

Master JEE CLASSES Kukatpally, Hyderabad.

JEE-ADVANCE-2016-P1-Mode

Max.Marks:186

2016_PAPER-I

IMPORTANT INSTRUCTIONS:

1) This booklet is your Question Paper.

- 2) Use the Optical Response Sheet (ORS) provided separately for answering the questions
- 3) Blank spaces are provided within this booklet for rough work.
- 4) Write your name, roll number and sign in the space provided on the back cover of this booklet.
- 5) You are allowed to take away the Question Paper at the end of the examination.

OPTICAL RESPONSE SHEET:

- 6) Darken the appropriate bubbles on the ORS by applying sufficient pressure. This will leave an impression at the corresponding place on the Candidate's sheet.
- 7) The ORS will be collected by the invigilator at the end of the examination.
- 8) Do not tamper with or mutilate the ORS. Do not use the ORS for rough work.
- 9) Write your name, roll number and code of the examination center, and sign with pen in the space provided for this purpose on the ORS. Do not write any of these details anywhere else on the ORS. Darken the appropriate bubble under each digit of your roll number.

DARKENING THE BUBBLES ON THE ORS

- 10) Use a **BLACK BALL POINT PEN** to darken the bubbles on the ORS.
- 11) Darken the bubble **COMPLETELY**.
- 12) The correct way of darkening a bubble is as:
- 13) The ORS is machine-gradable. Ensure that the bubbles are darkened in the correct way.
- 14) Darken the bubbles ONLY IF you are sure of the answer. There is NO WAY to erase or "un-darken" a darkened bubble.

JEE-ADVANCE-2016-P1-Model IMPORTANT INSTRUCTIONS

Max Marks: 186

HYSICS:					
Section	Section Question Type +Ve - Ve Marks Marks				
Sec – I(Q.N : 1 – 5)	Questions with Single Correct Choice	3	-1	5	15
Sec – II(Q.N : 6 – 13)	Questions with Multiple Correct Choice (Partial Marking +1)	4	-2	8	32
Sec – III(Q.N : 14 – 18)	Questions with Integer Answer Type	3	0	5	15
	18	62			

CHEMISTRY:

Section	+Ve Marks	- Ve Marks	No.of Qs	Total marks	
Sec – I(Q.N : 19 – 23)	Questions with Single Correct Choice	3	-1	5	15
Sec – II(Q.N : 24 – 31)	Questions with Multiple Correct Choice (Partial Marking +1)	4	-2	8	32
Sec – III(Q.N : 32 – 36)	Questions with Integer Answer Type	3	0	5	15
	18	62			

MATHEMATICS:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 37 – 41)	Questions with Single Correct Choice	3	-1	5	15
Sec – II(Q.N : 42 – 49)	Questions with Multiple Correct Choice (Partial Marking +1)	4	-2	8	32
Sec – III(Q.N : 50 – 54)	Questions with Integer Answer Type	3	0	5	15
	18	62			

space for rough work

Max Marks: 62 (SINGLE CORRECT ANSWER TYPE) This section contains 5 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its

answer, out of which ONLY ONE option can be correct. Marking scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases.

1. The gravitational potential energy of interactions of a system of six identical particles, each of mass m placed at the vertices of a regular hexagon of side 'a' is [PE = 0 at]infinite separation]

SECTION - I

2 1

PHYSICS

A) $-\frac{\mathrm{Gm}^2}{\mathrm{a}}\left(1+\frac{1}{\sqrt{3}}+\frac{1}{4}\right)$	$B) \frac{-3Gm^2}{a} \left(1 + \frac{1}{\sqrt{3}} + \frac{1}{4}\right)$
C) $\frac{-6Gm^2}{a} \left(1 + \frac{1}{\sqrt{3}} + \frac{1}{4} \right)$	D) $\frac{-2Gm^2}{a} \left(1 + \frac{1}{\sqrt{3}} + \frac{1}{4} \right)$

An un powered spacecraft has to hit a far off planet of mass M, radius R. Maximum 2. entrance area (πh^2) from which 'the spacecraft can be projected so as to hit the planet. Size of the spacecraft is negligible compared to planet

space for rough work

4. A shell of mass M and radius R has a point mass m placed at a distance r from the centre. The gravitational potential energy U (r) vs r will be [assume potential energy at infinity to be zero]

space for rough work

8. A satellite of mass m orbits around the Earth in an elliptical path of semi-major and semi-minor axis 2a and a respectively such that the Earth is located at one of the foci of the elliptical path. At an instant when the satellite is located at a distance of *r*, its velocity is u at an angle of 60° with respect to the position vector of the satellite from the centre of the Earth. Consider only the gravitational force between the satellite and the Earth and assume that the Earth is a perfect sphere.
(Assume that mass of the satellite is negligible as compared to mass of the Earth)
A) Orbital angular momentum of the satellite with respect to centre of the Earth is ^{√3}/₂ mur
B) Areal velocity of position vector of the satellite with respect to centre of the Earth is ^{√3}/₄ ur
C) Time period of orbital motion of the satellite around the Earth is ^{8πa²}/_{√3 ur}
D) Time period of satellite's orbital motion is independent of mass of the Earth

space for rough work

12.	If a body is	s projected	with speed	lesser than	escape velocity:

A) the body can reach a certain height and may fall down following a straight line path

