

Master JEE CLASSES Kukatpally, Hyderabad.

JEE-ADVANCE-2011-P1-Model Max.Marks: 240

IMPORTANT INSTRUCTIONS:

- 1) This booklet is your Question Paper.
- 2) Use the Optical Response Sheet (ORS) provided separately for answering the questions
- 3) Blank spaces are provided within this booklet for rough work.
- 4) Write your name, roll number and sign in the space provided on the back cover of this booklet.
- 5) You are allowed to take away the Question Paper at the end of the examination.

ÓPTICAL RESPONSE SHEET:

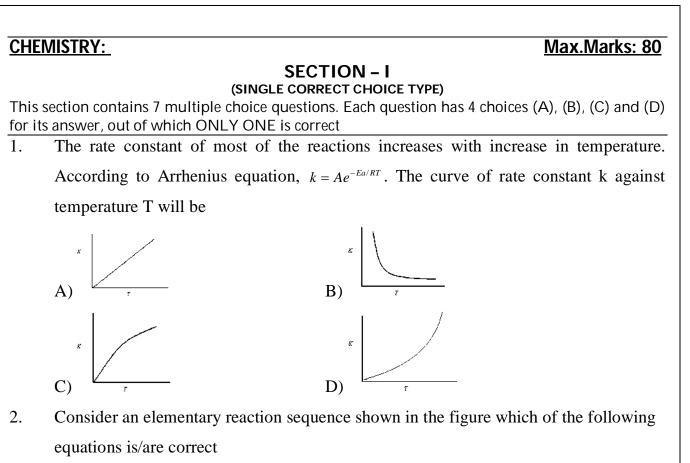
- 6) Darken the appropriate bubbles on the ORS by applying sufficient pressure. This will leave an impression at the corresponding place on the Candidate's sheet.
- 7) The ORS will be collected by the invigilator at the end of the examination.
- 8) Do not tamper with or mutilate the ORS. Do not use the ORS for rough work.
- 9) Write your name, roll number and code of the examination center, and sign with pen in the space provided for this purpose on the ORS. Do not write any of these details anywhere else on the ORS. Darken the appropriate bubble under each digit of your roll number.

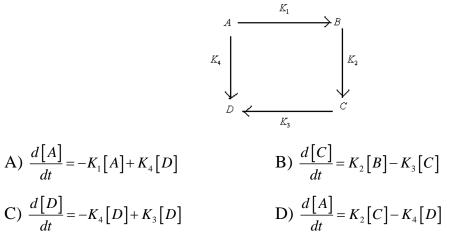
DARKENING THE BUBBLES ON THE ORS

- 10) Use a **BLACK BALL POINT PEN** to darken the bubbles on the ORS.
- 11) Darken the bubble **COMPLETELY**.
- 12) The correct way of darkening a bubble is as :
- 13) The ORS is machine-gradable. Ensure that the bubbles are darkened in the correct way.
- 14) Darken the bubbles ONLY IF you are sure of the answer. There is NO WAY to erase or

"un-darken" a darkened bubble.

JEE-ADVANCE-2011-P1-Model


IMPORTANT INSTRUCTIONS


Max Marks: 240

CHEMISTRY

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I (Q.N : 1 – 7)	Questions with Single Correct Choice	3	-1	7	21
Sec – II(Q.N : 8 – 11)	Questions with Multiple Correct Choice	4	0	4	16
Sec – III(Q.N : 12 – 16)	Questions with Comprehension Type (2 Comprehensions – 2 + 3 = 5Q)	3	-1	5	15
Sec – IV(Q.N : 17 – 23)	Questions with Integer Answer Type	4	0	7	28
	Total			23	80
PHYSICS					
Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec - I(Q.N : 24 - 30)	Questions with Single Correct Choice	3	-1	7	21
Sec – II(Q.N : 31 – 34)	Questions with Multiple Correct Choice	4	0	4	16
Sec – III(Q.N : 35 – 39)	Questions with Comprehension Type (2 Comprehensions – 2 + 3 = 5Q)	3	-1	5	15
Sec – IV(Q.N : 40 – 46)	Questions with Integer Answer Type	4	0	7	28
	Total			23	80
IATHEMATICS					
Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 47 – 53)	Questions with Single Correct Choice	3	-1	7	21
Sec – II(Q.N : 54 – 57)	Questions with Multiple Correct Choice	4	0	4	16
Sec – III(Q.N : 58 – 62)	Questions with Comprehension Type (2 Comprehensions – 2 + 3 = 5Q)	3	-1	5	15
Sec – IV(Q.N : 63 – 69)	Questions with Integer Answer Type	4	0	7	28
	Total			23	80

space for rough work

space for rough work

SECTION – II

(MULTIPLE CORRECT CHOICE TYPE)

