Because the double charge on the oxygen would make the salt less stable than a singly charge nitrite anion

(C) Because the nitrite anion contains two oxygen atoms while the oxide anion contains only one

(D) Because the nitrite anion is probably about the same size as the Group I cations.

Q.19 Given that CO_3^{2-} anion is approximately the same size as the early Group I cations, what would occur if Na₂CO₃ were heated

(A) If would decompose to yield Na₂O

(B) If would decompose to yield $Na_2O + CO_2$

- (C) If would decompose to yield NaOH
- (D) No decomposition would occur

Q.20 Li_2O is often considered to be covalent in nature because of the unusually high electronegativity of lithium. Which of the following would be a possible Lewis dot structure for the compound?

(A)
$$\text{Li} - \text{Li} - \overset{\bullet}{O}$$
 (B) $\text{Li} - \overset{\bullet}{O} - \text{Li}$ (C) $\text{Li} = \text{O} = \text{Li}$ (D) $\text{Li} - \overset{\bullet}{O} = \text{Li}$

Paragraph 2: Most of the s-block metals form saline or ionic hydrides. These are non-volatile, non-conducting crystalline solids. However BeH₂ and MgH₂ have covalent polymeric structure. These ionic hydrides have rock salt like structure.

Electrolysis of solution of saline hydride produces H_2 at anode. Saline hydrides react explosively with H_2O . The fire so produced cannot be extinguished with CO_2 as it get reduced by hot metal hydrated. Only sand is useful as it is a solid.

Q.21 When NaBH₄ is dissolved in water

(A) It decomposes with the evolution of H_2

(B) Na⁺ and BH_4^- are formed which are stable

(C) BH_4^- ions formed initially decompose to produce OH^- ions, which prevent further decomposition

(D) NaH and B_2H_6 are produced.

Q.22 LiAlH₄ is obtained by reacting an excess of... with an ethereal solution of AlCl₃

(A) LiCl (B) LiH (C) Li (D) LiOH

Q.23 Alkali metal hydrides react with water to give

- (A) Acidic solution (B) Basic solution
- (C) Neutral solution (D) Hydride ion

Q.24 Amongst the alkali metal hydrides, the most stable one is

(A) LiH (B) NaH (C) KH (D) RbH

Q.25 Ionic hydrides are usually

- (A) Good electrically conductors when solid
- (B) Easily reduced
- (C) Good reducing agents
- (D) Liquid at room temperature.

Assertion Reasoning Type

Each of the questions given below consists of two statements, an Assertion and Reason. Select the number corresponding to the appropriate alternative as follows

(A) If both assertion and reason are true and R is the correct explanation of Assertion.

(B) If both assertion and reason are true but reason is not the correct explanation of assertion.

(C) If assertion is true but reason is false.

(D) If both assertion and reason are false.

Q.26 Assertion: The radius of Na+ in aqueous solution is more than that of Li^+ ion.

Reason: Na⁺ is with high hydration energy compared to Li⁺ ion in aqueous solution. LiNO₃

Q.27 Assertion: and KNO_3 both on decomposition give respective oxide and NO_2 gas. Group-I.

Reason: Nitrates are highly stable, they do not undergo decomposition. Temperature.

Q.28 Assertion: Required for the decomposition of MgCO₃ is less than that of CaCO₃.

Reason: Thermal stability of group II carbonates increases down the. Group.

Q.29 Assertion: .Li₃N is known but K₃N is not known.

Reason: Smaller sizes of lithium ion is able to form stable p bond with nitride ion.

Q.30 Assertion: Lithium can't be stored under kerosene whereas sodium can be stored.

Reason: Density of lithium is lower than that of sodium.

Previous Years' Questions

Q.1 The following compounds have been arranged in order of their increasing thermal stabilities. Identify the correct order. (1996)

(I) K ₂ CO ₃	(II) MgCO	3 (III) CaCO ₃	(IV) $BeCO_3$
(A) < <	< IV	(B) IV< II < III < I	
(C) IV < II <i< td=""><td>< </td><td>(D) < V < < </td><td></td></i<>	<	(D) < V < <	

Q.2 A dilute aqueous solution of Na_2SO_4 is electrolyzed using platinum electrodes. The products at the anode and cathode are respectively (1996)

(A) O ₂ , H ₂	(B) S ₂ O ₈ ^{2–} , Na
(C) O ₂ , Na	(D) $S_2 O_8^{2-}$, H_2

Q.3 A sodium salt of an unknown anion when treated with MgCl₂ gives white precipitate only on boiling. The anion is: (2004)

(A) SO_4^{2-} (B) HCO_3^{-} (C) CO_3^{2-} (D) NO_3^{-}

Q.4 The compound(s) formed upon combustion of sodium metal in excess air is (are): (2007)

(A) Na₂O₂ (B) Na₂O (C) NaO₂ (D) NaOH

Q.5 The reagent(s) used for softening the temporary hardness of water is (are): (2010)

(A) Ca ₃ (PO ₄) ₂	(B) Ca (OH) ₂
(C) Na_2CO_3	(D) NaOCl

Q.6 MgCl₂.6H₂O on heating gives anhydrous MgCl₂ (1982)

Q.7 Sodium when burnt in excess of oxygen gives sodium oxide. (1987)

Q.8 A white solid is either Na_2O or Na_2O_2 . A piece of red litmus paper turns white when it is dipped into a freshly made aqueous solution of the white solid.

(i) Identify the substance and explain with balanced equation.

(ii) Explain what would happen to the red litmus if the white solid were the other compound. (1999)

Q.9 Give reasons for the following in one or two sentences only: "BeCl, can be easily hydrolyzed." (1992)

Q.10 Identify (X) in the following synthetic scheme and write their structures.

$$BaCO_3 + H_2SO_4 \rightarrow X \text{ (gas) (C* denotes C^{14})}$$
 (2001)

PlancEssential Questions

JEE Main/Boards

Hydrogen							
Exercise 1							
Q.6	Q.19	Q.21					
Exercise 2							
Q.8	Q.15	Q.25	Q.29				
Previous Years' Questions							

JEE Advanced/Boards

Exercise 1

Q.10 Q.17 Q.19

Exercise 2

Q.6 Q.12 Q.43

Previous Years' Questions

Q.6 Q.10

JEE Main/Boards

JEE Advanced/Boards

s-Block Elements			Exercise 1			
Exercise	1		Q.4 Q.15	Q.9	Q.12	
Q.3	Q.8	Q.13				
Q.16	Q.19(iv)	Q.23	Exercise	2		
Q.26 (iv,v)	Q.30		Q.2	Q.4	Q.10	
Exercise	2		Q.22	Q.23		
Q.6	Q.9	Q.11	Previous	Years' Qu	estions	
Q.17	Q.25		Q.2	Q.3	Q.9	

Previous Years' Questions

Q.6

Q.5

Answer Key

JEE Main/Boards

Hydrogen

Exercise 1

Q.11 750 ml of O₂, at NTP

Q.12 44.8.

Q.13 AgNO₃ solution is used for the removal of AsH₃ and PH₃ present in very small amounts in hydrogen sample.

Q.14 (A) Potassium ferricyanide is reduced

 $\begin{aligned} & 2K_3Fe(CN)_6 + 2KOH + H_2O_2 ??2K_4Fe(CN)_6 + 2H_2O + O_2 \\ & (B) Cr(OH)_3 \text{ is converted into yellow colored } Na_2CeO_4 \\ & 2Cr(OH)_3 + 4 NaOH + 3H_2O_2 \rightarrow \\ & 2Na_2CrO_4 + 8H_2O \end{aligned}$

Q.15 D_2O has more molecular mass and greater degree of association than H_2O and thus shows higher m.pt. and b.pt.

Q.16 Water reacts with Na_2O_2 to produce NaOH which increases the decomposition of H_2O_2 .

Q.17 The reaction is highly exothermic. It brings large increase in volume also.

 $\mathsf{N_2H_4} + 2\mathsf{H_2O} \rightarrow \mathsf{N_2(g)} + 4\mathsf{H_2O(g)}$

Q.18 This is due to the following reactions.

Oxidizing agent:

 $H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$ (acidic medium)

 $H_2O_2 + 2e^- \rightarrow 2OH^-$ (alkaline medium)

Reducing agent:

 $H_2O_2 \rightarrow 2H^+ + O_2 + 2e^-$

Q.19 0.2125

Q.20 White lead is used as a pigment. The statues coated with white lead get blackened due to the action of H₂S present in atmosphere in traces.

Pb(OH)₂.2PbCO₃ + 3H₂S → 3 PbS + 2CO₂ + 4H₂O When White lead blackened statues are treated with 11,O,. the Pbs is oxidised to PbSO₄ which is colourless (white)

$$PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O_{(white)}$$

Q.21 Na, H₂, NaOH, Zn

Q.22 Two OH bonds lie in the same plane

Q.23 A blue colour is obtained in ether due to formation of CrO_{5}

Q.24 1.344

Q.25 As potential discharge of K^+ is higher than H^+ ion and potential discharge of SO_4^{2-} is higher than OH^- ion.

Q.26 Pb from painting reacts with atmospheric H_2S to give black coloured PbS which on reaction with H_2O_2 converts into PbSO₄.

Q.27 Traces of alkali present in glass bottles accelerates the decomposition of $H_2O_{2'}$ hence glass is coated with wax.

Q.28 During the storage of $H_2O_{2'}$ addition of small amount of phosphoric acid or glycerol or acetanilide inhibits the decomposition of H_2O_2 .