B) the body can reach a certain height and may fall down following a parabolic path

C) the body may orbit the earth in a circular orbit

D) the body may orbit the earth in an elliptic orbit

13. Orbital velocity of a satellite revolving around a planet in a circular orbit depends on

A) Mass of the satellite

B) Mass of the planet

C) Radius of the orbit

D) angular velocity of rotation of the planet

SECTION – III (INTEGER ANSWER TYPE)

This section contains 5 questions. The answer is a single digit integer ranging from 0 to 9 (both inclusive). Marking scheme +3 for correct answer, 0 if not attempted and 0 in all other cases.

14. Assuming V as the gravitational potential at the centre of earth, the potential at a

distance half the radius from its centre will be $\frac{11V}{10+x}$. The value of x is

space for rough work

15. Gravitational potential versus distance r graph is represented in fig. The magnitude of gravitational field intensity is equal to X (N/Kg). Then find X

- 16. A particle is projected vertically upwards from the surface of the earth (radius R_e) with a speed equal to one fourth of escape velocity. The maximum height attained by it from the surface of the earth is $\frac{R_e}{5N}$. Then 'N' is
- 17. Two uniform solid spheres of equal radii R, but mass M and 4M have a centre to centre separation. 6R, as shown in the figure.

space for rough work

The two spheres are held fixed. A projectile of mass 'm' is projected with minimum velocity from the surface of the sphere of mass M directly towards the centre of the second sphere so that it reaches the surface of the second sphere. If the speed with which the projectile reaches the surface of the sphere of mass 4M is $3\sqrt{\frac{xGM}{5R}}$ find x

18. A bullet is fired vertically upwards with velocity v from the surface of a spherical planet. When it reaches its maximum height, its acceleration due to the planet's gravity is 1/4th of its value at the surface of the planet. If the escape velocity from the planet is $v_{esc} = v \sqrt{N}$, then the value of N is (ignore energy loss due to atmosphere)

space for rough work

 Select the correct ones A) i, ii B) i, ii, iv C) ii, iii D) iii 21. Which of the following compounds have both aldehydic and etheric functional groups? i) (i) (i) (i) (i) (ii) (iii) (iii) (iii) (iv) (iv	iv C) ii, iii D) iii mpounds have both aldehydic and etheric functional $(\downarrow, iii), (\downarrow, iii), (ii), $	Select the correct ones A) i, ii B) i, ii, iv C) ii, iii D) iii 21. Which of the following compounds have both aldehydic and etheric functional groups? $\begin{array}{c} & (-++) \\ (-++) \\ (-$	Select the correct ones A) i, ii B) i, ii, iv C) ii, iii D) iii 21. Which of the following compounds have both aldehydic and etheric functional groups? $\begin{array}{c} & (-++) \\ (-++) \\ (-$		iv) It has one te	itiary biolinde.					
 A) i, ii B) i, ii, iv C) ii, iii D) iii 21. Which of the following compounds have both aldehydic and etheric functional groups? i) (+) (+) (+) (ii) (+) (+) (iii) (+) (+) (iv) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+	iv C) ii, iii D) iii mpounds have both aldehydic and etheric functional c + c + c + c + c + c + c + c + c + c +	 A) i, ii B) i, ii, iv C) ii, iii D) iii 21. Which of the following compounds have both aldehydic and etheric functional groups? → (+) ii) → (+) iii) → (+) iii) → (+) iii) → (+) iv) → (+)<	 A) i, ii B) i, ii, iv C) ii, iii D) iii 21. Which of the following compounds have both aldehydic and etheric functional groups? → → → → ii) → → → iii) → → → iii) → → → iii) → → → iii) → → → iiii) → → → iii) → → → iiii) → → → iiii) → → → iiii) → → → iiii) → → → iiii → → → <l< th=""><th></th><th>Select the corre</th><th>ct ones</th><th></th><th></th></l<>		Select the corre	ct ones					
 21. Which of the following compounds have both aldehydic and etheric functional groups? → ↔ ↔ → → ↔ → ↔ → ↔ → ↔ → → ↔ → ↔ → → ↔ → → ↔ → → ↔ → → ↔ → → ↔ → → ↔ → → ↔ → → ↔ → → ↔ → → ↔ → → ↔ →	mpounds have both aldehydic and etheric functional (-) $(-)$	 21. Which of the following compounds have both aldehydic and etheric functional groups? → + ← → ii) → + ← + iii) ← + ← iii) ← + ← iv) ↔ + ← ← iv) ↔ + ← ← A) i, iii B) ii, iii C) i, iv D) i, ii, iii 22. Which of the following pairs are correctly matched? A) n-butylchloride and iso-butyl chloride are positional isomers. B) n-pentylalcohol and neo-pentyl alcohol are functional isomers. C) n-propylmethanoate and ethylethanoate are metamers D) ortho-dichlorobenzene and meta-dichlorobenzene are chain isomers 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) is thee C) The number of dichloroderivatives for propane(ignore stereoisomers) is three D) The number of monochloroderivatives for propane(ignore stereoisomers) is five. D) The number of monochloroderivatives for propane(ignore stereoisomers) is three C) The number of monochloroderivatives for propane(ignore stereoisomers) is three D) The number of monochloroderivatives for propane(ignore stereoisomers) is three 	 21. Which of the following compounds have both aldehydic and etheric functional groups? → (→ (→ i)) → (→ (→ i)) → (→ (→ i)) → (→ (→ (→ (→ (→ (→ (→ (→ (→ (→ (→ (→ (A) i, ii	B) i, ii,iv	C) ii, iii	D) iii			
groups? $\begin{array}{cccccccccccccccccccccccccccccccccccc$	c, c ,	groups? $ \begin{array}{c} (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)$	groups? $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	21.	Which of the fo	llowing compound	s have both aldehy	dic and etheric functional			
 i) + ii) + iii) + iiii + iiii) + iiii + iv) + iv)	c, c ,	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ i \end{array} \\ i \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ i \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ i \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$\begin{aligned} & (+) + $		groups?						
 A) i, iii B) ii, iii C) i, iv D) i, ii, iii 22. Which of the following pairs are correctly matched ? A) n-butylchloride and iso-butyl chloride are positional isomers. B) n-pentylalcohol and neo-pentyl alcohol are functional isomers. C) n-propylmethanoate and ethylethanoate are metamers D) ortho-dichlorobenzene and meta-dichlorobenzene are chain isomers 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) B) The number of dichloroderivatives for propane(ignore stereoisomers) is th C) The number of trichloroderivatives for propane(ignore stereoisomers) is fi D) The number of monochloroderivatives for isobutane(ignore stereoisomers) is fi 	iiC) i, ivD) i, ii, iiiirs are correctly matched ?o-butyl chloride are positional isomers.o-pentyl alcohol are functional isomers.d ethylethanoate are metamersand meta-dichlorobenzene are chain isomersent among the followingnloroderivatives for propane (ignore stereoisomers) is threeoderivatives for propane(ignore stereoisomers) is three.oderivatives for propane(ignore stereoisomers) is five.	 