FORMULAE SHEET

1. Type of thermal expansion

Coefficient of expansionFor temperature change Δt change in(i) Linear $\alpha = \lim_{\Delta t \to 0} \frac{1}{\ell_0} \frac{\Delta \ell}{\Delta t}$ Length $\Delta \ell = \ell_0 \alpha \Delta t$ (ii) Superficial $\beta = \lim_{\Delta t \to 0} \frac{1}{A_0} \frac{\Delta A}{\Delta t}$ Area $\Delta A = A_0 \beta \Delta t$ (iii) Volume $\gamma = \lim_{\Delta t \to 0} \frac{1}{V_0} \frac{\Delta V}{\Delta t}$ Volume $\Delta V = V_0 \gamma \Delta t$

- For isotropic solids $\alpha_1 = \alpha_2 = \alpha_3 = \alpha$ (let) so $\beta = 2\alpha$ and $\gamma = 3\alpha$
- For anisotropic solids $\beta = \alpha_1 + \alpha_2$ and $\gamma = \alpha_1 + \alpha_2 + \alpha_3$ Here α_1, α_2 and α_3 are coefficient of linear expansion in X, Y, and Z directions.

Variation in density: With increase of temperature volume increases so density decreases and vice-versa.

$$\rho = \frac{\rho_0}{\left(1 + \gamma \Delta t\right)} \approx \rho_0 \left(1 - r \Delta T\right)$$

Thermal Stress: A rod of length ℓ_0 is clamped between two fixed walls with distance ℓ_0 .

If temperature is changed by amount Δt then stress = $\frac{F}{A}$ (area assumed to be constant)

Strain =
$$\frac{\Delta \ell}{\ell_0}$$
; so, $Y = \frac{F / A}{\Delta \ell / \ell_0} = \frac{F \ell_0}{A \Delta \ell} - \frac{F}{A \alpha \Delta t}$ or $F = YA \alpha \Delta t$

- $\Delta Q = mc\Delta T$ where c: Specific heat capacity
- $\Delta Q = nC\Delta T$ C: Molar heat capacity
- Heat transfer in phase change : $\Delta Q = mL$ L: latent heat of substance
- 1 Calorie= 4.18 joules of mechanical work
- Law of Calorimetry: heat released by one of the substances = Heat absorbed by other substances.

Solved Examples

JEE Main/Boards

Example 1: Calculate the amount of heat required to convert 1.00kg of ice at -10°C into steam at 100°C at normal pressure. Specific heat capacity of ice = 2100 $Jk^{-1} K^{-1}$, latent heat of fusion of ice=3.36×10⁵ $JKg^{-1}K^{-1}$, specific heat capacity of water= 4200 $JKg^{-1}K^{-1}$ and latent heat of vaporization of water = 2.25×10⁶ JKg^{-1} .

Sol: Here the temperature of ice and water changes along with change in phases. i. e. ice to water and then water to steam.

Heat required to take the ice from -10 °C to

$$0^{\circ}C = (1kg)(2100 \text{ JKg}^{-1}\text{ K}^{-1})(10\text{ K}) = 21000 \text{ J}.$$

Heat required to melt the ice at $0 \circ C$ to water = $(1 \text{kg})(3.36 \times 10^5 \text{ JKg}^{-1}) = 336000 \text{ J}.$

Heat required to take 1 kg of water from $0 \circ C$ to $100 = (1 \text{kg})(4200 \text{JKg}^{-1} \text{K}^{-1})(100 \text{K}) = 420000 \text{J}.$

Heat required to convert 1kg of water at 100°C into steam = $(1kg)(2.25 \times 10^6 \text{ JKg}^{-1}) = 2.25 \times 10^6 \text{ J}.$

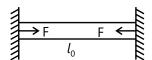


Figure 15.6