Q.29 1.7 N

Q.30 (A) H_2O_2 (B) CrO_4^{2-} (C) $PbSO_4$

Exercise 2

Single Correct	Single Correct Choice Type									
Q.1 A	Q.2 C	Q.3	С	Q.4 C		Q.5 C		Q.6 B	Q.7	Β
Q.8 B	Q.9 B	Q.10) С	Q.11 D		Q.12 B		Q.13 D	Q.1	4 B
Q.15 D	Q.16 A	Q.17	7 A	Q.18 A		Q.19 D		Q.20 C	Q.2	1 D
Q.22 B	Q.23 A	Q .24	∎ B	Q.25 A		Q.26 A		Q.27 C	Q.2	8 B
Q.29 C	Q.30 C	Q.31	ΙB	Q.32 B		Q.33 A		Q.34 B	Q.3	5 C
Q.36 B	Q.37 C	Q.38	3 D							
Previous Ye	ears' Questio	ns								
Q.1 C	Q.2 C	Q.3	D	Q.4 C		Q.5 A		Q.6 B	Q.7	Β
Q.8 A	Q.9 C	Q.10) С	Q.11 B		Q.12 A				
JEE Adv	anced/Boa	ards	5							
Exercise 1										
Q.1 B	Q.2 C	Q.3	D	Q.4 B		Q.5 D		Q.6 B	Q.7	. D
Q.8 A	Q.9 A	Q.10) A	Q.11 D		Q.12 C		Q.13 D	Q.1	4 B
Q.15 A	Q.16 B	Q.17	7 A	Q.18 A		Q.19 C		Q.20 B	Q.2	1 C
Q.22 C	Q.23 A	Q.2 4	B	Q.25 A		Q.26 B		Q.27 C	Q.2	8 B
Q.29 C	Q.30 D									
Exercise 2										
Single Correct	Choice Type									
Q.1 A	Q.2 C		Q.3 B		Q.4 C		Q.5	5 D	Q.6 E	3
Q.7 C	Q.8 B		Q.9 B		Q.10	3	Q .1	1 1 D	Q.12	D
Q.13 B	Q.14 A		Q.15 B							
Multiple Corre	ect Choice Type	I								
Q.16 A, B, C	Q.17 B, D		Q.18 B, D)	Q.19 (C, D	Q.2	2 0 A, B, D		
Assertion Rea	soning Type									
Q.21 C	Q.22 A		Q.23 A		Q.24 /	4	Q.2	25 A	Q.26	А

Comprehension	Туре
---------------	------

Q.27 A	Q.28 B	Q.29 D	Q.30 D	Q.31 C	Q.32 B		
Q.33 B	Q.34 B	Q.35 A	Q.36 D	Q.37 A	Q.38 B		
Q.39 C	Q.40 B	Q.41 B	Q.42 C				
Match the Columns							
Q.43 A \rightarrow s; B \rightarrow s	s; C \rightarrow r; D \rightarrow p		$\textbf{Q.44} \text{ A} \rightarrow \text{p, s; B} \rightarrow \text{q, r; C} \rightarrow \text{q, r; D} \rightarrow \text{q, r}$				
$\textbf{Q.45} \text{ A} \rightarrow \text{q, r, s; B} \rightarrow \text{q, r; C} \rightarrow \text{p, q; D} \rightarrow \text{p, q}$			Q.46 A \rightarrow r; B \rightarrow p; C \rightarrow q; D \rightarrow s				
Previous Years' Questions							

Q.1 B	Q.2 A	Q.3 B	Q.4 B	Q.5 C, D	Q.6 B, D
Q.7 B, C	Q.8 A	Q.9 A	Q.10 C	Q.11 A	

JEE Main/Boards

s-Block Elements

Exercise 2

Single Correct Choice Type

Q.1 A	Q.2 A	Q.3 C	Q.4 D	Q.5 D	Q.6 A	Q.7 D
Q.8 A	Q.9 A	Q.10 C	Q.11 D	Q.12 A	Q.13 C	Q.14 C
Q.15 C	Q.16 C	Q.17 A	Q.18 C	Q.19 A	Q.20 D	Q.21 D
Q.22 D	Q.23 D	Q.24 A	Q.25 C	Q.26 C	Q.27 A	Q.28 B
Q.29 B	Q.30 D	Q.31 A				

Previous Years' Questions

Q.1 B	Q.2 B	Q.3 A	Q.4 B	Q.5 A	Q.6 B	Q.7 D
Q.8 C	Q.9 C	Q.10 A	Q.11 A	Q.12 B	Q.13 B	

JEE Advanced/Boards

Exercise 1

Q.1 D	Q.2 A	Q.3 B	Q.4 C	Q.5 A	Q.6 A	Q.7 C
Q.8 B	Q.9 C	Q.10 A	Q.11 A	Q.12 D	Q.13 B	Q.14 B
Q.15 A						

Single Correct Choice Type

Exercise 2

single correct	choice Type					
Q.1 C	Q.2 B	Q.3 B	Q.4 D	Q.5 C	Q.6 C	Q.7 D
Q.8 B	Q.9 C	Q.10 C	Q.11 D	Q.12 B		
Multiple Correc	ct Choice Type					
Q.13 A, B	Q.14 C, D	Q.15 A, B, C	Q.16 A, B, D			
Comprehensior	n Type					
q.17 A	Q.18 D	Q.19 A	Q.20 B	Q.21 C	Q.22 B	Q.23 B
Q.24 A	Q.25 C					
Assertion Rease	oning Type					
Q.26 D	Q.27 D	Q.28 A	Q.29 A	Q.30 A		
Previous Years' Questions						
Q.1 B	Q.2 A	Q.3 B	Q.4 A,B	Q.5 B, C, D		
Q.24 A Assertion Rease Q.26 D Previous Yea	Q.25 C oning Type Q.27 D ars' Question	Q.28 A ns	Q.29 A	Q.30 A		

Solutions

JEE Main/Boards

Exercise 1

Hydrogen

Sol 1: Heavy water (D_2O) is used as moderator as well as coolant in nuclear power generation D_2O is a stable molecule as compared to H_2O because molar mass of D_2O is greater so its bond have less vibration and they are more stable so thermal neutrons which are produced in nuclear fission, can be stopped or absorbed by D_2O .

Sol 2: Compound in which H_2O_2 is stable is used as inhibitor in decomposition of H_2O_2 is stable, is used as inhibitor in decomposition of H_2O_2 solution.

 $CH_2 - OH$ Eg. Glycerol | , Acetoanilide. $CH_2 - OH$

Sol 3: Water gas: $CO + H_2$

This gas is made by passing steam over a red hot carbon fuel such as coke:

Sol 4: H_2O is a polar molecule so it can also dissociate into H^+ and OH^- and this equilibrium have its constant.

 H_2O $H^+ + OH^- Kw = 10^{-14}$

This reaction is autoprotolysis of water and ${\rm k}_{\rm w}$ is autoprotolysis constant.

So, 1 out of 10^{14} molecules of $\rm H_2O$ dissociate in $\rm H^+$ and $\rm OH^{-1}$

Sol 5: H₂O molar mass is less than H₂O

 \therefore – O – H bond have more vibration than – O – D bond

So, -O - H bond is water than -O - D so it is easy to dissociate H₂O, D₂O is strong.

: Electrolysis of weaker occur faster than heavy water.

Sol 6: (i) Water
$$\xrightarrow{\text{Electrolysis}}$$
 H₂ + O₂

(ii) dilute acids
$$\xrightarrow{\text{metals}}$$
 MCl₂ + H₂

(iii) alkalis
$$\xrightarrow{\text{amphoteric}}_{\text{metals}}$$
 Zn(OH)₂ + H₂

 $H_2O + C \rightarrow H_2 + CO; \Delta n = +ve$

Sol 7: Interstitial hydrides are formed by Be, Mg (s-block) and transition metals. These are interstitial compound as the hydrogen atoms occupy interstitial places in the metallic lattices these are non-stoichiometric compounds and give out hydrogen easily and are used as strong reducing agents. This suggests that hydrogen is in atomic state having oxidation number zero.

Sol 8: Boiling point, melting point such physical properties depend upon intermolecular weak forces of attraction. H₂O have hydrogen bonding with each other and it has comparatively high molar mass which result in more strong Vander waals forces than H₂

: H₂S boiling point / melting point is less than H₂O.

Sol 9: (a)

 $2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2$ Reduction $(b) PbS + H_2O_2 \longrightarrow PbSO_4 + 4H_2O$ Oxidation $(c) FeSO_4 + H_2SO_4 + 5H_2O_2 \longrightarrow FeSO_4 + H_2O$ Oxidation $(d) 2K_4 [Fe^{+2}(CN)_6] + H_2O_2 \longrightarrow 2K_3[Fe^{+3}(CN)_6 + 2KOH$ Oxidation $(e) H_2SO_3 + H_2O_2 \longrightarrow H_2SO_4 + H_2O$ Oxidation $(f) Na_3 As^{+3}O_4 + H_2O_2 \longrightarrow Na_3ASO_3 + H_2O$ Reduction $(f) Na_3 As^{+3}O_4 + H_2O_2 \longrightarrow Na_3ASO_3 + H_2O$ Reduction $(f) Na_3 As^{+3}O_4 + H_2O_2 \longrightarrow Na_3ASO_3 + H_2O$

Sol To: (i) Na + $D_2O \longrightarrow NaOD + D_2$ (ii) NaOH + $D_2O \longrightarrow NaOD + H_2O$ (iii) NH₄Cl + $D_2O \longrightarrow ND_4Cl + H_2O$ (iv) SO₃ + $D_2O \longrightarrow D_2SO_4$

Sol 11: $H_2O_2 \longrightarrow H_2O + \frac{1}{2}O_2$ 30 volume means 1 ml of H_2O_2 gives 30 ml of H_2O_2

 \therefore 25 ml will give 750 ml of H₂O₂

Sol 12: In 100 gm solution, 13. 6 gm H₂O₂

Molarity =
$$\frac{13.6/34}{100} \times 1000$$

 \therefore Volume strength = Molarity × 11. 2 = 44. 8

Sol 13: AgNO₃ solution is used for removal of AsH₃ and PH₃ present in very small amounts in hydrogen sample.

Sol 14: (a) $2K_3[Fe(CN)_6] + 2KOH + H_2O_2 \longrightarrow$ $2K_4[Fe(CN)_6] + 2H_2O + O_2$ Reduction $Fe^{3+} \longrightarrow Fe^{2+}$ (b) $Cr(OH)_3 + H_2O_2 + OH^- \longrightarrow Cr(OH) + O_2 + H_2O$ Reduction

Sol 15: D_2O has more molecular mass and greater degree of association than H_2O and thus shows higher m.pt. and b.pt.

Sol 16:
$$Na_2O_2 + H_2SO_4 \longrightarrow H_2O_2 + Na_2SO_4$$

But if water is added then, Na_2O_2 will form NaOH which will retard the production of H_2O_2

Sol 17:
$$N_2H_4 + 2H_2O \longrightarrow N_2 + 4H_2O_{(g)}$$

The reaction is highly exothermic. It brings large increase in volume also.

Sol 18: H_2O_2 act as oxidising as well as reducing agent because oxidation no. of oxygen in H_2O_2 is -1 which is an intermediate state so it can go to -2 by reduction and also to O forming O_2

Sol 19:
$$N_1V_1 = N_2V_2$$

20 × $N_1 = 30 \times \frac{1}{12}$;
 $N_1 = \frac{1}{8} \Rightarrow 0.2125\%$ of H_2O_2 in solution.

Sol 20: Statues coated with white lead get blackened due to the action of H_2S present in atmospheric in traces.

 $Pb(OH)_2$. $2PbCO_3 + 3H_2S \longrightarrow 3PbS + 2CO_2 + 4H_2O$ white lead.