A) i, iii B) ii, iii C) i, iv D) i, ii, iii 22. Which of the following pairs are correctly matched ? A) n-butylchloride and iso-butyl chloride are positional isomers. B) n-pentylalcohol and neo-pentyl alcohol are functional isomers. C) n-propylmethanoate and ethylethanoate are metamers D) ortho-dichlorobenzene and meta-dichlorobenzene are chain isomers 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) is three C) The number of trichloroderivatives for propane(ignore stereoisomers) is five. D) The number of monochloroderivatives for isobutane(ignore stereoisomers) is five. 	 A) i, iii B) ii, iii C) i, iv D) i, ii, iii 22. Which of the following pairs are correctly matched ? A) n-butylchloride and iso-butyl chloride are positional isomers. B) n-pentylalcohol and neo-pentyl alcohol are functional isomers. C) n-propylmethanoate and ethylethanoate are metamers D) ortho-dichlorobenzene and meta-dichlorobenzene are chain isomers 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) is three. C) The number of trichloroderivatives for propane(ignore stereoisomers) is five. D) The number of monochloroderivatives for isobutane(ignore stereoisomers) is three. 		i) or o	ii) v	iii)	iv) or the second secon			
 22. Which of the following pairs are correctly matched ? A) n-butylchloride and iso-butyl chloride are positional isomers. B) n-pentylalcohol and neo-pentyl alcohol are functional isomers. C) n-propylmethanoate and ethylethanoate are metamers D) ortho-dichlorobenzene and meta-dichlorobenzene are chain isomers 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) B) The number of dichloroderivatives for propane(ignore stereoisomers) is th C) The number of trichloroderivatives for propane(ignore stereoisomers) is fi D) The number of monochloroderivatives for isobutane(ignore stereoisomers) is fi 	irs are correctly matched ? -butyl chloride are positional isomers. o-pentyl alcohol are functional isomers. d ethylethanoate are metamers and meta-dichlorobenzene are chain isomers ent among the following nloroderivatives for propane (ignore stereoisomers) is three oderivatives for propane(ignore stereoisomers) is three. oderivatives for propane(ignore stereoisomers) is five.	 22. Which of the following pairs are correctly matched ? A) n-butylchloride and iso-butyl chloride are positional isomers. B) n-pentylalcohol and neo-pentyl alcohol are functional isomers. C) n-propylmethanoate and ethylethanoate are metamers D) ortho-dichlorobenzene and meta-dichlorobenzene are chain isomers 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) is three C) The number of trichloroderivatives for propane(ignore stereoisomers) is five. D) The number of monochloroderivatives for isobutane(ignore stereoisomers) is five. 	 22. Which of the following pairs are correctly matched ? A) n-butylchloride and iso-butyl chloride are positional isomers. B) n-pentylalcohol and neo-pentyl alcohol are functional isomers. C) n-propylmethanoate and ethylethanoate are metamers D) ortho-dichlorobenzene and meta-dichlorobenzene are chain isomers 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) is three. C) The number of dichloroderivatives for propane(ignore stereoisomers) is three. D) The number of monochloroderivatives for isobutane(ignore stereoisomers) is three. 23. Identify the correct statement among the following A) The number of dichloroderivatives for propane (ignore stereoisomers) is three. C) The number of trichloroderivatives for propane(ignore stereoisomers) is five. D) The number of monochloroderivatives for isobutane(ignore stereoisomers) is three. 		A) i, iii	B) ii, iii	C) i, iv	D) i, ii, iii			
 A) n-butylchloride and iso-butyl chloride are positional isomers. B) n-pentylalcohol and neo-pentyl alcohol are functional isomers. C) n-propylmethanoate and ethylethanoate are metamers D) ortho-dichlorobenzene and meta-dichlorobenzene are chain isomers 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) B) The number of dichloroderivatives for propane(ignore stereoisomers) is th C) The number of trichloroderivatives for propane(ignore stereoisomers) is fi D) The number of monochloroderivatives for isobutane(ignore stereoisomers) 	p-butyl chloride are positional isomers. o-pentyl alcohol are functional isomers. d ethylethanoate are metamers and meta-dichlorobenzene are chain isomers ent among the following nloroderivatives for propane (ignore stereoisomers) is three oderivatives for propane(ignore stereoisomers) is three. oderivatives for propane(ignore stereoisomers) is three.	 A) n-butylchloride and iso-butyl chloride are positional isomers. B) n-pentylalcohol and neo-pentyl alcohol are functional isomers. C) n-propylmethanoate and ethylethanoate are metamers D) ortho-dichlorobenzene and meta-dichlorobenzene are chain isomers 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) is the statement of dichloroderivatives for propane(ignore stereoisomers) is three. 23. The number of trichloroderivatives for propane (ignore stereoisomers) is three three. 	 A) n-butylchloride and iso-butyl chloride are positional isomers. B) n-pentylalcohol and neo-pentyl alcohol are functional isomers. C) n-propylmethanoate and ethylethanoate are metamers D) ortho-dichlorobenzene and meta-dichlorobenzene are chain isomers 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) is three. C) The number of trichloroderivatives for propane(ignore stereoisomers) is five. D) The number of monochloroderivatives for isobutane(ignore stereoisomers) is three. 	22.	Which of the fo	llowing pairs are co	orrectly matched?				
 D) ortho-dichlorobenzene and meta-dichlorobenzene are chain isomers 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) B) The number of dichloroderivatives for propane(ignore stereoisomers) is th C) The number of trichloroderivatives for propane(ignore stereoisomers) is fi D) The number of monochloroderivatives for isobutane(ignore stereoisomers) 	and meta-dichlorobenzene are chain isomers ent among the following nloroderivatives for propane (ignore stereoisomers) is three oderivatives for propane(ignore stereoisomers) is three. oderivatives for propane(ignore stereoisomers) is five.	 D) ortho-dichlorobenzene and meta-dichlorobenzene are chain isomers 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) is the B) The number of dichloroderivatives for propane(ignore stereoisomers) is three C) The number of trichloroderivatives for propane(ignore stereoisomers) is five. D) The number of monochloroderivatives for isobutane(ignore stereoisomers) is three space for rough work 	 D) ortho-dichlorobenzene and meta-dichlorobenzene are chain isomers 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) is three. B) The number of dichloroderivatives for propane(ignore stereoisomers) is five. C) The number of trichloroderivatives for propane(ignore stereoisomers) is five. D) The number of monochloroderivatives for isobutane(ignore stereoisomers) is three. 23. The number of monochloroderivatives for propane(ignore stereoisomers) is three. C) The number of monochloroderivatives for isobutane(ignore stereoisomers) is five. D) The number of monochloroderivatives for isobutane(ignore stereoisomers) is three. 		A) n-butylchlorB) n-pentylalcoC) n-propylmet	ride and iso-butyl c bhol and neo-penty thanoate and ethyle	chloride are position l alcohol are function ethanoate are metar	nal isomers. onal isomers. ners			
 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) B) The number of dichloroderivatives for propane(ignore stereoisomers) is th C) The number of trichloroderivatives for propane(ignore stereoisomers) is fi D) The number of monochloroderivatives for isobutane(ignore stereoisomers) 	ent among the following nloroderivatives for propane (ignore stereoisomers) is three oderivatives for propane(ignore stereoisomers) is three. oderivatives for propane(ignore stereoisomers) is five.	 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) is the B) The number of dichloroderivatives for propane(ignore stereoisomers) is three C) The number of trichloroderivatives for propane(ignore stereoisomers) is five. D) The number of monochloroderivatives for isobutane(ignore stereoisomers) is three. 	 23. Identify the correct statement among the following A) The number of monochloroderivatives for propane (ignore stereoisomers) is three. B) The number of dichloroderivatives for propane(ignore stereoisomers) is five. D) The number of monochloroderivatives for isobutane(ignore stereoisomers) is three. 		D) ortho-dichlo	probenzene and me	ta-dichlorobenzene	are chain isomers			
 A) The number of monochloroderivatives for propane (ignore stereoisomers) B) The number of dichloroderivatives for propane(ignore stereoisomers) is th C) The number of trichloroderivatives for propane(ignore stereoisomers) is fi D) The number of monochloroderivatives for isobutane(ignore stereoisomers) 	nloroderivatives for propane (ignore stereoisomers) is three oderivatives for propane(ignore stereoisomers) is three. oderivatives for propane(ignore stereoisomers) is five.	 A) The number of monochloroderivatives for propane (ignore stereoisomers) is the B) The number of dichloroderivatives for propane(ignore stereoisomers) is three C) The number of trichloroderivatives for propane(ignore stereoisomers) is five. D) The number of monochloroderivatives for isobutane(ignore stereoisomers) is three. 	 A) The number of monochloroderivatives for propane (ignore stereoisomers) is three. B) The number of dichloroderivatives for propane(ignore stereoisomers) is five. C) The number of monochloroderivatives for isobutane(ignore stereoisomers) is five. D) The number of monochloroderivatives for isobutane(ignore stereoisomers) is three. 	23.	Identify the cor	rect statement amo	ng the following				
three	loroderivatives for isobutane(ignore stereoisomers) is	three. space for rough work 1	three. 14	B) The number of dichloroderivatives for propane(ignore stereoisomers) isC) The number of trichloroderivatives for propane(ignore stereoisomers) isD) The number of monochloroderivatives for isobutane(ignore stereoisom							
		space for rough work	space for rough work 14		three.						
space for rough work	space for rough work 14					spc	ace for rough work	14			

	CH ₂ - CH - CH ₂ -Cl Cl CH ₂ Cl	:1,3-dichloro-2-chloromethylpropane						
	D)	:1-methyl-3-ethylcyclohexene						
27.	Metamerism can be shown by							
	A) Ketones B) Esters	C) Ethers D) tertiary amines						
28.	The correct names of functional isc	omers of butanoicacid is/ are						
	A) Ethylethanoate	B) Methylpropanoate						
	C) Propylmethanoate	D) Isopropylmethanoate						
29.	Identify the correct statement/s amo	ong the following is/are						
	A) N,N-dimethylaniline and Pheny	ylmethyl amine are functional isomers.						
	B) N-methylaniline and phenylethanamine are functional isomers.							
30.	C) iso-butylamine and tertiarybutyl amine are chain isomers.D) n-butylamine and iso-butylamine are chain isomers.Which of the following names are correct for the compound containing molecular							
	formula is $C_7 H_8 O$?							
	A) Phenylmethanol	B) 2-methylphenol						
	C) 3-methylphenol	D) methoxybenzene.						
	spa	ce for rough work 16						

31. Select the correct combination/s among the following is/are A) Ortho-cresol : 2-methylphenol. B) Catechol : Benzene-1,3-diol. C) Resorcinol : Benzene-1,2-diol. D) Hydroquinone : Benzene -1,4-diol **SECTION – III** (INTEGER ANSWER TYPE) This section contains 5 questions. The answer is a single digit integer ranging from 0 to 9 (both inclusive). Marking scheme +3 for correct answer, 0 if not attempted and 0 in all other cases No of metamers from the following molecules whose molecular formula is $C_6H_{12}O$ 32. is/are..... $\begin{array}{c} CH_3-CO-CH-CH_3\\ CH_3\\ \end{array}$ $CH_3 - CH_2 - CO - CH_2 - CH_2 - CH_3$ $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_0$ $\begin{array}{c} CH_3 - CH - CH_2 - CH_2 - CHO\\ CH_3 \end{array}$ $CH_3 - CO - CH_3 - CH_2 - CH_3\\ CH_3 \end{array}$ $CH_3 - CO - CH_2 - CH_2 - CH_2 - CH_3$ $\begin{array}{c} CH_3-CO-CH_2-CH-CH_3\\ CH_3\end{array}$ $CH_3 - CO - \underbrace{CH_3}_{C-CH_3}$ $\begin{array}{c} CH_3 & CH_3 \\ CH_3 - C - CO - C - CH_3 \\ CH_3 & CH_3 \end{array}$ CH_2 space for rough work 17

- 33. The number of structural isomers of $C_4 H_{10}O$ is 'X' and for $C_2 H_6O$ is 'Y'. Then the X + Y is..
- 34. The number of correct IUPAC names for the given compounds is..

i) $CH_3 - CH = CH - CH_2 - C \equiv C - CH_3$: hept-2-en-5-yne. ii) $CH_2 = CH - CH_2 - C \equiv CH$: pent-1-en-4-yne. iii) $CH_3 - CH = CH - CH_2 - C \equiv CH$: hex-4-en-1-yne. iv) $CH_2 = CH - CH_2 - C \equiv C - CH_3$:hex-5-en-2-yne. v) $(CH_3)_3 C - CH = CH - C(CH_3)_3$:1,2-di(3°-butyl)ethene. $NC - CH_2 - CH - CH_2 - CN$ ĊΝ vi) : propane -1,2,3-tricarbonitrile. $CH_2 - CHO$ vii) : benzeneacetaldehyde.

- 35. The number of structural isomers possible for $C_6H_6O_3$ containing benzene ring (Do not consider peroxybond containing isomers) is X. The number of structural isomers possible for C_7H_9N containing benzene ring is Y. Then X + Y is....
- 36. The number of cyclic isomers for C_5H_{10} is 'X' and the number of open chain structural isomers for C_5H_{10} is 'Y'. Then X Y is..

space for rough work

43. Points on the curve
$$f(x) = \frac{x}{1-x^2}$$
, where the tangent is inclined at an angle of $\frac{\pi}{4}$ to x axis are
A) (0,0) B) $\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right)$ C) $\left(-2, \frac{2}{3}\right)$ D) $\left(-\sqrt{3}, \frac{\sqrt{3}}{2}\right)$
44. The family of curves defined by the equations $y = ax$ and $x^2 + y^2 = c^2$ are perpendicular for
A) $a = 2, c = 4$ B) $a = -2, c = 3$ C) $a = 3, c = 2$ D) $a = 3, c = -2$
45. The normal to the curve $y^2 = 5x - 1$ at the point $(1, -2)$ is of the form $ax - 5y + b = 0$ then
A) $a = 4$ B) $b = -14$ C) $a + b = -10$ D) $ab = 40$
46. Two motor cars start with the same velocity 'v' km/hour from distances 'a' km and 'b' km from the junction of two roads inclined at 90⁰ and travel towards the junction and after 2 hours, they are nearing each other at the rate of
A) $\frac{4v^2 - (a + b)v}{\sqrt{a^2 + b^2 - 4(a + b)v + 8v^2}} km/hour$ B) $\frac{2v^2 - (a + b)v}{\sqrt{a^2 + b^2 - 2(a + b)v + 8v^2}} km/hour$
C) $\frac{6v^2 - (a + b)v}{\sqrt{a^2 + b^2 - 6(a + b)v + 8v^2}} km/hour$ D) $\frac{8v^2 - (a + b)v}{\sqrt{a^2 + b^2 - 8(a + b)v + 8v^2}} km/hour$

47. The radius of a right circular cylinder increases at the rate of 0.1 cm/min, and the height decreases at the rate of 0.2 cm/min. The rate of change of the volume of the cylinder, in cm^3/min , when the radius is 2 cm and the height is 3 cm, is B) $-\frac{8\pi}{5}$ C) $-\frac{3\pi}{5}$ D) $\frac{2\pi}{5}$ A) –2π A point on the parabola $y^2 = 18x$ at which the ordinate increases at twice the rate of 48. the abscissa is C) $\left(\frac{9}{8}, -\frac{9}{2}\right)$ D) $\left(\frac{9}{8}, \frac{9}{2}\right)$ B) (2, – 6) A) (2, 6) 49. An error of 0.01cm is made while measuring the radius 5cm of a circle. A) The error in circumference will be 0.02π cm B) The error in area will be 0.1π sq.cm C) The relative error in circumference will be 0.002 D) The percentage error in area will be 0.004

space for rough work

Master JEE CLASSES Kukatpally, Hyderabad.

