Sol: The element is magnesium as its hydroxide known as milk of magnesia is used as an antacid.

$$\begin{split} \mathsf{MgCl}_2 . \, \mathsf{6H}_2\mathsf{O}(\mathsf{s}) & \stackrel{\Delta}{\longrightarrow} \mathsf{MgO}(\mathsf{s}) + \mathsf{2HCl}(\mathsf{g}) + \mathsf{5H}_2\mathsf{O}(\mathsf{g}) \\ \mathsf{Mg}^{2+}(\mathsf{aq.}) + \mathsf{2NH}_3(\mathsf{aq}) + \mathsf{2H}_2\mathsf{O}(\ell) \to \mathsf{Mg}(\mathsf{OH}_2)(\mathsf{s}) + \mathsf{2NH}_4^+(\mathsf{aq}) \end{split}$$

PROBLEM SOLVING TACTICS

The correct order of stability of for the following supper oxides is:

(A) $KO_2 > RbO_2 > CsO_2$ (B) $RbO_2 > CsO_2 > KO_2$ (C) $CsO_2 > RbO_2 > KO_2$ (D) $KO_2 > CsO_2 > RbO_2$

Solution: The approach should be as follows

- (i) The stability of super oxides depend on the polarizing power of the cation. Lesser the polarizing power, greater is the stability of the superoxide ion.
- (ii) The polarizing power of cations of the same charge decreases with the increase in the size.
- (iii) Therefore, the stability of super oxides increases with increase in the size of cations.
- (iv) The increasing order of size of ions is: $K^+ < Rb^+ < Cs^+$.
- (v) The correct order of stability is: $CsO_2 > RbO_2 > KO_2$

Which one of the following orders presents the correct sequence of the increasing basic nature of the given oxides?

Explanation: (i) Basic nature of oxides increases with increase in the size of cation.

(ii) The increasing order of cations is: $AI^{3+} < Mg^{2+} < Na^+ < K^+$

(iii) Therefore the increasing correct order of basic strength is: $Al_2O_3 < MgO < Na_2O < K_2O$

Conclusion: Correct option is: 'B'.

POINTS TO REMEMBER

Characteristic	Trend
Oxidation state	All elements show +2 oxidation state
Atomic / ionic radii	Be < Mg < Ca < Sr < Ba
	Size of the alkaline earth metals increases from top to bottom due to increase in the number of shells.
Ionization enthalpy	Be > Mg > Ca > Sr > Ba
	As the size increases it becomes easier to remove an electron from the outermost shell.

Trends in Physical Properties of Alkaline Earth Metals: