

Master JEE CLASSES

Kukatpally, Hyderabad.

IIT-JEE-MAINS PAPER-7

Max.Marks:360

IMPORTANT INSTRUCTIONS:

- 1) Immediately fill in the particulars on this page of the Test Booklet with Blue/Black Ball Point Pen. Use of pencil is strictly prohibited.
- 2) The test is of 3 hours duration.
- The Test Booklet consists of 90 questions. The maximum marks are 360.
- 4) There are three parts in the question paper A, B, C consisting of Mathematics, Physics and Chemistry having 30 questions in each part of equal weightage. Each question is allotted 4 (four) marks for correct response.
- 5) Candidates will be awarded marks as stated above in instruction No. 4 for correct response of each question. (1/4) (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 6) There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction 5 above.

SYLLABUS

MATHS:

Properties of AP,AM,GP,GM; Sum of 'n' Terms of AP & GP, Properties of HP & HM; Sum of infinite GP & AGP, method of differences/Vn method (60%); Triangular Inequality, AM-GM-HM Inequalities, Cauchy-Schwartz Inequality (40%)

PHYSICS:

Vernier callipers + Screwgauge + Optical instruments without Diffraction effects (100%)

CHEMISTRY:

Methods of expressing concentration of a solution - % by weight, Molarity, Molality, Normality, Mole fraction, ppm, % labelling of oleum, volume strength of hydrogen peroxide, stoichiometry-II :Titrations, Volumetric analysis: neutralisation titrations - simple titrations, double titrations and back titrations, Redox titrations: oxalic-acid vs KMnO4, Mohr's salt vs KMnO4 ; iodometry , iodimetry, Degree of hardness of water (70%)

Mole , significant figures, laws of chemical combination, Chemical calculations based upon weight, volume relations of chemical equations, percentage composition of mixtures, empirical and molecular formula, Concept of redox reactions - oxidation number - Types of redox reactions, Balancing Redox reactions, Equivalent weight, (30%)

	MA	ATHS		minimum va	lue of $ab+bc+ca$ is equal
l.	If $3k, k$ and $\left[k\right]$	$\left[2-34\right]$ are the first		to	
	three terms of	a G.P., where $k \in R^+$		1) 27 ⁴	2) 27 ³
	and [.] is the g	reatest integer		3) 27 ²	4) 27
	function. Then	the value of $\sum_{r=1}^{10} r^{\frac{k}{2}}$ is	5.	If a_1, a_2, a_3, \dots	a_{2n} are in A.P, then
	1) 55	2) 385		$a_1^2 - a_2^2 + a_3^2 - a_3^$	$a_4^2 + \dots + a_{2n-1}^2 - a_{2n}^2 =$
	3) 3025	4) None of these		1) 0	2) $\frac{n}{2n-1}(a_1^2-a_{2n}^2)$
2.	If $a_1, a_2, a_3,, a_{40}$ such that	⁰⁰¹ are terms of an A.P.		3) $\frac{n-1}{2n-1}(a_1^2 -$	(a_{2n}^2) 4) $\frac{n}{n-1}(a_1^2-a_{2n}^2)$
		$\frac{1}{1}$ + + $\frac{1}{1}$ = 10	6.	The sum of a	an infinitely decreasing
	$\overline{a_1a_2} + \overline{a_2a_3} + \overline{a_3a_3}$	$\frac{1}{a_4} + \dots + \frac{1}{a_{4000}a_{4001}} = 10$		G.P. is equal	to 4 and the sum of the
	and $a_2 + a_{4000} =$	50, then $ a_1 - a_{4001} $ is		cubes of its t	terms is $\frac{64}{7}$. Then 5 th terms
	equal to			of the progre	,
	1) 3	2) 30		1	1
	3) 40	4) 50		1) $\frac{1}{4}$	2) $\frac{1}{8}$
•	Let $p, q, r \in R^+$	and 27 $pqr \ge (p+q+r)^3$		3) $\frac{1}{16}$	4) $\frac{1}{32}$
	and $3p+4q+5p$	$r = 12$, then $p^3 + q^4 + r^3$	7.	10	a_n are in H.P., then
	is equal to		/.	-	
	1) 3	2) 6		$\frac{a_1}{a_2 + a_3 + \dots + a_n}, \frac{a_2}{a_3}$	$\frac{a_2}{a_1+a_3+\dots+a_n},\dots,\frac{a_n}{a_1+a_2+\dots+a_{n-1}}$
	3) 2	4) 12		are in	
•	If the product	of three positive real		1) A.P.	2) G.P.
	numbers <i>a</i> , <i>b a</i>	nd c is 27, then the		3) H.P.	4) A. G. P.
		space fo	or rough	work	Page 2

	2	space for			Page 3
	2) $\frac{n(n^2-1)}{2}$			3) $-\frac{1}{2}$	4) $-\frac{3}{2}$
	1) $\frac{n^2(n+1)}{2}$			1) $\frac{3}{2}$	2) $\frac{1}{2}$
	odd, the sum is			1) 3	\sim ¹
	$\frac{n(n+1)^2}{2}$ when n	is even. When n is		$T_r = \frac{r}{1-3r^2 + r^4}, \text{th}$	en $\sum_{r=1}^{\infty} T_r$ is
	$1^2 + 2.2^2 + 3^2 + 2.4^2$		14.	Let r^{th} term of a	series be given by
11.	The sum of n ter			3) <i>3abc</i>	4) 6 <i>abc</i>
	3) H.P.	4) None of these		1) <i>abc</i>	2) 2 <i>abc</i>
	1) A.P.	2) G.P.		to	
	x, y, z are in			$a(b^2+c^2)+b(c^2+$	a^2)+ $c(a^2+b^2)$ is equal
10.	,	$=15y_{z}+5x_{z}+3x_{y}$, then	13.	If $a, b, c \in \mathbb{R}^+$, then	the minimum value of
	1) 13 3) 12	2) 14 4) 11		3) 11	4) 12
	minimum value			1) 18	2) 10
9.	If $ab = 4a + 9b$, $a > a = 4a + 9b$, $a > a > a = 4a + 9b$, $a > a > a > a > a > a > a > a > a > a $	> 0, b > 0, then the			
	3)5	4) 6		minimum value o	of $\frac{2s}{s-a} + \frac{2s}{s-b} + \frac{2s}{s-c}$ is
	1 ³ 1 ³ + 2 ³ 1 ³ + 2 ⁵ then S_{∞} is equal 1) 3	1 1 2 111	12.	4) None of these If $a, b, c \in R^+$, $2s =$	a+b+c and the
	$\frac{3}{5} + \frac{5}{5} + \frac{7}{7}$	$\frac{2n+1}{3+3^3}+\ldots+\frac{2n+1}{1^3+2^3+\ldots+n^3}$, ,
8.	If $S_n =$			3) $n(n+1)^2(2n+1)^2$)