When blackened statues are treated with H_2O_2 the PbS is oxidised to PbSO₄ which is colourless (white)

$$PbS + 4H_2O_2 \longrightarrow PbSO_4 + 4H_2O_{(white)}$$

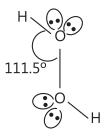
Sol 21:

$$A + H_2O \longrightarrow B \uparrow + C_{(ag)}$$

$$\Delta \downarrow D \xrightarrow{dil.} B \uparrow$$

$$B \uparrow$$

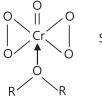
Deep golden yellow flame: Na


A: - Na

B: - H₂ inflammable gas

C: - NaOH

D: - Zn Amphoteric metal


Sol 22: H_2O_2 is a non-planar molecule with open book structure

Sol 23:

 $\begin{array}{c} \mathsf{H_2O_2} + \ \mathsf{K_2Cr_2O_7} + \ \mathsf{H_2SO_4} & \longrightarrow & \mathsf{K_2SO_4} + \ \mathsf{2CrO_5} + \ \mathsf{5H_2O} \\ (\mathsf{Blue}) \end{array}$

 $\mathrm{CrO}_{\scriptscriptstyle 5}$ is stable at low temperature and only in ether solution

Stabilise

Sol 24: H₂O₂ +

$$I^{-} \longrightarrow I_{2}$$

$$\downarrow Na_{2}SO_{3}$$

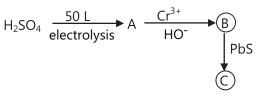
$$I^{-} + Na_{2}S_{4}O_{6}$$

Equivalents of $Na_2S_2O_3 = 20 \times 0.3 \times 10^{-3}$ = equivalents of I_2 = equivalents of H_2O_2 $25 \times N_{H_2O_2} \times 10^{-5} = 20 \times 0.3 \times 10^{-3}$ $N_{H_2O_2} = 0.24 \text{ N}$

 \therefore Volume strength = 1.344

Sol 25: Discharge of any metal or non-metal depends on its discharge of potential. So, as potential of discharge of K^+ is higher than H^+ ion and potential discharge of SO_4^{2-} is higher than OH^- ion.

Sol 26: Pb from painting reacts with atmospheric H_2S to give black coloured PbS which on reaction with H_2O_2 converts into PbSO₄.


Sol 27: H_2O_2 is a very unstable compound and readily decomposes in H_2O and O_2 in presence of any catalyst or sunlight. Traces of alkali present in glass bottles accelerates the decomposition of H_2O_2 hence glass is coated with wax.

Sol 28: During the storage of $H_2O_{2'}$ addition of small amount of phosphoric acid or glycerol or acetanilide inhibits the decomposition of H_2O_2 .

Sol 29: Volume strength = 10 V

Normality =
$$\frac{\text{volume strength}}{5.6} = \frac{10}{5.6} = 1.7$$

Sol 30:

(A) H₂O₂Oxidising as well as reducing agent
(B) CrO₄²⁻
(C) PbSO₄

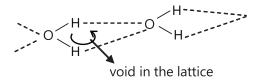
Exercise 2

Single Correct Choice Type

Sol 1: (A) Calgon: Na₂ [Na₄ (PO₃)₆]

It is a water softer because it removes Ca and Mg ions from hard water by forming a soluble complex.

 $2Ca^{2+} + Na_2[Na_4 (PO_3)_6 \longrightarrow Na_2[Ca_2 (PO_3)_6] + 2Na$ hard water Calgon Soluble complex **Sol 2: (C)** In liquid $H_{2'}$ the intermolecular weak attractive forces are dominate then repulsive forces.

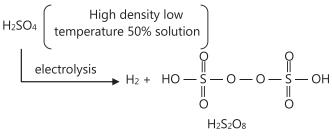

 \therefore Liquid H₂ expands while cooling.

Sol 3: (C) Hydrogen electronic configuration is 1s¹

 \therefore By gaining 1 electron it can acquire helium $1s^2$ configuration. Hydrogen has a tendency which resembles it to halogen because halogens are also only 1 electron has to stable noble gas configuration.

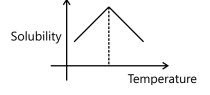
Sol 4: (C) H^- is oxidised at anode to H_2

Sol 5: (C) Ice is lighter than water because ice has less density than water for this hydrogen bonding is responsible.

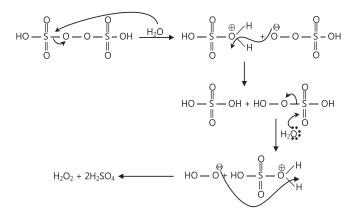

Sol 6: (B) NaCl is soluble salt

: It is soft water

Sol 7: (B) H_2O_2 show oxidising as well as reducing properties


 \therefore $H_{2}\mathrm{O}_{2}$ bleaching properties is due to its oxidising nature.

Sol 8: (B)



Sol 9: (B) $CaSO_4$ is a hardness producing salt and its solubility changes with rise in temperature. Its solubility increases till and then decreases when increases temperature beyond that

Sol 10: (C)

Sol 11: (D) $K_2^{+6}Cr_2O_7 + 2KOH \longrightarrow 2K_2^{+6}CrO_4 + H_2O$

No change in oxidation state and no loss/gain of electron.

: Not a redox reaction

Sol 12: (B) Water + sugar + salt $\xrightarrow{\text{Organic}}$ organic

resins are generally used to soften the water.

When water is passed through it since Na⁺, Ca²⁺, Mg²⁺ can be more attracted. So, resins attract them more and release H⁺ in the water.

: NaCl can be removed from water and water turns sweet.

Sol 13: (D) (A) $CuSO_4 + Zn \longrightarrow Cu + ZnSO_4$

This reaction takes place in galvanic cell.

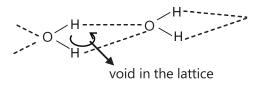
(B) E^o of this reaction is positive

: Reaction is possible.

(C) Hydrides react violently with water providing dihydrogen gas.

(D) Na_2CO_3 is better base than Na_2SO_3

 \therefore Weak base and acid cannot produce strong base and acid.


Sol 14: (B) Since bonding vibration of -O - H bond is more than -O - D. Energy required to break the bond is less in -O - H than -O - D

 $\therefore - O - H$ bond is weaker than - O - D

 \therefore Biological growth of plant which is fed by H₂O is fast because it requires less energy to break H₂O.

Sol 15: (D) Conceptual fact.

Sol 16: (A) Water molecules in ice are held tight by hydrogen bond attraction

So the H_2O molecules on the border have free O and H-atoms to bond the lattice.

: When we press two ice-cube we do sufficient

amount of work to complete the hydrogen bond formation.

... These get unit forming ore ice cube.

Sol 17: (A) Washing soda only remove chlorides of Ca, Mg.

E.g. $CaCl_2 + Na_2CO_3 \longrightarrow CaCO_3 + 2 NaCl$

Same as washing soda, related lime cannot remove all the slats from washing soda but soap can precipitate all type of ions by ion-exchange method.

 $MgCl_2 + 2C_{17}H_{35}COONa \longrightarrow (C_{17}H_{35}COO)_2 Mg \downarrow + 2NaCl$

Sol 18: (A) Fenton's Reagent: H₂O₂ + FeSO₄

Use to reduce organic compounds.

Sol 19: (D) Liquid H_2 is the best pure fuel because it is not a reactive gas because its bond energy high. But it is inflammable and bonds in air forming water

 $2H_2 + O_2 \longrightarrow 2H_2O$

Sol 20: (C) In presence of oxidiser liquid oxygen, liquid hydrogen yields highest specific impulses.

Sol 21: (D) $H_2O \xrightarrow{[0]} O_2$

This reaction is very difficult to do because its E° is highly negative.

 \therefore Only F_2 which is the strongest reducing agent can give oxygen from water.

Sol 22: (B) H_2O_2 is an oxidising agent so it will oxidise sulphur

 $H_2O_2 + PbS \longrightarrow H_2O + PbSO_4$

It will not oxidise $Pb^{2+} \longrightarrow Pb^{4+}$ because Pb^{4+} is not stable and can get easily oxidised due to inert-pair effect.

Sol 23: (A) Fact $2H_2 + O_2 \longrightarrow 2H_2O$

Sol 24: (B) While reacting with $Cl_2 H_2O_2$ will show its reducing mature.

 $H_2O_2 + CI_2 \longrightarrow 2HCI + O_2$

Sol 25: (A) Ionic Hydrides M^+H^- in which at anode during electrolysis, H^+ gets oxidised and will produce H_2 gas

 $H^- \longrightarrow \frac{1}{2}H_2 + e^-$ (Anode Reaction) $M^+ + e^- \longrightarrow M$ (Cathode Reaction)

Sol 26: (A) CaH₂, NaH are group (I), (II) metal hydrides.

... They are ionic in nature.

So $\rm NH_3$ and $\rm B_2H_6$ are covalent hydrides because N, B are non-metals.

Sol 27: (C) (A)
$$Zn + H_2O \longrightarrow Zn(OH)_2 + H_2$$

(B) $Zn + NaOH \longrightarrow Zn (OH)_2 + H_2 \uparrow$
 $(XS) NaOH$

(C) Zn + conc
$$H_2SO_4 \longrightarrow ZnSO_4 + H_2O + SO_2$$

(D) Zn + dil. HCl \longrightarrow ZnCl₂ + H₂

Sol 28: (B) Moles of MgSO₄ = 0.002

:. No. of atoms of Mg²⁺ = 0. 002 × 6 × 10²³ = 12×10^{20}

No. of H₂O particles = $\frac{10^3}{18} \times 6 \times 10^{23} = \frac{10^{26}}{3}$ \therefore No. of Mg²⁺ per million H₂O = 200 ppm

Sol 29: (C)

Dipole moment after calculation = 1.84 D

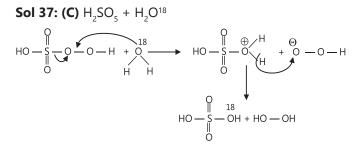
Sol 30: (C) Blackened oil painting can be restored into original form by the action of H_2O_2 because its a strong oxidising (Bleaching) agent.

Sol 31: (A) Ortho and para hydrogen have similar chemical properties but differ in physical properties like BP, MP.

Sol 32: (B) CO + H₂
$$\xrightarrow{300^{\circ}C/300 \text{ atm}}{X(\text{catalyst})}$$
 CH₃OH

 $X \rightarrow Cr_2O_3$ / ZnO Reaction used in production of methanol

Sol 33: (A) $H_2O_2 + HOCI^{+1} \longrightarrow O_2 + CI_2 + H_2O_2$


 Mn^{2+} is oxidised to Mn^{4+} under alkaline medium.

Sol 34: (B) Washing soda is used to remove permanent hardness but Ca(OH)₂ can be used to remove temporary hardness.

 $Ca(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 + 2H_2O_3$

Sol 35: (C) Polysulphates of Ca²⁺, Mg²⁺ etc. are soluble in water. Polysulphates are used as water softening agent because they form soluble complexes with cationic species.

Sol 36: (B) Ortho form increases with increase in temperature.

Sol 38: (D) Conceptual fact

Previous Years' Questions

Sol 1: (C) Polyphosphates

(Sodium hexametaphosphates, sodium tripolyphosphate or STPP) form soluble complexes with Ca^{+2} , Mg^{+2} present in hard water.

Sol 2: (C) $Ca_3P_2 + 6H_2O \rightarrow 2PH_3 + 3Ca(OH)_2$ Cal. phosphide Phosphine (1 mole) (2 moles)

Sol 3: (D) H_2 will not reduce heated Al_2O_3

Sol 4: (C) $BaO_2 + 2HCI \rightarrow BaCl_2 + H_2O_2$.

Sol 5: (A) Cu and dil. HCl will not produce H₂

Sol 6: (B) Strength = Normality × Eq. mass = 1.5×17 (eq. mass of H_2O_2) = 25.5 gL^{-1}

Sol 7: (B) Mn+2HNO₃(dil.) \rightarrow Mn(NO₃)₂+H₂

Sol 8: (A) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.

Correct Reason: H_2O_2 is a strong reducing agent.

Sol 9: (C) Assertion is correct but Reason is not the correct explanation of Assertion.

Sol 10: (C) H_2^{2+} and H_2 does not exist.

Sol 11: (B) $H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-$

 $\mathrm{H_2O_2} + 2\mathrm{OH^-} \rightarrow \mathrm{O_2} + 2\mathrm{H_2O} + 2\mathrm{e^-}$

Sol 12: (A) It can acts as an oxidising as well as reducing agent.

JEE Advanced/Boards

Exercise 1

Sol 1: The process of converting CO into by passing the gases obtained by steam and hydrocarbons or coke over iron oxide as catalyst at 673 K resulting in the generation of more is called water gas shift reaction.

$$C(s) + H_2O(g) \longrightarrow CO(g) + H_2(g)$$
$$CO + H_2O \xrightarrow{673K} CO_2 + H_2$$

Sol 2: Reaction of Zn and HCl gives nascent hydrogen which is more powerful reducing agent than ordinary hydrogen and thus ferric chloride solution is reduced.

Sol 3: $r_H = -\log P_{H_2}$, $P_{H_2} = pressure of H_2$ in atmosphere

Sol 4: Scattreing thermal neutrons (0.1 ev or 9.6 kJ/mol) is roughly similar for all nuclei regardless of atomic number where scattering of X-rays depends upon electron density and is lowest for hydrogen.

Sol 5:

$$\begin{array}{cccc} H & H & H & H \\ | & | & | \\ H - N ||||| H - O \text{ and not } H - N - H ||||||| O - H \\ | \\ H \end{array}$$

Sol 6: Water used during the reaction reacts with Na_2O_2 to form NaOH which tends to decompose H_2O_2 .

$$Na_2O_2 + 2H_2O \longrightarrow H_2O_2 + 2NaOH$$
$$2H_2O_2 \xrightarrow{NaOH} 2H_2O + O_2$$

Sol 7:
$$2H_2O_2 \longrightarrow 2H_2O + O_2$$

Sol 8: Moles of $MgSO_4 = 0.001$

 \therefore Mole of CaCO₃ = 0.001

- (:: Mg and Ca both are bivalent)
- : Wt. of $CaCO_3 = 0.001 \times 100 = 0.1 \text{ g}$
- \therefore 10³ mL water contains 0.1 g CaCO₃
- \therefore 10³ mL water contains $\frac{0.1 \times 10^6}{10^3} = 100 \text{ ppm}$

Sol 9: CaO + Ca
$$(HCO_3)_2 \longrightarrow 2CaCO_3 + H_2O$$

For one litre water

Meq. of CaO = Meq. of $Ca(HCO_3)_2$

$$\frac{w \times 1000}{56 / 2} = \frac{1.62 \times 1000}{162 / 2}$$

 $\therefore w_{CaO} = 0.56 g$

Thus CaO required for 10³ litre

 $H_2O = 0.56 \times 10^3 = 560 \text{ g}$

Sol 10: Meq. of $CaCO_3 = Meq.$ of $Ca(HCO_3)_2 = Meq.$ of HCl

$$\frac{w}{100/2} \times 1000 = \frac{1}{50} \times 30$$

$$w_{CaCO_3} = \frac{3 \times 100}{5 \times 2000} = 0.03 \text{ g}$$

∴ 100 mL of HO contains = 0.03 g
∴ 10⁶ mL H₂O contains $\frac{0.03 \times 10^6}{100} = 300 \text{ ppm}$

Sol 11: CaCrO₄.XH₂O
$$\xrightarrow{\Delta}$$
 CaCrO₄ + XH₂O
 $\xrightarrow{\text{Moles of CaCrO}_4} = \frac{1}{X}$
 $\therefore X = \frac{\text{Moles of H}_2O}{\text{Moles of CaCrO}_4} = \frac{\frac{1.823 - 1.479}{18}}{\frac{1.479}{1.479}} = 2.02 = 2$

:. Hydrate is CaCrO₄.2H₂O

Sol 12: (i) Chromium hydroxide is converted into soluble yellow sodium chromate.

156.1

$$\begin{bmatrix} H_2O_2 \longrightarrow H_2O + \begin{bmatrix} O \end{bmatrix} \end{bmatrix} \times 3$$

$$2Cr(OH)_3 + 4NaOH + 3\begin{bmatrix} O \end{bmatrix} \longrightarrow 2Na_2CrO_4 + 5H_2O$$

$$2Cr(OH)_3 + 4NaOH + 3H_2O_2 \longrightarrow 2Na_2CrO_4 + 8H_2O$$

(ii) Zinc dissolves in caustic potash solution evolving hydrogen.

$$Zn + 2KOH \longrightarrow K_2ZnO_2 + H_2 \uparrow$$

Pot. zincate

(iii) Hydrolysis of CaH_2 occurs with evolution of H_2

$$CaH_2 + 2H_2O \longrightarrow Ca(OH)_2 + 2H_2\uparrow$$

(iv) Deuterometahne is evolved.

$$AI_4C_3 + \frac{12D_2O}{Heavy water} \rightarrow 4AI(OD)_3 + \frac{3CD_4}{Deuteromethane}$$

Sol 13: It is clear from point (iv) that (X) is H_2O_2 .

$$\mathsf{Ti}(\mathsf{SO}_{4})_{2} + 2\mathsf{H}_{2}\mathsf{O} + \mathsf{H}_{2}\mathsf{O}_{2} \longrightarrow \underset{(X)}{\overset{\mathsf{Pertitanic acid}}{\overset{\mathsf{Pertitanic acid}}{\overset{Pertitanic acid}}{\overset{Pertitanic acid}}{\overset{Pertitanic acid}}{\overset{Per$$

(i)
$$2KMnO_4 + 2KOH \longrightarrow 2K_2MnO_4 + H_2O + O$$

$$\begin{array}{c} H_2O_2 + O \longrightarrow H_2O + O_2 & Or \\ (X) \\ 2KMnO_4 + 2KOH + H_2O_2 \longrightarrow 2K_2MnO_4 + 2H_2O + O_2 \\ (X) \end{array}$$

$$2K_2MnO_4 + 2H_2O \longrightarrow 2MnO_2 + O_2 + 4KOH$$
(Brown ppt.)

(ii)
$$\begin{array}{c} H_2O_2 + CI_2 \longrightarrow 2HCI + O_2 \\ (x) \end{array}$$

- (iii) $\begin{array}{l} H_2O_2 + 2KI + H_2SO_4 \longrightarrow K_2SO_4 + 2H_2O + I_2 \uparrow \\ (X) \end{array}$ Hence (X) is H_2O_2 .
- **Sol 14:** (i) 20 vol. H_2O_2 means 1 mL of H_2O_2 solution gives 20 mL O_2 .

 $2H_2O_2 \longrightarrow 2H_2O + O_2$ 2 mole 1 mole = 68 g 22400 mL at NTP

- \therefore 22400 mL of O₂ is obtained by 68 g H₂O₂
- \therefore 20 mL of O₂ is obtained by

 $\frac{68 \times 20}{22400} = 0.0607 \,\text{g of } \text{H}_2\text{O}_2$

Or $1 \text{ mL of } H_2O_2 \text{ solution} = 0.0607 \text{ g}$

:. 100 mL of H_2O_2 solution = 0.0607 × 100 = 6.07%

(ii) 6.8% strength $\rm H_2O_2$ solution means 6.8 g $\rm H_2O_2$ is present in 100 mL $\rm H_2O_2$

:. 6.8 g H₂O₂ gives $\frac{22400 \times 6.8}{68} = 2240 \text{ mL O}_2$

:. Volume strength of H_2O_2 gives $=\frac{2240}{100} = 22.4$ Volume

Sol 15: 1 molar H_2O_2 solution means 1 mole (or 34 g H_2O_2) is present in 10³ mL solution.

$$\therefore 68 \text{ g H}_2\text{O}_2 \text{ gives } 22400 \text{ mL O}_2$$

$$\therefore 34 \text{ g H}_2\text{O}_2 \text{ gives } \frac{22400 \times 34}{78} = 11200 \text{ mL O}_2$$

$$\therefore \text{ Volume strength} = \frac{11200}{10^3} = 11.2$$

Sol 16: Volume strength of $H_2O_2 = 5.6 \times N$

∴ 10 vol. $H_2O_2 = \frac{10}{5.6} NH_2O_2$ 15 vol. $H_2O_2 = \frac{15}{5.6} NH_2O_2$ 20 vol. $H_2O_2 = \frac{20}{5.6} NH_2O_2$

Let 500 mL of each is mixed then total volume of mixture = 1500 mL; Also this is diluted to double its volume i.e., 3000 m

N×3000 = $\frac{10 \times 500}{5.6} + \frac{15 \times 500}{5.6} + \frac{20 \times 500}{5.6}$ Or N_{H2O2} mixture = $\frac{500 \times 45}{5.6 \times 3000}$ = 1.339 ∴ Vol. strength of H₂O₂ = 1.339 × 5.6 = 7.5 **Sol 17:** The given reaction is: 2KMnO₄ + 5H₂O₂ + 4H₂SO₄ \longrightarrow 2KHSO₄ + 2MnSO₄ + 8H₂O + 5O₂ Meq. of O₂ = Meq. of H₂O₂ = Meq. of KMnO₄ N×10 = 25 × $\frac{1}{20}$ \therefore N_{H2O} = $\frac{25}{200}$ = 0.125 \therefore N_{O2} = 0.125 × 16 = 2 g / litre

Sol 18:
$$O_2^- + 2e \longrightarrow 2O^{2-}$$

 $2I^- \longrightarrow I_2 + 2e$
 $2(S^{2+})_2 \longrightarrow (S^{5/2+})_4 + 2e;$
 $I_2 + 2e \longrightarrow 2I^-$

