FORMULAE SHEET

RULES IN BRIEF

The following are the definitions of 'mole' represented in the form of equations:

(a) Number of moles of molecules = Weight in g Molecular weight
(b) Number of moles of atoms = Weight in g Atomic weight
(c) Number of moles of gases = Volume at NTP Standard molar volume (Standard molar volume is the volume occupied by 1 mole of any gas at NTP, which is equal to 22.4 litres.)
(d) Number of moles of atoms / molecules / ions / electrons = No. of atoms / molecules / ions / electrons Avogadro constant
(e) Number of moles of solute = Molarity × Volume of solution in litres Or No. of millimoles = Molarity × Volume in mL.

 $\frac{\text{Millimoles}}{1000} = \text{moles}$

(f) For a compound M_x , N_y , x moles of N = y moles of M

Solved Examples

JEE Main/Boards

Example 1: Calculate the composition of 109% oleum.

Sol: Let the mass of SO_3 in the sample be 'w' g, then the mass of H_2SO_4 would be (100 - w)g. On dilution,

$$\underset{\substack{\text{SO}_3\\80g}}{\text{SO}_3} + \underset{\substack{\text{H}_2\text{O}}{18g}}{\longrightarrow} H_2\text{SO}_4$$

Moles of SO₃ in oleum = $\frac{W}{80}$ = Moles of H₂SO₄ formed after dilution.

 $\therefore \text{ Mass of H}_2\text{SO}_4 \text{ formed on dilution} = \frac{98\text{w}}{80}$

Total mass of H₂SO₄ present in oleum after dilution

$$=\frac{98w}{80}+(100-w)=109; \quad w=40$$

Thus oleum sample contains 40% SO_3 and 60% H_2SO_4 .

Example 2: 20g of a sample of $Ba(OH)_2$ is dissolved in 10 mL. of 0.5 N HCl sol. The excess of HCl was titrated with 0.2 N NaOH. The volume of NaOH used was 10 cc. Calculate the percentage of $Ba(OH)_2$ in the sample.

Sol: The titration principle is applied wherein milliequivalents of the neutralization reactions is calculated. Solving further, one gets the mass and % of the base.

Milli eq. of HCl initially = $10 \times 0.5 = 5$

Milli eq. of NaOH consumed

- = Milli eq.of HCl in excess = $10 \times 0.2 = 2$
- :. Milli eq. of HCl consumed
- = Milli eq. of $Ba(OH)_2 = 5 2 = 3$
- : Eq. of Ba(OH)₂ = $3/1000 = 3 \times 10^{-3}$
- Mass of Ba(OH)₂ = 3×10^{-3} (171/2) = 0.2565 g

%
$$Ba(OH)_2 = (0.2565/20) \times 100 = 1.28\%$$

Example 3: One litre of mixture of CO and CO₂ is passed through red hot charcoal in tube. The new volume becomes 1.4 litre. Find out % composition of original mixture by volume. All measurements are made at same P and T.

Sol: Assuming the mixture contents as a and b, the reaction is framed and values are laid down.

Let the mixture contains

$$CO = a \text{ litre;} CO_2 = b \text{ litre}$$

$$\therefore a + b = 1 ...(i)$$