15. If first, second and last terms of an A.P. are a,b,c respectively then the sum of all terms is

$$1)\frac{(a+b-c)(a+c)}{2(b-c)}$$

$$2)\frac{(b+c-a)(a+c)}{2(b-c)}$$

$$3)\frac{(b+c-2a)(a+c)}{2(b-a)}$$

- 4) None of these
- 16. In the increasing geometric progression, the sum of the first and the last term is 66, the product of the second and the second term from the last is 128, and the sum of all terms is 126. Then the total number of terms in the progression is

 1) 5
 2) 6

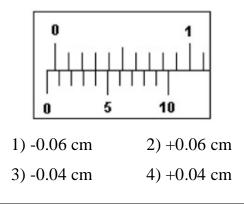
 1) 3
 2) 0

 3) 7
 4) 8

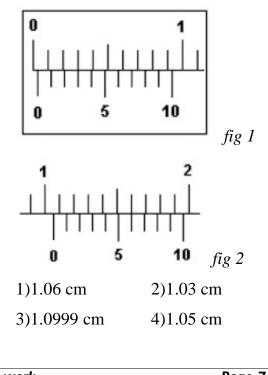
- 17. If $\sum_{r=1}^{n} r^4 = f(n)$, then the sum
 - $\sum_{r=1}^{n} (2r-1)^{4} \text{ is}$ 1) f(2n) - 16f(n)

2) f(2n) - f(n)

- 3) f(2n) 4f(n)
- 4) None of these
- If $f(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$ and 18. $g(n) = 1 + \frac{3}{2} + \frac{7}{3} + \dots + \frac{n^2 - n + 1}{n}$, then 1) $g(n) = f(n) + 2n^2 - 2$ 2) $g(n) = \frac{n(n+1)}{2} + f(n) - n$ 3) $g(n) = \frac{n(n-1)}{2} + f(n)$ 4) None of these The sum of n terms of 19. $\frac{a_1}{1+a_1} + \frac{a_2}{(1+a_1)(1+a_2)} + \frac{a_3}{(1+a_1)(1+a_2)(1+a_2)} + \dots$ is 1) $1 - \frac{1}{(1+a_1)(1+a_2)...(1+a_n)}$ 2) $\frac{a_1 + a_2 + \dots + a_n}{(1 + a_1)(1 + a_2)\dots(1 + a_n)}$ 3) $\frac{a_1 \cdot a_2 \dots \cdot a_n}{(1+a_1)(1+a_2) \dots \cdot (1+a_n)}$ 4) None of these

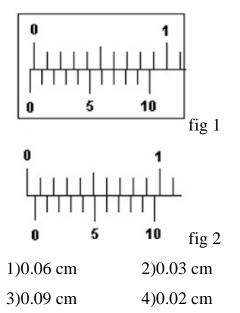

space for rough work

$\overline{20.}$	The sum of n terms of the ser	ies 23.	If $a \ h \ c \in \mathbb{R}^+$ then	the maximum value
		23.		
	$\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots$ is		of $\frac{bc}{b+c} + \frac{ac}{a+c} + \frac{a}{a}$	$\frac{1}{a}$ 1S
	1) $\frac{2n-1}{n(n+1)(n+2)}$		$1) \frac{1}{2}(a+b+c)$	2) $\frac{1}{3}\sqrt{abc}$
	2) $\frac{3n+1}{4(n+1)(n+2)}$		3) $\frac{1}{3}(a+b+c)$	$4) \frac{1}{2}\sqrt{abc}$
	3) $\frac{n(3n+1)}{4(n+1)(n+2)}$	24.	Let $\alpha \in \mathbb{R}^+ - \{1\}$ a	nd
	4(n+1)(n+2)		$(\ln \alpha)^p$, $(\ln \alpha)^q$, $(\ln \alpha)^q$	$(\ln \alpha)^r$, $(\ln \alpha)^s$ be in G.
	4) $\frac{3n-1}{2(n+1)(n+2)}$		P., then pqr, pqs,	prs,qrs are in
21.	Let $0 < a < b < c$ and a, b, c are	in A.P.,	1) A. P.	2) G. P.
			3) H.P.	4) A.G.P.
	Given that $a+b+c=15$ If 1, 4	and 19 25.	Let $a, b, c \in \mathbb{R}^+$ an	d the inequality
	are added to a, b, c respective	ly, we	$bx^2 + \left(\sqrt{\left(a+c\right)^2 + 4}\right)$	$\overline{b^2}$ $x + (a+c) \ge 0$ holds
	get a G.P., then abc if equal t	0	true for all $x \in R$, then $e^{a+1}, e^{b+1}, e^{c+1}$ are
	1) 80 2) 45		in	
	3) 120 4) 0		1) A.P.	2) G.P.
22.	Consider the sequence	26	3) H.P.	4) A.G.P.
	*	26.	If $a \neq 0$, the roots	-
	1, 2, 2, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	tnen	$ax^3 + bx^2 + cx + d =$	0 are in G.P., then
	1025 th term will be		1) $ac^3 = db^3$	2) $a^{3}c = d^{3}b$
	1) 2 ⁹ 2) 2 ¹¹		3) $a^{3}b = c^{3}d$	4) $ab^3 = cd^3$
	3) 2 ¹⁰ 4) 2 ¹²			
		space for rough	work	Page 5


		space for	rough	work Page 6
	3) H.P.	4) None of these		
	1) A.P.	2) G.P.		
	then $x_1, x_2, x_3, \dots, x_n$	are in		
	$x_1 x_2 + x_2 x_3 + \dots + x_n$, , , ,		
(x_1^2)	$+ x_2^2 + x_3^2 \dots + x_{n-1}^2$	$(x_2^2 + x_3^2 \dots + x_n^2)$		
	numbers such that			
29.	If $x_1, x_2, x_3, \dots, x_n$	are <i>n</i> non zero real		
	3) 8	4) 10		
	1) 4	2) 6		(1-x)
	and $S_{2n} = 3S_n$, the	n $\frac{S_{3n}}{S_n}$ is equal to		4) $\frac{(1-x^n)-x(1-x)}{(1-x)^2}$
		_		$(1-x)^2$
28.	Let S_n denotes th			3) $\frac{n(1-x)-x(1-x^n)}{(1-x)^2}$
	3)10	4) 10.5		$2) \ \frac{\left(1+x^n\right)}{1+x}$
	1) -10	2) -10.5		
	values of $x \in R$ is	::		1) $\frac{1-n^n}{1-x}$
	function, then the sum of all possible			is
	where [.] denotes	the greatest integer		$1 + (1 + x) + (1 + x + x^{2}) + (1 + x + x^{2} + x^{3})$
		2x are in A.P.,		

PHYSICS

- The diameter of a cylinder is 31. measured using vernier calipers with no zero error. It is found that the zero of the vernier scale lies between 5.10 cm and 5.15 cm of the main scale. The vernier scale has 50 divisions equivalent to 2.45 cm. The 24th division of the vernier scale exactly coincides with one of the main scale divisions. The diameter of the cylinder is 2)5.148 1)5.112 3)5.124 4)5.136
- 32. Assume least count is 0.01 cm. Find the zero error in the measurement. The units of the main scale are in millimeters. (The top scale represents main scale and the bottom vernier scale)

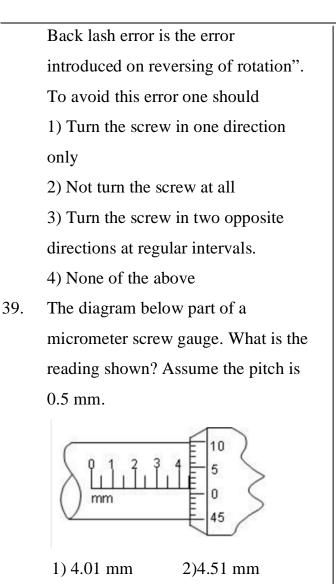


- 33. The focal length of concave mirror is -40cm. Its radius of curvature is
 1) -20 cm
 2) +20 cm
 3) -80 cm
 4) +80 cm
- 34. Shown here are the zero error position (fig1) and the measurement (fig 2). Find the actual size of the object measured? Assume least count is 0.01 cm. The units of the main scale are in millimeters. (The top scale represents main scale and the bottom vernier scale, in each figure)

space for rough work

35. Shown here are the zero error position (fig 1) and the measurement (fig 2). Find the actual size of the object measured? Assume least count is 0.01 cm. The units of the main scale are in millimeters. (The top scale represents main scale and the bottom vernier scale, in each figure)

36. A vernier calipers has 1 mm makes on the main scale. It has 20 equal divisions on the vernier scale which match with 16 main scale divisions. For this vernier calipers, the least count is


1)0.02 mm	2)0.05 mm
3)0.1 mm	4)0.2 mm

37. A screw gauge having 100 equal divisions and a pitch of length 1 mm is used to measure the diameter of a wire of length 5.6 cm. The main scale reading is 1 mm and 47^{th} circular division coincides with the main scale. Find the curved surface area of wire in cm^2 to the nearest value.

1) 2.6	2) 5.2
3) 2.5	4) 3.6

38. In the case of a screw gauge, we use the nut to rotate the circular scale. Within a nut there is a little space for the play of screw. Due to continuous use this space increases. Thus when the screw is turned in one direction the stud moves as usual. However, when the screw is rotated in the opposite direction, the stud does not move for a while. This error is called back lash error. In short"

space for rough work

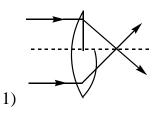
3) 5.00 mm
4) none of these
40. The focal length of objective and eye lens of a microscope are 4 cm and 8 cm respectively. If the least distance of distinct vision is 24 cm and object

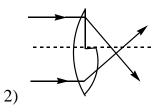
	distance is 4.5 cm	from the objective		
	lens, then the mag	nifying power of the		
	microscope is, if the final image is at			
	least distance of distinct vision			
	1)18 2)32			
	3)64 4)20			
•	The objective lens of a compound			
	microscope produces magnification of			
	10. In order to get an overall			
	magnification of 100 when image is			
	formed at 25 cm from the eye, the focal			
	length of the eye lens should be			
	1)4 cm	2)10 cm		
	$3)\frac{25}{9}$ cm	4)9 cm		

- 42. When a ray of light enters a denser medium from air, its
 - 1) Frequency increases
 - 2) Wavelength increases
 - 3) Wavelength decreases
 - 4) Frequency decreases