Meq. of H₂O₂ = Meq. of I₂ = Meq. of Na₂S₂O₃ = 20 × 0.1 $\frac{w \times 1000}{34/2} = 2$ ∴ w_{H2O2} = 0.034 g per 25 mL ∴ N_{H2O2} = $\frac{0.034 \times 1000}{34/2 \times 25} = 0.08$ Also, Volume strength = $5.6 \times 0.08 = 0.448$ % strength = $\frac{17}{56} \times 5.6 \times 0.08 = 0.136\%$ Sol 19: Meq. of KI = Meq. of H₂O₂ in 50 mL = Meq of Na₂S₂O₃ $\frac{w \times 1000}{34/2} = 20 \times 0.1$ ∴ w_{H2O2} in 50 mL

$$= \frac{20 \times 0.1 \times 34}{2000} = 0.034$$

$$\therefore w_{H_2O_2} \text{ in 1000 mL} = \frac{0.034 \times 1000}{50} = 0.68 \text{ g}$$

Sol 20: For 20 mL H₂O₂;

Meq. of
$$O_2$$
 = Meq of H_2O_2 = Meq. of KMn O_4

$$\frac{w \times 1000}{34/2} = \frac{1}{2} \times 30$$

∴ $w_{H_2O_2} = 0.255 \text{ g}/20 \text{ mL}$
∴ $N_{H_2O_2} = \frac{0.255}{34/2} \times \frac{1000}{20} = 0.75$

Strength = $0.75 \times 17 = 12.75 \text{ g}$ / litre

Sol 21: (i) Potassium ferricyanide is reduced to potassium ferrocyanide.

$$\begin{split} & 2K_3 \Big[Fe \big(CN \big)_6 \Big] + 2KOH \longrightarrow & 2K_4 \Big[Fe \big(CN \big)_6 \Big] + H_2O + \Big[O \Big] \\ & H_2O_2 + \Big[O \Big] \longrightarrow & H_2O + O_2 \\ \hline & 2K_3 \Big[Fe \big(CN \big)_6 \Big] + 2KOH + H_2O_2 \longrightarrow & 2K_4 \Big[Fe \big(CN \big)_6 \Big] + 2H_2O + O_2 \end{split}$$

(ii) Potassium permanganate is decolourised due to reduction.

$$\frac{2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 3H_2O + 5[O]}{\left[H_2O_2 + [O] \longrightarrow H_2O + O_2\right] \times 5}$$

$$\frac{2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \longrightarrow K_2SO_4 + 2MnSO_4 + 2MnSO_4}{+8H_2O + 5O_2}$$

(iii) Ferrous ammonium sulphate is oxidised to ferric salt.

 $\begin{array}{c} H_2O_2 \longrightarrow H_2O + \begin{bmatrix} O \end{bmatrix} \\ \\ \hline 2FeSO_4 + H_2SO_4 + \begin{bmatrix} O \end{bmatrix} \longrightarrow Fe_2(SO_4)_3 + H_2O \\ \hline 2FeSO_4 + H_2SO_4 + H_2O_2 \longrightarrow Fe_2(SO_4)_3 + 2H_2O \end{array}$

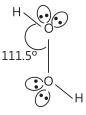
Exercise 2

Single Correct Choice Type

Sol 1: (A) $H_2 \longrightarrow 2H + energy$

So, we can say nascent hydrogen consists of Hydrogen atoms with excess energy.

Sol 2: (C) Volume strength of H_2O_2 is determined by its O_2 giving ability.


So volume H_2O_2 means 1 cm³ of the solution liberate 10 cm³ of O₂ at STP.

Sol 3: (B) Molarity =
$$\frac{\text{no. of moles}}{\text{volume}} \times 1000$$

= $\frac{5.1}{\frac{34}{100}} \times 1000 = 1.5 \text{ M}$

Sol 4: (C)
$$H_2$$
 + Conc. $H_2SO_4 \longrightarrow H_2O + SO_2$
Oxidation
Reduction

Sol 5: (D) Nature of H_2O_2 is weakly acidic because $H_2O_2 \longrightarrow H - O - O^{\Theta} + H^+$ this equilibrium exist and its equilibrium constant K > 1

Sol 6: (B) Structure of H_2O_2 is open book line structure in gas phase

Sol 7: (C) $H_2 + K_2O \longrightarrow 2K + H_2O$; $E^o < O$ \therefore Reduction of K^+ is not possible by H_2 gas

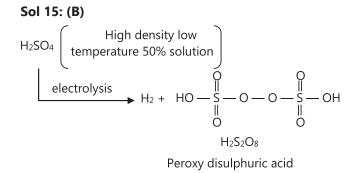
So 8: (B) Mg/Mn + $HNO_3 \longrightarrow MgO + H_2O + H_2$

Sol 9: (B) H_2O_2 act as a reducing agent with acidified $KMnO_4$, because it is a better reducing agent than $KMnO_4$

$$5H_2O_2 + 2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4 + 8H_2O + 5O_2$$

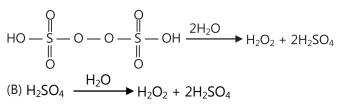
Sol 10: (B) (A) Cu + $H_2SO_4 \longrightarrow$ No reaction if dilute (B) $HCOO^- Na^+ \longrightarrow H_2 + Na_2CO_3 + H_2O$ (C) $Na_2C_2O_4 \longrightarrow Na_2CO_3 + CO_2 + CO + H_2O$

Sol 11: (D) H_2O_2 do not show this property.

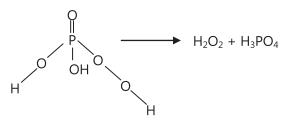

Sol 12: (D) (A) Temporary hardness of water can be removed by calgon but it only reacts with sulphate/ bicarbonates of Ca^{2+}/Mg^{2+} etc.

(D) Boiling of water can decompose calcium bicarbonate into calcium carbonate and CO_2 molecules. So, this is a method to remove temporary hardness of water.

Sol 13: (B) Pb^{2+} is soluble in H_2O only. So, it will poison only soft water but not hard water. In hard water, it will precipitate as insoluble salt.


Sol 14: (A) In laboratory, H_2O_2 is prepared by passing a current of CO_2 through a cold pasty solution of BaO_2 in water

$$BaO_2 + CO_2 + H_2O \longrightarrow H_2O_2 + BaCO_3$$



Multiple Correct Choice Type

Sol 16: (A, B, C)

(C) H_3PO_5

(D) HClO₄

Sol 17: (B, D) Na⁺ is exchanged with Ca²⁺ and Mg²⁺ because Ca²⁺ and Mg²⁺ have higher charge density so anions of silicate will attract them by releasing Na⁺

Sol 18: (B, D) Group (I), (II) match violently reacts with water giving hydroxides and hydrogen gas.

$$CaH + H_2O \longrightarrow Ca(OH)_2 + H_2$$
$$Ca + H_2O \longrightarrow Ca(OH)_2 + H_2$$

Sol 19: (C, D) Ice forms cage like structure due to hydrogen bonding. Its density is less than water.

Sol 20: (A, B, D) Zn + dil. HCl \longrightarrow ZnCl₂ + H₂ Zn + Hot NaOH \longrightarrow Zn(OH)₂ + H₂

(Solution)

ZN + Conc. Sulphuric \longrightarrow ZnSO₄ + H₂O + SO₂

(Acid)

Zn + Cold water \longrightarrow Zn(OH)₂ + H₂

Assertion Reasoning Type

Sol 21: (C) Since ZrH_2 is a non-stoichiometric hydride, the composition of ZrH_2 will be different than its chemical formula.

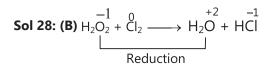
Sol 22: (A) Molecular weight of D_2 is more than H_2 So, there will be less bond vibration in D_2 because deuterium atom is heavier than H_2

 \therefore D₂ is more stable than H₂

Sol 23: (A) Acetanilide form stable complex with H_2O_2 because of which stability of H_2O_2 increases and in its decomposition reaction, it acts as an inhibitor / negative catalyst.

Sol 24: (A) Statement-II is correct explanation of 1 gets decomposed in reactions.

Sol 25: (A) H_2O_2 is a very unstable compounds by any onzymic / catalytic activity it decomposes producing O_2 gas.


:. When H_2O_2 is injected in blood it decomposes producing O_2 bubbles seriously.

Sol 26: (A) Statement-II is the correct reason for statement-I

Comprehension Type

Sol 27: (A)

(A)
$$\begin{array}{c} \overset{+4}{PbO_{2}} + H_{2}\overline{O_{2}^{1}} \longrightarrow \overset{+2}{PbO} + H_{2}O + O_{2} \\ \hline \\ Reduction \end{array}$$
(B)
$$\begin{array}{c} \overset{+4}{Na_{2}SO_{3}} + H_{2}O_{2} \longrightarrow \overset{+6}{Na_{2}SO_{4}} + H_{2}O \\ \hline \\ Oxidation \end{array}$$
(C)
$$\begin{array}{c} \overset{-1}{2KI} + H_{2}O_{2} \longrightarrow 2KOH + \overset{0}{I_{2}} \\ \hline \\ Oxidation \end{array}$$

Sol 29: (D) Z = 43	Technetium. It do	not form hydride.
--------------------	-------------------	-------------------

Sol 30: (D) ZrH₂ is most metallic hydride

: It has highest electrical conductance.

Sol 31: (C) Interstitial hydride do not give hydrogen ion to get oxidised.

: It cannot be used as rocket propellant.

Sol 32: (B) (A) $PbO_2 \longrightarrow Pb^{4+} + 2O^{2-}$ (B) $SrO_2 \longrightarrow Sr^{2+} + O^- O^- \xrightarrow{H^+} HO \longrightarrow OH$ (C) $MnO_2 \longrightarrow Mn^{4+} + 2O^{2-}$ (D) $TiO_2 \longrightarrow Ti^{4+} + 2O^{2-}$

Sol 33: (B) H_2O_2 is more acidic than H_2O because the anion is more stable.

 $\therefore H_2 O < H_2 O_2 < CO_2$

Because carbonic acid is stronger acid than H_2O_2

Sol 34: (B) Anhydrous

 $Na_2O_2 + H_2O \longrightarrow H_2O_2 + NaOH$

 $\therefore \frac{\text{volume strength}}{5.6} = \text{Normality}$ Sol 35: (A) 30 Volume H₂O₂ $H_2O_2 \longrightarrow H_2O + \frac{1}{2}O_2$ Normality = $\frac{\text{VS}}{5.6} = \frac{30}{5.6} = 5.35$

Sol 36: (**D**) $xK_2Cr_2O_7 + yH_2SO_4 + 2H_2O_2 \longrightarrow K_2SO_4 + Cr_2(SO_4)_3 + COH_2O + iO_2$ By balancing it with exchange of electrons, x = 1; y = 4; z = 3

Sol37: (A)

$$H_{2}O_{2} + NaAsO_{3} \longrightarrow Na_{3}AsO_{4} + H_{2}O$$

$$\downarrow$$
Will show its oxidising nature

Sol 38: (B) $H_2O_2 \longrightarrow H_2O + \frac{1}{2}O_2$ This reaction is feasible.