JEE-ADVANCE-2016-P1-Mode MAX MARKS : 186

KEY SHEET 2016-P1

PHYSICS

1	С	2	В	3	Α	4	D	5	Α
6	ACD	7	AC	8	ABC	9	AC	10	ABD
11	BD	12	ABCD	13	BC	14	2	15	8
16	3	17	3	18	2				

CHEMISTRY

19	Α	20	В	21	С	22	С	23	С
24	BCD	25	AD	26	ABD	27	ABCD	28	ABCD
29	D	30	ABCD	31	AD	32	6	33	9
34	4	35	8	36	0				

MATHS

37	Α	38	D	39	Α	40	С	41	В
42	AC	43	AD	44	ABCD	45	ABC	46	Α
47	D	48	CD	49	ABCD	50	2	51	1
52	9	53	3	54	5				

$$V_{\varrho} = -\frac{Gm}{b} = -\frac{G}{b}\frac{4}{3}\pi(b^{3}-a^{3})\rho \quad ; \quad dV_{p} = -\frac{Gdm}{x} \quad ; \quad dm = 4\pi x^{2}(dx)\rho \quad ; \\ V_{p} = -\int_{a}^{b}\frac{G(4\pi x^{2}dx)\rho}{x}$$
$$= -4\pi G\rho\left(\frac{x^{2}}{2}\right)_{a}^{b} \quad ; \quad = -4\pi G\rho\left(\frac{b^{2}-a^{2}}{2}\right) \quad ; \quad \frac{V_{\varrho}}{V_{p}} = \frac{\frac{G}{b}\frac{4}{3}\pi(b^{3}-a^{3})\rho}{+4\pi G\rho\left(\frac{b^{2}-a^{2}}{2}\right)} \quad ; \quad = \frac{2(b^{3}-a^{3})}{3b(b^{2}-a^{2})}$$

6. Kinetic energy $\frac{1}{2}mv^2 = \frac{GmM}{2r}$ or $KE\alpha \frac{1}{r}$. Thus choice (A) is correct.

Angular momentum = $mvr = mx\sqrt{\frac{GM}{r}}xr = m\sqrt{GMr}$, which is proportional to \sqrt{r} .

Hence choice (B) is wrong.

Linear momentum $mv = m\sqrt{\frac{GM}{r}}$, which is proportional to $\frac{1}{\sqrt{r}}$. Hence choice (C) is

correct. The frequency of revolution is $v = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{GM}{r^3}} i.e. \ v\alpha \frac{1}{r^{3/2}}$.

Hence the correct choices are (A), (C) and (D)

 A) The centre of mass of the double star system remains stationary and both the stars revolve around in circular orbits which are concentric with the centre of mass

The distance of centre of mass from the heavier star is equal to $\left(\frac{Mr + 2M.0}{M + 2M}\right) = \frac{r}{3}$

Hence, the heavier star revolves in a circle of radius r/3 while the lighter star in a circle of radius 2r/3. Hence option(a) is wrong.

B)
$$(2M)\left(\frac{r}{3}\right)\omega^2 = 2GM^2$$

 $(2M)\frac{r}{3}\omega^2 = \frac{2GM^2}{r^2} \Rightarrow \omega = \left(\frac{3GM}{r^3}\right)^{1/2} = \frac{2\pi}{T} = \left(\frac{3GM}{r^3}\right)^{1/2} \Rightarrow T = 2\pi \frac{r^{3/2}}{(3GM)^{1/2}}$

Where r is distance between two stars. Hence, option (b) is correct.

C) Kinetic energy of a star will be equal to $1/2 \text{ mv}^2$ where v is speed of the star which is equal to (radius of its circular orbit) x ω .

Hence, K.E. of heavier star is

$$E_{1} = \frac{1}{2} (2M) \left(\frac{r}{3}\omega\right)^{2} = \frac{Mr^{2}\omega^{2}}{9} \frac{3GM}{r^{3}} = \frac{GM^{2}}{3r}$$

And that of lighter star, $E_2 = \frac{1}{2}M\left(\frac{2r}{3}\omega\right)^2$.