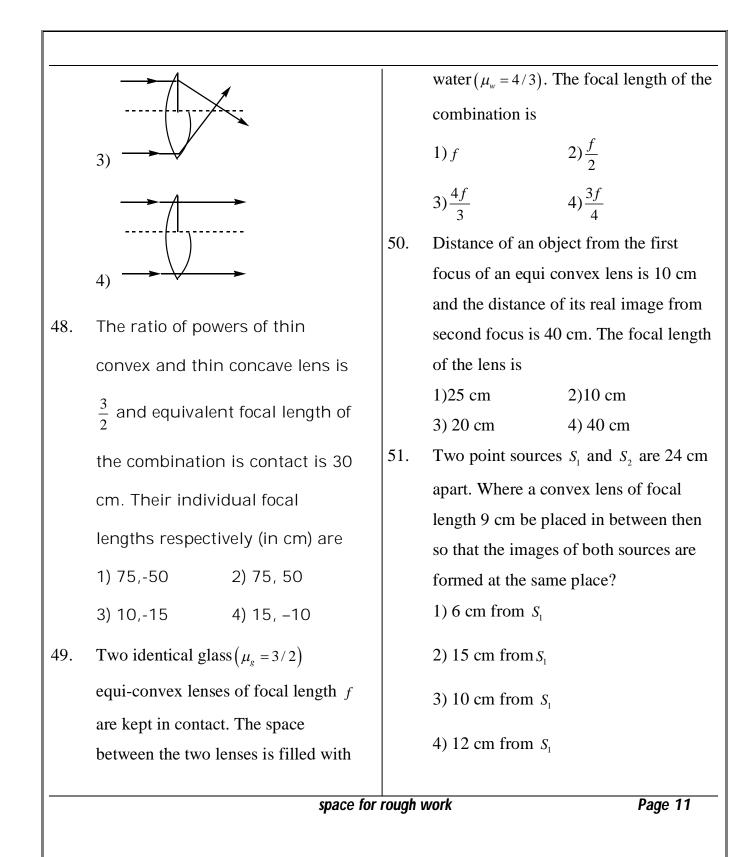
space for rough work

41


43.	In a compound mice	roscope,	
	maximum magnific	ation is obtained	
	when the final imag	e.	
	1) is formed at infin	iity	
	2) is formed at the le distinct vision		
	3) Coincides with th4) Coincides with th	0	
44.	Magnification of a c	-	
	microscope is 30. F	ocal length of	
	eye-piece is 5 cm ar	nd the image is	
	formed at a distance	e of distinct vision	
	of 25 cm. The magn	nification of the	
	objective lens is		
	1)6	2)5	
	3)7.5	4)10	
45.	A compound micros	scope has an eye	
	piece of focal length 10 cm and an		
	objective of focal length 4 cm.		
	Calculate the magni	fication, if an	
	object is kept at a di	istance of 5 cm	
	from the objective s	o that final image	
	is formed at the leas	st distance vision	
	(20 cm)		

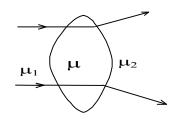

1)12 2)11

- 3)10 4)13
- 46. The image formed by an objective of a


compound microscope is

- 1) Virtual and diminished
- 2) Real and diminished
- 3) real and enlarged
- 4) virtual and enlarged
- 47. Choose the correct ray diagram of a thin equi-convex lens which is cut as shown in the figure.

space for rough work



52.	For relaxed eye, the magnifying		3) 50	4) 0.01
	power of a microscope is	55.	The focal length o	of a convex lens is 5
	1) $\frac{v_o}{u_o} \times \frac{D}{f_e}$ 2) $\frac{u_o}{v_o} \times \frac{D}{f_e}$		cm. It is used as a	simple microscope.
	2) $v_0 \downarrow f_e$ (D)		The magnification	n produced by it when
	$3)\frac{v_o}{u_o} \times \frac{f_e}{D} \qquad \qquad 4)\frac{u_o}{v_o} \times \left(-\frac{D}{f_e}\right)$		the image is forme	ed at least distance of
53.	The astronomical telescope consists		distinct vision (25	cm).
	of objective and eye-piece. The focal		1) 5	2) 6
	length of the objective is		3) 4	4) 125
	1) five times shorter than that of the	56.	The focal length	of a thin
	eye-piece		plano-convex lens	s is 60 cm and the
	2) equal to that of the eye-piece		refractive index of	f its glass is 1.5. Its
	3) greater than that of the eye-piece		radius of curvature	e is R. When the
	4) shorter than that of the eye-piece		plane surface of th	ne lens is silvered, it
54.	A telescope has focal length of		behaves like a cor	ncave mirror of focal
	objective and eyepiece as 200 cm and		length f. Then	
	5 cm respectively. What is		1) $R = 40 \text{ cm}$	2) R = 120 cm
	magnification of telescope?		3) f = 10 cm	4) $f = 30 \text{ cm}$
	1) 40 2) 80			

space for rough work

- 57. The eyepiece of a refracting
 telescope (astronomical) has a focal
 length of 9.00 cm. The distance
 between the objective and the
 eyepiece is 1.80m, and the final
 image is at infinity. The angular
 magnification (magnitude) of the
 telescope is
 - 1) 19 2) 20
 - 3) 50 4) 25
- 58. A simple microscope consists of a lens of focal length 2cm. The least distance of distinct vision is 30cm. The magnifying power when the image is at least distance of distinct vision is
 1) 14
 2) 15
 - 3) 16
 4) 17

- 59. Four convergent lenses have focal length 100cm, 10cm, 5cm and 0.3cm.
 For a telescope with maximum possible magnification we choose the lenses of focal lengths
 1) 10cm, 0.3cm 2) 10cm, 5cm
 3) 100cm, 4cm 4) 100cm, 0.3cm
- 60. If the behaviour of light rays through a convex lens is as shown in the adjoining figure, then;

3) $\mu > \mu_2$ 4) None of these.

space for rough work

CHEMISTRY

	<u>CHEMISTRY</u>		3) All the oxygen will be consumed
61.	600 ml O_2 in a closed container is		4) All the ammonia will be consumed
	heated to convert 15% O_2 into O_3 . The	65.	Which of the following does not
	final volume of gaseous mixture is		involve in iodometric titrations
	ml $3O_2 \rightarrow 2O_3$	-	$1) I^{-} \rightarrow I_{2} \qquad 2) Cu^{2+} \rightarrow Cu^{+}$
	1) 510 2) 60		3) $Cu_2SO_4 \rightarrow CuSO_4$ 4) both 1 & 2
	3) 570 4) 90	66.	The number of moles of $KMnO_4$ that
62.	25 g of a dibasic acid is completely		will be needed to react completely with
	neutralised by 25 ml of 0.25 M $Ba(OH)_2$		one mole of ferrous oxalate in acid
	solution. Molecular mass of the acid is		solution to form Mn^{+2} , Fe^{+3} & CO_2 is
	1)100 2)150		1) 3/5 2) 2/5
	3)120 4)200		3) 4/5 4) 1
53.	On reduction with hydrogen, 3.6 g of	67.	A 100 ml solution of 0.1 N HCl was
	an oxide of metal left 3.2 g of metal.		titrated with 0.2 N NaOH solution. The
	Then equivalent weight of metal is		volume of NaOH required for
			completing the titration is
	1) 64 2) 32		1) 50 ml 2) 32 ml
- 1	3) 16 4) 8		3) 35 ml 4) 16 ml
54.	In the reaction, $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$,	68.	For the reaction, $2A + 3B + 4C \rightarrow D + 2E$,
	When 1 mole of ammonia and 1		if the molecular masses of A, B, C, D
	mole of O_2 are made to react to		& E are 20, 30, 15, 40 & 60
	completion $H(Q)$		respectively & total 18 moles of A, B,
	 1)1.0 mole of ^{H₂O} is produced 2)1.0 mole of ^{NO} will be produced 		& C were taken initially in mole ratio of
	space for		work Page 14