 $\therefore \Delta G$ = -ve at room temperature

Sol 39: (C) Heavy water D_2O is more heavier than H_2O because of which vibration of bond is less and it is more stable so it can be used as moderator as well as coolant to absorb the high kinetic energy value neutrons, which get evolved in nuclear fission.

Sol 40: (B) Fact.

Sol 41: (B) D_2O is more acidic than H_2O so its neutral point will shift towards right and will be (> 7)

Sol 42: (C) D₂O freezes at higher temperature than H₂O.

Match the Columns

Sol 43: $A \rightarrow s$; $B \rightarrow s$; $C \rightarrow r$; $D \rightarrow p$ (A) $BaO_2 \cdot 8H_2O \xrightarrow{H_2SO_4} BaSO_4 + H_2O_2$ (B) $Na_2O_2 \xrightarrow{H_2SO_4} H_2O_2 + 2NaOH$

(C)
$$H_2SO_4 \xrightarrow{\text{electrolysis}} H_2O + H_2S_2O_8$$

 $\downarrow Hydrolysis$
 $H_2O_2 + 2H_2SO_4$

(D) – S

Sol 44: A \rightarrow p, s; B \rightarrow q, r; C \rightarrow q, r; D \rightarrow q, r

(A) Perhydrol is a dilute solution of H_2O_2 and is used as an antiseptic and germicide.

(B) Water gas CO + H_2 , gives H_2

(C) Bosch's process is used for the manufacture of H_2

$$CO(g) + H_2O(g) \longrightarrow CO_2(g) + H_2(g)$$

(D)
$$CH_4 + H_2O \longrightarrow CO + H_2$$

It is used to manufacture H₂ gas.

It is called water gas (CO + H_2)

Sol 45: A \rightarrow q, r, s; B \rightarrow q, r; C \rightarrow p, q; D \rightarrow p, q

(A) LiAlH₄

Complex hydride

(B) NaBH₄

$$Na^{+} \begin{pmatrix} H \\ H \end{pmatrix} B \begin{pmatrix} H \\ H \end{pmatrix}^{-}$$

Complex hydride

(C) CaH₂
$$\longrightarrow$$
 Ca²⁺ +

Reducing agent

(D) LiH \longrightarrow Li⁺ + H⁻

Reducing agent

Sol 46: $A \rightarrow r$, $B \rightarrow p$, $C \rightarrow q$, $D \rightarrow s$

(A) Heavy water: D₂O

(B) Temporary hard water: Mg(HCO₃)₂; Ca(HCO₃)₂

(C) Soft water: only H₂O

(D) Permanent hard water: Sulphate and chloride of $Mg^{\scriptscriptstyle 2+}$ / $Ca^{\scriptscriptstyle 2+}$

Previous Years' Questions

Sol 1: (B) NaCl does not make water hard.

Sol 2: (A) Pure para form can be obtained at low temperature (20K) but pure orthoform is very difficult to obtain.

Sol 4: (B) Presence of CO_3^{2-} and SO_4^{2-} ions in water reduces the tendency of dissolution of Pb in water as Pb(OH)₂

Sol 5: (C, D) Critical temperature of water is higher than O_2 because H_2O molecule has dipole moment, which is due to its V-shape.

Sol 6: (B, D) Both Ca²⁺ and Mg²⁺ ions present in hard water are exchanged by Na⁺ ions present in zeolite.

Sol 7: (B, C) (b) $HCO_3^- + OH^- \rightarrow H_2O + CO_3^{2-}$ and $CaCO_3$ will get precipitated.

(C)
$$CO_3^{2-} + Ca^{2+} \rightarrow CaCO_3$$

(White)

precipitate

Sol 8: (A) As H_2O_2 is loosing electrons, it acts as a reducing agent.

Sol 9: (A) The structure of H_2O_2 is open book like.

Sol 10: (C) This is due to the formation of CrO₅.

$$\mathrm{K_2Cr_2O_7} + \mathrm{H_2SO_4} + \mathrm{H_2O_2} \rightarrow \mathrm{K_2SO_4} + 2\mathrm{CrO_5} + 5\mathrm{H_2O}$$

Sol 11: (A)

$$\mathsf{KIO}_4 + \mathsf{H}_2^{\mathsf{R.A.}} \underbrace{\mathsf{KIO}_3 + \mathsf{H}_2\mathsf{O} + \mathsf{O}_2}_{\mathsf{H}_2\mathsf{O}_2} \xrightarrow{\mathsf{KIO}_3} \mathsf{H}_2\mathsf{O} + \mathsf{O}_2$$

$$\mathsf{NH}_2\mathsf{OH} + \mathsf{H}_2\mathsf{O}_2 \longrightarrow \mathsf{H}_2\mathsf{O} + \mathsf{N}_2\mathsf{O}_3$$

JEE Main/Boards

Exercise 1

s-Block Elements

Sol 1: For metal to be obtained by chemical reduction, we need another element which is more electropositive (or have affinity towards oxygen) for reduction. All alkali & alkaline earth metals are the most electropositive elements of the periodic table. So, they cannot be obtained by chemical reduction methods.

Sol 2: During the electrolysis of NaCl solution, water molecules are reduced at cathode to form OH^- ions & H_2 gas. The obtained OH^- ions react with Na⁺ ions to form NaOH. So, we cannot produce Na through electrolysis of NaCl solution.

Sol 3: Sodium has a higher melting point because of strong metallic bonds compound to potassium. It is because of low distance between nucleus & delocalised electrons in Na compare to K.

Sol 4: (i) Ca + 2H₂O \rightarrow Ca(OH)₂ + H₂ \uparrow (ii) 2Ca(OH)₂ + 2Cl₂ \rightarrow Ca(OCl)₂ + CaCl₂ + 2H₂O (iii) Be(OH)₂ + 2NaOH \rightarrow Na₂ Be(OH)₄ (or Na₂BeO₂) (iv) BaO₂ + H₂SO₄ \rightarrow BaSO₄ \downarrow + H₂O₂ white ppt

Sol 5: Quick lime \rightarrow CaO powder (grains)

Slaked lime \rightarrow Water added to quick lime i.e. Ca(OH)₂. Its dry, light-coloured power.

Lime water \rightarrow It's a saturated solution of {Ca(OH)}_{_2} in water.

Sol 6: The more the difference of electonegativities, the more is the ionic character.

: Covalent character of

MI > MBr > MCI > MF

Sol 7: Ionisation enthalpy is the energy required to remove the outermost electron from an atom. If we go down the group, the distance between nucleus and the outer electrons increase. So, I.E. will decrease.

Sol 8: (i) Li⁺ forms an oxide due to its small size. It can polarise the peroxide ion. And lattice energy of Li₂O is high.

(ii) Na_2CO_3 is formed from NaOH & H_2CO_3 , NaOH is a very strong base & H_2CO_3 is a weak acid. \therefore resulting solution is alkaline in nature.

(iii) Na can't be prepared by chemical reduction, because of it's high electropositivity. We need an element with more electropositivity to reduce it chemically.

Sol 9: Lil is more soluble than KI because of very high hydration energy of Li⁺ ion. Due to its small size, Li⁺ has a high hydration energy. So, Lil is more soluble.

Sol 10:
$$Na_2CO_3 \xrightarrow{SO_2} NaHSO_3 \xrightarrow{Na_2CO_3} Na_2SO_3$$

 $\xrightarrow{\text{Elemental S}} Na_2S_2O_3 \xrightarrow{I_2} Na_2S_4O_6$

Sol 11: Sodium metal is highly reactive in the presence of oxidising chemicals whereas kerosene is chemically inactive. So, Na is stored in kerosene.

Sol 12: Gypsum
$$\rightarrow$$
 CaSO₄ . 2H₂O

$$\int_{\mathbf{C}} \Delta$$

$$CaSO_4 \cdot \frac{1}{2}H_2O$$
Plaster of Paris

Sol 13: Dead burnt plaster is obtained on strong heating of POP

$$CaSO_4 \cdot \frac{1}{2}H_2O \xrightarrow{\Lambda} CaSO_4$$

Plaster of Paris Dead burnt plaster

Sol 14: Super oxide $\rightarrow MO_2$

i.e. M⁺, O₂⁻

 O_2^- contain 17 electrons i.e. odd no. of electrons, So, atleast 1 e⁻ will be unpaired, so its paramagnetic. Normal oxide ions are O^{2-} . It's complete filled octet with no unpaired e⁻. So, it's diamagnetic.

Sol 15: The main reason behind adding gypsum to cement is to control the rate of hardening of cement.

The cement will set immediately after mixing of water leaving no time for concrete placing.

Sol 16: Cs, K act as cathode in photoelectric cells. Cathodes must easily give e⁻, Cs, K have low ionisation potentials but Li has relatively high IP, So, it is not preferred.

Sol 17: (i) Alkali metals are not in free form in nature because of their high reactivity. They either react with oxidising agents or these metals reduce other compounds.

(ii) Alkali metals are good reducing agents because they are the most electropositive elements. They have very low IP. So, they can lose an e⁻ very easily.

Sol 18: (i) As we go down a group, the strength of metallic bonds decrease due to increase in size between nucleus and delocalised electrons. So, their melting points decrease down the group, So, the softness increases down the group.

(ii) Lithium salts have greater covalent character because Li^+ is a small ion. So, it has high polarising power. So, covalent character increases.

Sol 19: (i) In the electrolysis of alkali salt solutions, the obtained M^+ ions react with OH^- ion at cathode to produce hydroxides.

(ii) CaCl₂ helps in reducing the melting point of the mixture and it acts as a flux.

(iii) NaOH $\xrightarrow{CO_2}$ Na₂CO₃ $\xrightarrow{H_2O(g)}$ Na₂CO₃ in moist form. After becoming crystals, it slowly loses water of crystallisation and becomes powder.

(iv) In Solvay's process, we get NaHCO₃ ppt as an intermediate, we obtain Na₂CO₃ from that precipitate. But, in case of potassium KHCO₃, it is soluble. So, getting K_2CO_3 is an expensive & difficult process.

(v) On adding excess of NaOH, all of the iodine becomes I⁻ & loses its colour.