It means, KE of the lighter star is twice that of the heavier star.
Hence, option (C) is wrong.
8. A)
$$L = m(u \cos 30^{\circ})r = \frac{\sqrt{3}mur}{2}$$

B) $\frac{dA}{dt} = \frac{L}{2m} = \frac{\sqrt{3}ur}{4}$ C) $T = \frac{total area}{areal velocity} = \frac{2\pi a^2}{\sqrt{3}ur} = \frac{8\pi a^2}{\sqrt{3}ur}$
9. $M_{cavity} = \frac{M}{4/3}\pi R^3 \times 4/3\pi \left(\frac{R}{3}\right)^3 = \frac{M}{27}$
At'A' $V_{total} = V_{cavity} + V_{remaining}$
 $-\frac{GM}{R} = -\frac{G}{\frac{27}{5R}} + V_{remaing}$
 $V_R = -\frac{GM}{R} + \frac{GM}{45R} = -\frac{44GM}{45R}$
For escape velocity
 $\frac{1}{2}mv^2 = \frac{44GMm}{45R}$
 $V = \sqrt{\frac{88}{45}\frac{GM}{R}}$
10. Work done due to friction is given by
 $W = \left[\frac{-GMm}{2R^3}\left(3R^2 - \frac{R^2}{4}\right)\right] - \left[\frac{-GMm}{R}\right]$
 $= \frac{-GMm}{2R^3}\frac{11R^2}{4} + \frac{GMm}{R} = \frac{-3GMm}{8R}$
 $dW = -\mu \frac{GMm}{R^3}\sqrt{x^2 + R^2}\frac{d}{\sqrt{x^2 + R^2}}dx$
 $= -\mu \frac{GMm}{2R^2}d(dx)$

 $W = -\mu \frac{GMm}{2R^2} \left(x\right)_0^{\sqrt{3R/2}}$

 $=-\mu \frac{GMm}{2R^2} \frac{\sqrt{3}R}{2} = -\mu \frac{GMm}{4R} \sqrt{3}$

Page 4

$$\Rightarrow \mu \frac{GMm}{4R} \sqrt{3} = \frac{3GMm}{8R} \qquad \Rightarrow \mu = \frac{\sqrt{3}}{2}$$
11. Inward gravitational pull on the layer
$$df = \left(\frac{GM}{R^3}r\right)(4\pi r^2 p dr), P = \frac{3M}{4\pi r^3}$$

$$dp = \frac{df}{4\pi r^2}, P = \int_r^r dp = \frac{3}{8} \left[1 - \frac{r^2}{R^3}\right] \frac{GM^2}{\pi R^4}$$
12. (A) If it is projected radially it will go up and than move down in a straight line
B) If it is projected will a small velocity near the earth's sarface, g will be almost constant So its path will be almost parabolic. (Projectile Motion)
(C) If the body is projected tangentially with orbital speed $\left(V_0 = \sqrt{\frac{GM}{r}}\right)$ then it will revolve in circular orbit
(D) If the body is projected with a velocity V (Vo,Vc) it may revolve in an elloptical orbit.
13. Conceptual
14. $V = -\frac{-3GM}{2R}, V_{ar} = -\frac{GM}{2R^2}(3R^2 - r^2)$
 $\left[atr = \frac{R}{2}\right] = -\frac{11GM}{8R} = \frac{11}{8}\left[\frac{2V}{3}\right] = \frac{11V}{12}$
15. $E = -\frac{d_x}{d_x}$ here $d_x = drSin0$
16. $\frac{1}{2}m\frac{1}{4}\left(\frac{2GM}{R}\right) - \frac{GMm}{R} = -\frac{G4m}{R+h} \therefore h = \frac{R}{15}$
17. $-\frac{GMm}{2R} - \frac{G4Mm}{4R} = -\frac{G4m}{5R} - \frac{G4Mm}{R} + \frac{1}{2}mV^2 \Rightarrow V = 3\sqrt{\frac{3GM}{5R}}$
18. At height R from the surface of planet acceleration due to planet's is $\frac{1}{4}$ th in comparison to the value at the surface
So, $-\frac{GMm}{R} + \frac{1}{2}mV^2 = -\frac{GMm}{R+R}$ and $-\frac{GMm}{R} + \frac{1}{2}mV_{esc}^2 = 0$
 $\therefore v_{esc} = v\sqrt{2}$

CHEMISTRY

Page 6

40. Sol. Given m=1
$$\Rightarrow \tan \alpha - \frac{ax}{u^2 \cos^2 \alpha} = 1 \Rightarrow x = \frac{(\tan \alpha - 1)}{a} u^2 \cos^2 \alpha$$
 substitute x and
y values in given equation $\frac{u^2}{4a} = \frac{u^2}{a} \left[\sin^2 \alpha - \frac{1}{2} \right] \Rightarrow \alpha = \frac{\pi}{3}$
42. Conceptual

53. Put
$$x^2 = t$$
, and $f'(0) = -\frac{1}{3}$