	coefficients in equation then what		$2 \operatorname{SO2}(g) + \operatorname{O2}(g) \rightarrow 2\operatorname{SO3}(g)$	
	could be the max mass of E which		How many grams of SO3 are produc	ed
	can be obtained from the above		from 1 mol of S_8 ?	
	amount.		1) 1280.0 2) 640.0	
	1) 240 gm 2) 120 gm		3) 960.0 4) 320.0	
	3) 540 gm 4) 380 gm	72.	Which of the following cannot be the	e %
69.	KClO3 on heating decomposes in		label for Oleum Sample	
	two modes		1) 105 2) 125	
	$4KClO3 \longrightarrow 3KClO4 + KCl$		3) 118 4) both 2 & 3	
	$2\text{KClO3} \longrightarrow 2\text{KCl} + 3\text{O2}$	73.	2 mole of 'X' (At. Wt. = 36) and 3 m	nole
	If 10 mole of KClO3 yields on		of 'Y' (At.wt. = 24) are reacted to for	orm
	heating a residue in which the mole		the compound X_2Y_3 . Then:	
	of KClO4 is 6. How many moles of		1) X is the limiting reagent	
I	O2 are evolved ?		2) Y is the limiting reagent	
	1) 6 2) 1		3) No reactant is left over	
	3) 2 4) 3		4) 1 mole 'Y' is left over	
70.	$15\%\left(\frac{\omega}{v}\right)$ aqueous solution of urea	74.	200 ml of a "10 Vol" solution of H20	02
	(N_2H_4CO) isM		is mixed with 50 ml of "20 Vol" H20	D2
			solution. What will be the volume	
	1) 2.5 2) 1.25 2) 0.025 4) 0.125		strength of resulting solution?	
71	3) 0.025 4) 0.125		1) 15 2) 12	
71.	Sulphur trioxide is prepared by the		3) 16 4) 20/3	
	following two reactions			
	$\frac{S_8 (s) + 8O2(g) \rightarrow 8SO2(g)}{snace fo}$	<u> </u>	work Dago 15	

space for rough work

	space for	r rouah	work	Page 16	
			3) 40 mL	4) 80 mL	
	3) $\frac{1}{2}$ N 4) 3N		1) 10 mL	2) 20 mL	
	1) 2 N 2) 1 N		oxidize 0.001	mol of As ₂ O ₃ will be	
	5		Volume of 0.02M KMnO ₄ required		
	solution to form $FeCl_3$		KMnO ₄ in acid	lic medium forms Mn^{+2} .	
	aqueous solution then normality of	82.	As ₂ O ₃ is oxidiz	zed to H ₃ AsO ₆ by	
78.	0.1 mole $Fe(OH)_3$ is present in 100 ml		3) 0.4	4) 0.8	
	3) 63 4) 84		1) 0.1	2) 0.2	
	1) 42 2) 21		final solution i	s	
	equivalent weight will be-		glucose is dilu	tted to 2L. Molarity of	
	atomic weight of iron is 56, then its	81.	800 ml, 0.5M a	aqueous solution of	
-	$3Fe + 4H_2O \longrightarrow Fe_3O_4 + 4H_2$. If the		3) 17.8	4) 100	
77.	In the following change-		1) 30.4	2) 8.9	
	3) Sn^{2+} 4) Sn^{2+}		[perhydrol] is		
	1) Sn^{4+} 2) Sn^{3+}	80.	Molarity of 10	0 volume H_2O_2	
	$2Fe^{3+}(aq) + Sn^{2+}(aq) \rightarrow 2Fe^{2+}(aq) + A$		4) 0.75 L of A	and 1.25 L of B	
	equation.		3) 1.0 L of A a	nd 1.0 L of B	
,	in place of A in the following		2) 3.5 L of A a	and 0.5 L of B	
76.	Which will be the proper alternative		1) 0.5 L of A a	and 1.5L of B	
	3) 15 4) 20		2-litre solution	of 0.2 N HCl are	
	1) 10 2) 5		and solution B	required to make a	
	found to beml $2SO_2 + O_2 \rightarrow 2SO_3$		respectively. T	he volumes of solution A	
	O2. After reaction formed SO_3 was		have concentra	tions 0.5 N and 0.1 N	
75.	10 ml of SO_2 is heated with 15 ml of	79.	Hydrochloric a	cid solutions A and B	

A 5.0-mL solution of H_2O_2 liberates $H_3PO_4 + 2KOH \rightarrow K_2HPO_4$ 3 mole H_3PO_4 83. 86. 0.508 g of iodine from an acidified completely neutralize _____ mole *KOH* Kl solution. The volume strength of as per above reaction. the H₂O₂ solution at STP is 1) 3 2) 1.5 approximately 3) 6 4) 2 $H_2O_2 + 2KI + H_2SO_4 \rightarrow K_2SO_4 + I_2 + 2H_2O_4$ 87. Which of the following equations is a 1) 4.00 2) 4.5 balanced one-3) 6.05 4) 5.5 1) $5BiO_{3}^{-} + 22H^{+} + Mn^{2+} \rightarrow 5Bi^{3+} +$ 84. In an experiment, 50 ml of 0.1 M $7H_2O + MnO_{4}$ solution of a salt (M^{+3}) reacted with 2) $5BiO_{3}^{-} + 14H^{+} + 2Mn^{2+} \rightarrow 5Bi^{3+} +$ 25 ml of 0.1 M solution of sodium $7H_2O + 2MnO_{4}$ sulphite completely. 3) $2BiO_{3}^{-} + 4H^{+} + Mn^{2+} \rightarrow 2Bi^{3+} +$ $M^{+3} + SO_3^{2-} \xrightarrow{H^+} SO_4^{2-} + M^{+x}$ $2H_2O + MnO_4$ then x value is ____ 4) $6BiO_{3}^{-} + 12H^{+} + 3Mn^{2+} \rightarrow 6Bi^{3+} +$ 2) 4 1) 0 4) 5 3) 2 $6H_2O + 3MnO_4$ 85. What number of equivalents of 88. 10 gram *NaOH* is present in dissolved MnO_2 is reduced by 500 ml of 0.16 state in 2L aqueous solution then N oxalic acid in acid solution? The concentration of solution is _____ skeleton equation is 2) $\frac{1}{8}M$ 1) 5M $MnO_2 + H_2C_2O_4 \xrightarrow{H^+} CO_2 + Mn^{2+}$ 3) 0.5M 4) 4M 1) 0.16 2) 0.08 3) 0.04 4) 0.02