Sol 20: (i) $2KO_2 + 2H_2O \rightarrow 2KOH + O_2 + H_2O_2$

(ii)
$$PbO_2 + 2NaOH \xrightarrow{\Delta} Na_2PbO_3 + H_2O$$

(iii)
$$2KI + H_2SO_4 + H_2O_2 \rightarrow I_2 + K_2SO_4 + 2H_2O$$

(iv) $6NaOH + 3I_2 \rightarrow 5Na + NaIO_3 + 3H_2O$

Sol 21: (i) Black Ash :- It is the impure form of Na₂CO₃. Its produced in Leblanc process

(ii) Action of NaOH of ammonium salts gives a sodium salt with liberation of NH_3 (Ammonia)

(iii) Washing soda :- Na₂CO₃ . 10H₂O

Sol 22: (i) $6NaOH + 3I_2 \rightarrow 5NaI + NaIO_3 + 3H_2O$ (ii) $P_4 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$ (iii) $ZnSO_4 + 2NaOH \rightarrow Zn(OH)_2 + Na_2SO_4$ (iv) $AICI_3 + 3NaOH \rightarrow 3NaCI + AI(OH)_3$ $\downarrow NaOH_{NaAIO_2 + 2H_2O}$ (v) 10 K + 2KNO₃ $\rightarrow 6K_2O + N_2$ (vi) $2Na + O_2 \xrightarrow{\Delta} Na_2O_2$

$$H_2SO_4$$

 $H_2O_2 + Na_2SO_4$

Sol 23: (i) $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2O$ (ii) $2AgNO_3 + 2NaOH \rightarrow 2NaNO_3 +$

 $hg_2O + H_2O$ \downarrow 2AgOH

(iii) $3NaOH + P_4 + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$ Disproportionation (Phosphine)

Sol 24: (i) NH₄Cl & KCl Reaction with NaOH NH₄Cl liberates NH₃ No effect of KCl (ii) Na₂SO₃ and Na₂SO₄ Na₂SO₃ on action with a strong acid produce SO₂ gas

(iii) NaCl, KCl

Flame test

Gives different colours for different metals. Most of the chemical tests will fail to differentiate between them.

Sol 25: (i) KOH > NaOH > LiOH

because of Ionic character)

(ii) $LiHCO_3 < NaHCO_3 < KHCO_3$ (iii) $Li_2(CO_3) < Na_2CO_3 < K_2CO_3$ (iv) $Li^+ > Na^+ > K^+ > Rb^+ > Cs^+$ It is because of high positive charge density in smaller ions. So, it gets hydrated for more layers.

Sol 26: (i) MgCl₂2H₂O
$$\xrightarrow{\Delta}$$
 MgCl₂H₂O $\xrightarrow{\Delta}$

Mg(OH)Cl

1

High lattice energy

(ii)
$$CaSO_4.2H_2O \xrightarrow{\Delta} CaSO_4.\frac{1}{2}H_2O$$

_{Gypsum} $\xrightarrow{\Delta} CaSO_4$
 $\xrightarrow{\Delta} T70^{\circ}C$ $CaSO_4$
 $\downarrow \Delta$
 $CaO + SO_2 + \frac{1}{2}O_2$

Even $CaSO_4$ can be the final product.

(iii)
$$M(HCO_3)_2 \xrightarrow{\Delta} MCO_3 + H_2O + CO_2$$

(iv)
$$MgSO_4.7H_2O \xrightarrow{\Delta} MgSO_4.H_2O$$

Epsom salt

$$\xrightarrow{\Delta} MgSO_4$$

$$\int \Delta$$

$$MgO + SO_2\uparrow + \frac{1}{2}O_2\uparrow$$

Even here, MgSO₄ can be the last product.

(v)
$$Ba(NO_3)_2 \xrightarrow{\Delta} BaO + NO_2 + O_2$$

Sol 27: (i) BeO is insoluble due to its high covalent nature. Be²⁺ has high polarising power and O^{2-} has high polarisability.

(ii) The covalent character of $BaSO_4$ is greater than that of BaO. It's because both of Be^{2+} and SO_4^{2-} are similar in size.

Sol 28: (i) The energy of the flame causes an excitation of the outer most electron which on return on its original position gives out energy released increases in accordance with the formula E = hv. The frequency of light is minimum in lithium which corresponds to red light.

(ii) Sodium is highly electropositive and hence is very reactive. It readily combines with oxygen, moisture and CO_2 of the atmosphere. Hence it is always kept in kerosene as to prevent the action of atmosphere.

(iii) Because of low ionization potentials, potassium and caesium are used in photoelectric cells. The low energy photons (light) can eject electrons from their metal surface.

Sol 29: (i) The dense charge of Li⁺ attracts several layers of water molecules around it, i.e., Li⁺ has maximum degree of hydration. Thus, the size of the hydrated metal ions which affects its movement in solution.

(ii) The small size of both the Li^+ and F^- ions leads to a very large lattice energy and thus, the crystal is very hard to break apart.

(iii) The salts of Li⁺ with small anions have high lattice energy and thus very stable while with large anion, the lattice energy decreases and the salts become less stable.

Sol 30: (i) Sodium Bicarbonate;

(ii) Lithium Chloride;

(iii) Calcium Chloride;

(iv) Sodium Formate

Exercise 2

Single Correct Choice Type

Sol 1: (A) $2NaNO_3 \xrightarrow{\Delta} 2NaNO_2 + O_2^{\uparrow}$

Sol 2: (A) In Downs process, we take fused NaCl for electrolysis so, we get Na in that Down's process.

Sol 3: (C) $MgCl_2 . 2H_2O \xrightarrow{\Delta} MgCl_2 . H_2O \xrightarrow{\Delta} Mg(OH)Cl$

Sol 4: (D)
$$2Mg + O_2 \rightarrow MgO$$
(i)
 $3Mg + N_2 \rightarrow Mg_3N_2$ (ii)

Sol 5: (D) Magnesite ore \rightarrow MgCO₃ (It can have impurities of iron carbonate)

Sol 6: (A)
$$CaSO_4 \cdot \frac{1}{2}H_2O \xrightarrow{Water} CaSO_4 \cdot 2H_2O \xrightarrow{Gypsum}$$

Sol 7: (D) For 1A metals, $M(HCO_3)$ solubilities increase down the group. They are greater that NCO_3 where N is a alkali earth metal. (because of more covalent character and lattice energy)

 \therefore CaCO₃ < NaHCO₃ < KHCO₃

Sol 8: (A) Nitrolium \rightarrow CaCN₂ + C obtained by

 $\begin{array}{ccc} CaC_2 + & N_2 & \longrightarrow CaCN_2 + C \\ Calcium & Nitrogen \\ carbide \end{array}$

Sol 9: (A) Sodium sulphate is soluble because, it's hydration energy > lattice energy it is reverse for Barium sulphate.

Sol 10: (C) For alkali metals, electrolysis of molten salt is the most suitable method because of their high reactivities (in other methods, they give different compounds).

Sol 11: (D) Anhydrone :- Mg(ClO₄)₂

Sol 12: (A) The smallest alkali metal cation is Li⁺.

Sol 13: (C) Due to more covalent character, LiCl is less soluble then NaCl in water.

Sol 14: (C) Li⁺ have very high hydration energy due to high charge density. So, Li can act as reducing agent in solution state.

Sol 15: (C) Na \rightarrow Intense yellow K \rightarrow Lilac Li \rightarrow Crimson (bright red) Cs \rightarrow Blue violet

Sol 16: (C) The blue colour is due to the presence of dissolved e^- in NH₃ solution. The e^- are from metal ions.

Sol 17: (A) LiF \rightarrow because of small size of ions.

Sol 18: (C) $2Na + 2NH_3 \xrightarrow{dry} 2NaNH_2 + H_2$ Sodum amide

Sol 19: (A) NaHCO₃ and NaOH can't exist together in a solution as NaOH is a base and NaHCO₃ has an acidic hydrogen we will get Na₂CO₃

Sol 20: (D) Due to high hydration of Li⁺, it's size increases drastically, decreasing it's mobility. So, it's a poor conductor.

Sol 21: (D) Polarity ∞ electronegativity difference CsF > KCl > CaO > MgO

Sol 22: (D) It is clearly wrong as group elements have only 1 unpaired e⁻ in its outer shell. So, group IA elements are more electropositive than group IIA.

Sol 23: (D) In their unipositive state, they have 1 unpaired e^- . It's not stable. Thus, loses another e^- very easily. M^{2+} configuration is stable as it has filled orbitals. They have more lattice energy.

Sol 24: (A) As Mg, P, Al are in a period & electropositivity decrease, if we go right in a period.

So $EP_{mg} > EP_{Al} > EP_{p}$ & down a group, EP increases

So $EP_{Mq} > EP_{Be}$

... Mg has maximum EP in the given elements.

Sol 25: (C) For an ionic compound to be soluble in water, it's hydration energy must be greater than lattice energy. For alkaline earth metals, Be²⁺ has very low size. So, it's hydration energy is very high. So, its soluble.

Sol 26: (C) As HNO_3 is a strong oxidising agent, it oxidizes the surface of Be, Al. As BeO & Al_2O_3 have high lattice energies, the oxides acts as a protective layer and prevents the inner part of metal from undergoing reaction.

Sol 27: (A) (a) Epsom salt \rightarrow MgSO₄. 7H₂O

(b) Gypsum \rightarrow CaSO₄ . 2H₂O

(c) $BaSO_4 \cdot H_2O$

Sol 28: (B) Blue john is a fluorite mixture (CaF₂).

Sol 29: (B) Ionic character & Electronegativity difference

 \therefore Greatest \rightarrow RbCl

 $\text{Least} \rightarrow \text{BeCl}_2$

Sol 30: (D) $Zn(OH)_2$ because Zn is from d-block. It's amphoteric and not as electropositive as s-block elements.

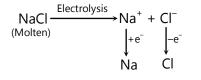
Sol 31: (A) 2nd IP of IA metals will be very high as they will have inert gas configuration

2nd IP of IIA metals will be low as they will have s' configuration

 \therefore K > Ca > Ba

Previous Years' Questions

Sol 1: (B) $Na_2S_2O_3 + 4Cl_2 + 5H_2O \rightarrow 2NaHSO_4 + 8HCl$


Sol 2: (B)

 $NaCI + H_2O + CO_2 + NH_3 \longrightarrow NaHCO_3 + NH_4CI$ 2NaHCO₃ \longrightarrow Na₂CO₃ + H₂O + CO₂

Sol 3: (A) $2I^- + 4H^+ + 2NO_2^- \rightarrow 2NO + I_2 + 2H_2O_2^-$

Sol 4: (B) $2Na + 2H_2O \rightarrow 2NaOH + H_2$

Sol 5: (A) $2Na + 2H_2O \rightarrow 2NaOH + H_2\uparrow$ $2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$ $Na_2CO_3 + 2HCI \rightarrow 2NaCI + H_2O + CO_2$

Sol 6: (B) $Na_2SO_3 + S \xrightarrow{NaOH} Na_2S_2O_3$ Sod. thiosulphate

Sol 7: (D) Both assertion and reason are false. Radium is the rarest of all s-block elements comprising only 10⁻¹⁰ percent of igneous rocks. Francium (s-block member) is radioactive; its long lived isotope ²²³Fr has a half life of only 21 minutes.