space for rough work

		in 2L solution such a of solution is 0.3N		
		of solution is 0.3N		
	$\left[Cr_2O_7^{2-}\to Cr^{+3}\right]$			
	1) 29.4	2) 1.47		
	3) 58.8	4) 0.7		
0. a	mole <i>NaOH</i> comp	letely neutralizes x		
	mole H_2SO_4 then	$\frac{a}{x} = $		
	1) 2	2) 0.5		
	3) 4	4) 1		
		snace for	rough work	Page
		space ioi	rough work	

Master JEE CLASSES

Kukatpally, Hyderabad.

IIT-JEE-MAINS PAPER-7 Max. Marks: 360

KEY SHEET

	MATHS												
1	3	2	2	3	1	4	4	5	2	6	2		
7	3	8	2	9	3	10	3	11	1	12	1		
13	4	14	3	15	3	16	2	17	1	18	3		
19	1	20	3	21	1	22	3	23	1	24	3		
25	2	26	1	27	2	28	2	29	2	30	3		

PHYSICS

31	3	32	1	33	3	34	2	35	3	36	4
37	1	38	1	39	2	40	2	41	3	42	3
43	2	44	2	45	1	46	3	47	3	48	3
49	4	50	3	51	1	52	1	53	3	54	1
55	2	56	4	57	1	58	3	59	4	60	2

CHEMISTRY

-											
61	3	62	4	63	1	64	3	65	3	66	1
67	1	68	1	69	4	70	1	71	2	72	2
73	3	74	2	75	1	76	1	77	2	78	4
79	1	80	2	81	2	82	3	83	2	84	3
85	2	86	3	87	2	88	2	89	1	90	1

SOLUTIONS

MATHS

1. $k^2 = 3k(\left\lceil k^2 - 34 \right\rceil)$ $\frac{k}{3} = \left[k^2 - 34\right]$ $\Rightarrow k$ is a multiple of 3 $a_1 + a_{4001} = a_2 + a_{4000} = 50$ 2. $a_1 - a_2 = a_2 - a_3 = \dots = a_{4000} - a_{4000} = -d$ Where d is the common difference $\frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} \dots + \frac{1}{a_{4000} a_{4001}} = 10$ $\Rightarrow \frac{1}{a_1} - \frac{1}{a_{4001}} = 10d$ $a_1 a_{4001} = 400$ 3. $A.M \ge G.M$ $\frac{p+q+r}{2} \ge \left(pqr\right)^{\frac{1}{3}}$ $\frac{p+q+r}{3} = (pqr)^{\frac{1}{3}}$ p = q = r $A.M \ge G.M$ 4. $\frac{ab+bc+ca}{3} \ge (ab.bc.ca)^{1/3}$ $a_1 - a_2 = a_2 - a_3 = \dots = -d$ 5. $\frac{a}{1-r} = 4 \frac{a^3}{1-r^3} = \frac{64}{7}$ 6. $\frac{1}{a_1}, \frac{1}{a_2}, \dots, \frac{1}{a_n}$ are in A.P 7. $\frac{\sum a_1}{a_1} - 1, \frac{\sum a_1}{a_2} - 1...$ are in A.P $t_n = \frac{4(2n+1)}{n^2(n+1)^2} = 4\left(\frac{1}{n^2} - \frac{1}{(n+1)^2}\right)$ 8. 9. $A.M \ge G.M$ $\frac{4a+9b}{2} \ge \sqrt{4a.9b}$ 10. $\frac{1}{2}\left[\left(a-b\right)^{2}+\left(b-c\right)^{2}+\left(c-a\right)^{2}\right]$ $=a^{2}+b^{2}+c^{2}-ab-ac-bc=0$ $\Rightarrow a = b = c$ $a(n) = \frac{(n-1)n^2}{2} + n^2$ (when n is odd) 11. 12. $A.M \ge H.M$

$$\frac{(s-a)+(s-b)+(s-c)}{3} \ge \frac{3}{\frac{1}{s-a} + \frac{1}{s-b} + \frac{1}{s-c}}$$
13. $AM \ge GMl$
 $\frac{ab^2 + ac^2 + bc^2 + ba^2 + ca^2 + cb^2}{6} \ge (ab^2 ac^2 bc^2 ba^2 ca^2 cb^2)^{\frac{1}{6}}$
14. $T_r = \frac{r}{1-3r^2 + r^4} = \frac{1}{2} \left[\frac{1}{r^2 - r - 1} - \frac{1}{r^2 + r - 1} \right]$
15. $c.d = b - a$
 $c = a + (n-1)d$
16. $a + ar^{n-1} = 66$
 $a^2r^{n-1} = 128$
 $\frac{a(1-r^n)}{1-r} = 126$
17. $\sum_{r=1}^{n} (2r-1)^4 = 1^4 + 2^4 + \dots + (2n)^4 - (2^4 + 4^4 \dots + (2n)^4))$
 $= f(2n) - 16f(n)$
18. $g(n) = \sum \frac{n^2 - n + 1}{n} = \sum (n-1) + \frac{1}{n}$
19. Add & subtract $\frac{1}{(1+a_1)(1+a_2)\dots(1+a_n)}$
The series telescopes
20. $s_n = \sum \frac{2n-1}{n(n+1)(n+2)}$
 $= \sum \frac{2}{(n+1)(n+2)} - \sum \frac{1}{n(n+1)(n+2)}$
Use V_n method
21. let $a = b - d \& c = b + d$
Where d is the $c - d$
 $(b+a)^2 = (a+1)(c+19) \& b = 5$
22. $s_n = 1+2+4\dots+2^{n-1} = 2^n - 1$
 $n = 10, s_{10} = 1023$
 $n = 11, s_{11} = 2047$
23. $AM \ge HM$
 $\frac{b+c}{2} \ge \frac{2bc}{b+c}$
 $\Rightarrow \frac{bc}{b+c} \le \frac{b+c}{4}$
24. p, q, r, s are in A.P
 $\Rightarrow \frac{p}{pqrs}, \frac{q}{pqrs}, \frac{r}{pqrs}, \frac{s}{pqrs}$ are in A.P
25. $A \le 0$
 $a+c = 2b$
 a, b, c are in A.P

$$\frac{26. \quad a + ar + ar^{2} = -\frac{b}{a}}{a} \\
a^{2}r + a^{2}r^{3} + a^{2}r^{3} = \frac{c}{a}}{a} \\
a^{2}r^{2} = \frac{d}{a} \\
27. \quad put x = [x] + [x] in the equation \\
Use 0 \le [x] < 1 \\
[x] = -6, -5 & x[x] = \frac{1}{2}, 0 \\
x = -5 - 5, -5 \\
28. \quad \frac{2n}{2} [2a + (2n - 1)d] = \frac{3n}{2} [2a + (n - 1)d] \\
(n + 1)d = 2a \\
29. \quad Equality holds when a, = rb, in causly - Schwarz inquality \\
30. \quad s_{x} = 1 + (1 + x) + (1 + x + x^{2}) + ..., s_{x} = x + (x + x^{2}) ... subtract \\
PHYSICS \\
31. Main scale division (s) = 0.05 cm; Vernier scale division (v) = 0.049 \\
Least count = 0.05 - 0.049 = .001 cm \\
Diameter: 5.10 + 24 \times .001 = 5.124 cm \\
32. The 4th division on vernier coincides with main scale. And the Zero of the main scale is to the right of the vernier suggesting a negative error.
-1mm +(0.1)4mm = -0.6mm \\
33. R = 2f \\
34. Zero error=+0.03 cm ; correction is negative.
Correct reading:
1.06 cm -(+03 cm)=1.03 cm
35. Zero error=-0.03 cm
Correct reading:
0.06 cm -(-0.03 cm)=0.09 cm
36. 20 VSD=16 MSD
1VSD = $\frac{4}{5}MSD; LC = 1MSD - 1VSD$

$$= 1MSD - \frac{4}{5}MSD = 0.2 mm$$
Page 4$$

e 4

37. Least count of screw gauge

$$=\frac{picth}{N}=\frac{1mm}{100}=0.01mm$$

 $Diameter = D = 1 + (47 \times 0.01) = 1.47mm$

Area of curved surface = πDl

$$S = \frac{22}{7} \times 1.47 \times 56mm^2 = 2.58724cm^2$$

Round off to two significant digits= 2.6 cm^2

38. Slowly moving the screw in one direction will ensure the back lash error can be avoided.

39.
$$LC = 0.01 \text{ mm}$$
; Reading = 4.5 mm + 0.01 (1) mm = 4.51 mm

For objective lens
$$\frac{1}{f_o} = \frac{1}{v_o} - \frac{1}{u_o}$$

$$\Rightarrow \frac{1}{(+4)} = \frac{1}{v_o} - \frac{1}{(-4.5)} \Rightarrow v_o = 36cm$$

$$\therefore |m_D| = \frac{v_o}{u_o} \left(1 + \frac{D}{f_o}\right) = \frac{36}{4.5} \left(1 + \frac{24}{8}\right) = 32$$

$$\begin{split} m &= m_o \times m_e \Longrightarrow m = m_o \times \left(1 + \frac{D}{f_e}\right) \\ & \Longrightarrow 100 = 10 \times \left(1 + \frac{25}{f_e}\right) \Longrightarrow f_e = \frac{25}{9} \, cm \end{split}$$

42. Velocity of air in denser medium is less

43. conceptual

$$m = \frac{v_o}{u_o} \left(1 + \frac{D}{f_e} \right) = m_o \left(1 + \frac{D}{f_e} \right)$$
$$\Rightarrow 30 = m_o \left(1 + \frac{25}{5} \right) = m_o \times 6 \Rightarrow m_o = 5$$

45. Ans (1)

For objective lens $\frac{1}{f_o} = \frac{1}{v_o} - \frac{1}{u_o}$

$$\Rightarrow \frac{1}{v_o} = \frac{1}{f_o} + \frac{1}{u_o} = \frac{1}{4} + \frac{1}{-5} = \frac{1}{20} \Rightarrow v_o = 20cm$$

Now $M = \frac{v_o}{u_o} \left(1 + \frac{D}{f_e} \right) = \frac{20}{5} \left(1 + \frac{20}{10} \right) = 12$

46. conceptual

47. Ans (3)

Focal length of cut part will be more than the other part.

48.
$$\frac{P_c}{P_D} = \frac{3}{2} \Rightarrow \frac{f_c}{f_D} = \frac{2}{3}$$
 and $\frac{1}{f_c} + \frac{1}{f_D} = \frac{1}{30}$, solving $f_c = 10, f_D = -15$ cm

Let R be the radius of curvature of each surface. Then

$$\frac{1}{f} = (1.5 - 1)\left(\frac{1}{R} + \frac{1}{R}\right)$$

For the water lens

$$\frac{1}{f'} = \left(\frac{4}{3} - 1\right) \left(-\frac{1}{R} + \frac{1}{R}\right) = \frac{1}{3} \left(-\frac{2}{f}\right); \frac{1}{f'} = \frac{2}{3f}$$

Now using
$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{1}{f_3}$$
 we have
 $\frac{1}{F} = \frac{1}{f} + \frac{1}{f} + \frac{1}{f'}$
 $= \frac{2}{f} - \frac{2}{3f} = \frac{4}{3f}; \Rightarrow F = \frac{3f}{4}$