Sol 8: (C) Assertion is true but reason is false.

Due to high polarizing power of Li⁺, LiCl is a covalent compound.

Sol 9: (C) Assertion is true but reason is false.

Be has fully filled 2s²-orbital which gives a relatively more stable electronic configuration.

Sol 10: (A) Both assertion and reason are true and reason is the correct explanation of assertion.

Sol 11: (A) Both assertion and reason are true and reason is the correct explanation of assertion.

Sol 12: (B) Factual.

Sol 13: (B) $BaSO_4$ is least soluble. $BeSO_4$ is most soluble.

JEE Advanced/Boards

Exercise 1

Sol 1: (D) For alkali metals, the no. of shells go on increasing as we go down the group.

Sol 2: (A) Li is one of the elements coming as an exceptional case where in the bonding shows a covalent nature rather than ionic.

Sol 3: (B) Bigger atomic sizes.

Sol 4: (C) Readily absorbs moisture & carbon dioxide from air; reacts with CO_2 to form sodium carbonate.

Sol 5: (A) It's crystal lattice is quite rigid, has a very high enthalpy change of solution.

Sol 6: (A)

$$\begin{array}{c} \mathsf{Ca}(\mathsf{NH}_2)_2 \underbrace{\mathsf{H}_2\mathsf{O}}_2\mathsf{Ca}(\mathsf{OH})_2 + \mathsf{NH}_3 \\ (B) \\ \mathsf{NH}_3 + \mathsf{Ca}\mathsf{Cl}(\mathsf{OCI}) \rightarrow \mathsf{Ca}\mathsf{Cl}_2 + \mathsf{H}_2\mathsf{O} + \mathsf{N}_2 \\ (B) \\ \mathsf{N}_2 + \mathsf{Mg} \rightarrow \mathsf{Mg}_3 \underset{(D)}{\mathsf{N}_2} \\ \mathsf{Mg}_3\mathsf{N}_2 + \mathsf{H}_2\mathsf{O} \rightarrow \mathsf{Mg}(\mathsf{OH})_2 + \mathsf{NH}_3 \\ (B) \end{array}$$

Sol 7: (C) Fluorine being the halogen, its smallest atomic size & higher electronegativity accounts for the high lattice energy.

Sol 8: (B) Stability factor.

Solution for Q.9: (C), Q.10: (A) and Q.11: (A)

$$\begin{aligned} & \text{Sr} + \text{H}_2\text{O} \rightarrow \text{Sr}(\text{OH})_2 + \text{H}_2 \xrightarrow[(B)]{\text{Li}} \text{Li}\text{H} + \text{H}_2\text{O} \rightarrow \text{Li}(\text{OH})_{(E)} \\ & \text{Sr}(\text{OH})_2 + \text{CO}_2 \rightarrow \text{Sr}(\text{CO}_3)_2 \xrightarrow[(CO]]{\text{CO}_2} \text{Sr}(\text{HCO}_3)_2 \\ & \text{whiteppt} \\ & \text{(CI)} \end{aligned}$$

Sol 12: (D) Self explanatory.

Sol 13: (B) The only existing one.

Sol 14: (B) $KO_2 + H_2O \rightarrow KOH + O_2$

Sol 15: (A) Lattice energy.

Exercise 2

Single Correct Choice Type

Sol 1: (C) At one electrode $2CI^- \rightarrow CI_2 + 2e^-$ At another $Na^+ + H_2O \rightarrow NaOH + H^+$ $\therefore CI^- \& H^-$

Sol 2: (B) Iron (see the setup of Castner - Kelner cell)

Sol 3: (B) Electrolysis of aq. NaOH gives Cl_2 , NaOH, H_2 If NaOH and Cl_2 get in contact, they react again to give NaCl.

Sol 4: (D) Generally on passing excess of $CO_{2'}$, we get bicarbonates and bicarbonates give carbonates.

So, x must be carbonate and heating Na_2CO_3 doesn't give CO_2 easily

Sol 5: (C) As potassium has less BP & MP, it's more volatile and distils off at that temperature, moving the reaction in the forward direction.

Sol 6: (C) If the lattice energy is high, then solubility decreases.

... MgS is least soluble in water.

Sol 7: (D) Mg is more electropositive than C

$$\therefore$$
 2Mg + CO₂ \rightarrow 2MgO + C.

Sol 8: (B) Solubility of hydroxides increases down the group in IIA metals.

 \therefore Sr(OH)₂ is most soluble

Sol 9: (C) For sulphates & carbonates, hydration energy factor wins over lattice energy because of large anion size

∴ Be > Mg > Ca > Sr > Ba

Sol 10: (C)
$$BaCO_3 \xrightarrow{H_2SO_4} BaSO_4$$

 \downarrow
White ppt

and barium chromate is yellow.

Sol 11: (D) Strontium decompose water readily than Be because of high electropositivity.

MP of $BaCO_3 > CaCO_3$ Ba(OH)₂ is more basic than Be(OH)₂

Sol 12: (B) Pungent smelting gas is of the barium salt, which is yellow in colour $Ba \rightarrow green$ on flame test

 \therefore Salt is BaS₂O₃

Multiple Correct Choice Type

Sol 13: (A, B) Refer features of Bronsted acid /base.

Sol 14: (C, D) Aluminium alloys one used in aircraft.

Sol 15: (A, B, C) Properties of group-II elements.

Sol 16: (A, B, D) Diagonal Relationships.

Comprehension Type

Sol 17: (A) Lattice of MgO > CaO because size of Mg²⁺ < Ca²⁺

So, MgO is more stable.

Sol 18: (D) In cation and anion are of similar size then the resultant salt will be quite stable.

Sol 19: (A) $Na_2CO_3 \xrightarrow{\Delta} Na_2O + CO_2(g)$ Sol 20: (B) Li_2O $Li - \ddot{O} - Li$ **Sol 21: (C)** BH_4^- is a covalent hydride

 $BH_4^- \longrightarrow OH^-$ lons.

Sol 22: (B) We need H^- ions to react with $AlCl_3$ to get AlH_3 . LiH is suitable.

Sol 23: (B) We get H₂ and metal. So, it will be highly basic.

Sol 24: (A) LiH \rightarrow because of high lattice energy

Sol 25: (C) In ionic hydrides, H⁻ acts as a strong reducing agent.

Assertion Reasoning Type

Sol 26: (D) Assertion is wrong as Li^+ is highly hydrated compared to Na^+ . So, size of hydrated Li^+ > hydrated Na^+ . Even reaction is false as hydration energy of Li^+ > Na^+ .

Sol 27: (D) MnO₃ $\xrightarrow{\Delta}$ MnO₂ + $\frac{1}{2}$ O₂ \uparrow in case of alkali metals.

So, both A and R are false.

Sol 28: (A) CaCO₃ \rightarrow nearly 840°C

 $MgCO_3 \rightarrow nearly 660^{\circ}C$

though the lattice energy of $MgCO_3$ is more than $CaCO_3$, the temperature depends also on the lattice energy of obtained products i.e. MgO, CaO and difference in lattice energies of MgO & CaO is pretty high.

Sol 29: (A) $K_{3}N$ is not possible because of high polarising power of N^{-3}

Li₃N is covalent with stable p bonds

So, R is correct explanation of A

Sol 30: (A) Li cannot be stored in kerosene because of its low density (i.e. more volatility) So, it floats in kerosene and has a probability of getting in contact in air. This may lead to an explosive reaction.

Previous Years' Questions

Sol 1: (B) Thermal stability of salts with common anion depends on polarizing power of cation. Greater the polarizing power, lower will be the thermal stability. Hence, $BeCO_3$ (IV) < $MgCO_3$ (II) < $CaCO_3$ (III) < K_2CO_3 (I)

Sol 2: (A) Electrolysis of aqueous Na_2SO_4 gives H_2 (g) at cathode and O_2 (g)at anode.

Sol 3: (B) $Mg(HCO_3)_2$ on boiling decomposes to give white precipitate of $MgCO_3$ as

 $\mathsf{Mg}(\mathsf{HCO}_3)_{2(\mathsf{aq})} \xrightarrow{} \mathsf{Heat} \longrightarrow \mathsf{MgCO}_3 \downarrow + \mathsf{H}_2\mathsf{O} + \mathsf{CO}_2 \uparrow$

Sol 4: (A, B) When sodium metal is burnt in excess of air, mainly sodium peroxide (Na_2O_2) with little sodium oxide (Na_2O) are formed.

Sol 5: (B, C, D) $Ca(OH)_2 + Ca(HCO_3)_2 \rightarrow 2CaCO_3 \downarrow + 2H_2O$ (Clark's method) NaOCl + $H_2 \rightarrow$ NaOH + HOCl $HO^- + HCO_3^- \rightarrow CO_3^{2-} + H_2O$ $Ca(HCO_3)_2 + Na_2CO_3 \rightarrow CaCO_3 \downarrow + 2NaHCO_3$

Sol 6: Heating MgCl₂ .6H₂O brings about partial dehydration as

 $MgCl_2.6H_2O \longrightarrow Mg(OHCl) + HCl + 5H_2O$

Sol 7: Sodium when burnt in excess of oxygen, gives sodium peroxide as major product

$$\begin{array}{ccc} \mathsf{Na} + \mathsf{O_2} & \stackrel{\Delta}{\longrightarrow} & \mathsf{Na_2O_2} & + & \mathsf{Na_2O} \\ & & \mathsf{major} & & \mathsf{minor} \end{array}$$

Sol 8: The substance is Na_2O_2 . When Na_2O_2 is dissolved in water, it forms NaOH and H_2O_2 . In this case, NaOH is a strong base while H_2O_2 is a weak acid.

(i)
$$Na_2O_2 + 2H_2O \rightarrow 2NaOH + H_2O_2$$

 H_2O_2 decolourises red litmus paper due to its bleaching action which is due to its oxidizing character.

$$H_2O_2 \rightarrow H_2O + [O]$$

bleaches colour
of red litmus

(ii) If the compound is Na_2O , it will hydrolyse to form NaOH.

 $Na_2O + H_2O \rightarrow 2NaOH$

NaOH solution formed above will change colour of red litmus paper into blue.

Sol 9: Be in $BeCl_2$ is electron deficient, short of two lone pair of electrons from stable octet. H_2O has lone pair of electrons, reacts with $BeCl_2$

Sol 10:
$$BaCO_3 + H_2SO_4 \rightarrow BaSO_4 + H_2O + CO_2 C = C^{14}$$