50.
$$\frac{1}{f+40} - \frac{1}{-(f+10)} = \frac{1}{f}$$
; Solving $f = 20 \ cm$

- 51. Option (2) gives one image at infinity and other at finite distance. Option (3) and (4) both gives a real image of the two sources which form on either of lens, hence can't coincide. Option (1) gives one image virtual at 18 and the other real at 18, thus coinciding.
- 52. conceptual
- 53. $F_{o} > F_{e}$
- 54. $M =: F_o / F_e$

$$\overline{55. \ m = \left(1 + \frac{D}{f}\right) = \left(1 + \frac{25}{5}\right) = 6}$$

$$56. \ P = 2P_{uuu} + P_{mirror}; \ P = 2\frac{1}{30} + \frac{1}{\infty} = -\frac{1}{F_{mirror}}$$
i.e 15 cm
$$57. \ d = f_{o} + f_{e}; \ m = \frac{f_{o}}{f_{e}}$$

$$f_{e} = 180 - 9 = 171cm; \ m = \frac{171}{9} = 19$$

$$58. \ \mathbf{M} = 1 + D/f$$

$$59. \ \text{Conceptual}$$

$$610$$

$$30_{2} \rightarrow 20_{3}$$

$$600$$

$$-\frac{15}{100} 600 = 90 \rightarrow 60 = 510 + 60 = 570$$

$$620) \ \text{Valency factor of dibasic acid=2}$$

$$\therefore (\frac{1.25}{mol.wt}) \times 2 = (0.25 \times 2) \times \frac{25}{1000}$$

$$\Rightarrow \text{Mol wt} = 200$$

$$63Q) \ 3.6g \ M_{a}o_{3} - 3.2g \ M = 0.4g \ O_{2}$$

$$0.4g \ O_{2} - \frac{3.2g \ M}{8gO_{2}} = \frac{64}{64}$$

$$64Q) \ 4\text{NH}_{3} + 5\text{O}_{2} \rightarrow 4\text{NO} + 6\text{H}_{2}\text{O}$$

$$1 \ \text{mol} \ 1 \ \text{mol}$$

$$O_{2} \ \text{is limiting reagent.}$$

$$\therefore \text{Mol of NO formed} = \frac{4}{5}$$

$$\text{Mol of H}_{2}\text{O formed} = \frac{6}{5}$$

$$65Q) \ \text{lodometric titrations are used for oxidizing agent}$$

$$66Q) \qquad FeC_{2}O_{4} + MnO_{4}^{-} - \frac{H^{*}}{H^{*}} + Fe^{+3} + CO_{2} + Mn^{+2}$$

$$V.f = 3 \qquad V.f = 5$$

Eq of $FeC_2O_4 = Eq$ of $MnO_4^ 1 \ge 3 = (\text{ moles of } KMnO_4^-) \ge 5$ $\therefore \text{ mol of } KMnO_4 = \frac{3}{5}$ 67Q) Meq of Hcl = Meq of NaoH 10 = 0.2x68Q) for maximum product, reactants should be taken in the mole ratio of their coefficients. \therefore mol of A=4 mol of B = 6mol of C=9 \therefore mol of E formed = 4 Mass of E .formed = $4 \times 60 = 240 \text{ g}$ 69Q) $4Kclo_3 \rightarrow 3Kclo_4 + Kcl$ X mol $\frac{3x}{4}$ mol $\frac{x}{4}$ mol $2kclo_3 \rightarrow 2Kcl + 3O_2$ (10-x)mol (10-x)mol $\frac{3}{2}(10-x)$ mol hence x = 8 so 3 mol Given, $X_{kclo4 = 6} = \frac{3x}{4} mol$ O_2 70Q) $\Rightarrow 15 g N_2 H_4 CO$ in 100 ml solution $\Rightarrow M = \frac{15}{60 \times 0.1} = 2.5$ 71) By Law of mass conservation, 1 mol of S₈ will produce 8 mol of SO₃ \therefore Mass of SO₃ produced = 8x80g = 640g 72Q) Strength of Oleum is between 100 & 122.5 73Q) $2X + 3Y \rightarrow X_2Y_3$ (72g of each is taken) 3mol 2mol Mol of X & Y are in their combining ratio : No Limiting Reagent Mol of X_2Y_3 formed =144g

74Q) Vol. strength $\frac{10 \times 200 + 20 \times 50}{250} = 12$ 75Q) Limiting reagent is SO₂ so 10ml SO₃ form Sn^{+4} charge balance 76) Valiancy factor Fe = $\frac{8}{3} \Rightarrow Eg_{Wt} - \frac{\frac{56}{8}}{3} = 21$ 77) 78) $N = \frac{0.1 \times 3}{0.1}$ 79) 0.2 X 2 = 0.5(V) + 0.1(2-V) $\therefore \text{V} = 0.5$ 100 80) 11.2 81) $M = \frac{0.8 \times 0.5}{2}$ $As_2O_3 + MnO_4^{-} \rightarrow H_3 \overset{+5}{As}O_4 + Mn^{+2}$ 82) V.f = 4 V.f = 5Eq of $As_2O_3 = Eq$ of $KMnO_4$ X 4 = 0.02 X 5 X V \therefore V = 40 ml83) $H_2O_2 + I^- \rightarrow I_2 + KOH$ V.f = 2 V f = 1 V f = 2Eq of $H_2O_2 = \text{Eq of } I_2$ 0.508 $N X 5 = 254 X 2 X 1000 \implies N = 5$ \therefore V of strength = 5 x 5.6 = 4.48 \approx 4.5 84) Eq of salt = Eq of SO_3^{-2} x V.f) x 50 = $0.1x2x25 \implies$ V.f of salt = 1 hence +3 decreases by 1so +2 \therefore salt is undergoing reduction then O.N of metal will decrease by 1

85) V.f for
$$MnO_2 = 2$$
 Vf for $H_2C_2O_4 = 2$
Eq of $MnO_2 = Eq$ of $H_2C_2O_4 = 0.5 \times 0.16$
86) 1:2
87)
 $(2e^- + 6H^+ + BiO_3^- \rightarrow Bi^{+3} + 3H_2O) \times 5$
 $(4H_2O + Mn^{+2} \rightarrow MnO_4^- + 8H^+ + 5e^-) \times 2$
 $\overline{5BiO_3^- + 2Mn^{+2} + 14H^+} \rightarrow 5Bi^{+3} + 2MnO_4^- + 7H_2O$
88) $\frac{10}{40 \times 2}$
89) VF = 3 × 2 = 6 hence $0.3 = \frac{6W}{2 \times 294}$
60) $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + H_2O$