8.	According to Arrhenius equation, which of the following is /are correct Statement(s)
	A) a high activation energy usually implies a fast reaction
	B) rate constant increases with increase in temperature. This is due to greater number
	of collisions whose energy exceeds the activation energy
	C) the pre-exponential factor is a measure of the rate at which collisions occur,
	irrespective of their energy.
	D) higher the magnitude of activation energy, stronger is the temperature dependence
	of the rate constant.
9.	Choose the correct statement(s) :
	A) If rate of formation of NO is $3.6 \times 10^{-3} M / Sec$ in $4NH_{3_{(g)}} + 5O_{2_{(g)}} \rightarrow 4NO_{(g)} + 6H_2O_{(g)}$ then
	the rate of formation of H_2O is $5.4 \times 10^{-3} M$ / sec
	B) The plot of $\ln \frac{a}{a-x}$ against 't' is a straight line then the reaction may be
	decomposition of H_2O_2 to H_2O and O_2 (a= initial conc, a-x is conc at time 't',)
	C) The value of rate constant, predicated by Arrhenius equation is 'A', if $T \rightarrow \infty$ D) The rate constant k_1 and k_2 of two reactions are in the ratio 2 : 1. The
	corresponding energies of activation of the reactions will be related as $E_2 > E_1$. If A
	value is same for two reactions
10.	A plot of number of neutrons (N) against the number of protons (P) of stable nuclei exhibits upward deviation from linearity for atomic number, $Z > 20$, For an unstable
	nucleus having $\frac{N}{P}$ ratio less than 1, the possible mode (s) of decay is (are):
	A) β^- -decay (β -emission) B) neutron emission
	C) orbital or K-electron capture D) β^+ - decay (positron emission)
	space for rough work Page 5

11.

$$A \xrightarrow{K_1} 3B$$

$$2K_1 \xrightarrow{4C} 4C$$

$$1.5K_1 \xrightarrow{5D}$$

...

All reactions are of first order. At time t=t₁(t₁>0) $\frac{[B]}{[C]} = \alpha$; at time t = t₂(t₂ ≥ t₁), $\frac{[C]}{[D]} = \beta$

Which of the following is/are correct?

A) $\alpha = 0.5$ B) $\beta = \frac{4}{3}$ C) $\alpha = 0.375$ D) $\beta = \frac{16}{15}$

SECTION – III

(COMPREHENSION TYPE)

This section contains 2 groups of questions. One group has 3 question and another group has 2 multiple choice questions based on a paragraph. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONLY ONE is correct.

Passage - I

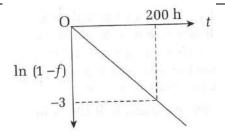
Oxidation of metals is generally a slow electrochemical reaction involving many steps.

These steps involve electron transfer reactions. A particular type of oxidation involve

overall first order kinetics with respect to fraction of unoxidised metal surface

thickness (1-f) relative to the maximum thickness(T) of oxidized surface, when metal

surface is exposed to air for a considerable period of time.


Rate law:
$$\frac{df}{dt} = k(1-f)$$
,

Where f = x/T, x = thickness of the oxide film at time 't'

And T= thickness of the oxide film at time t= ∞

For the oxidation of a particular metal, a graph is shown in the figure.

space for rough work

- 12. The time taken for thickness to grow 50% of T is

 A) 23.1 h
 B) 46.2 h
 C) 100 h
 D) 92.4 h
- 13. The exponential variation of f with t(h) is

A) $f = (1 - e^{-3t/200})$ B) $f = e^{-3t/200} - 1$ C) $f = e^{-3t/200}$ D) $f = e^{3t/200}$

Passage - II

In any nuclear reaction, the total mass of product is found to be less than the total mass of reactants. The difference in mass is due to the conversion of some mass into energy and hence, energy is produced in the nuclear reactions.

- 14. The nuclide Sc⁵⁰, mass 49.9516 u, is neutron rich. It decays to form Ti⁵⁰, mass 49.94479 u. If the emitted β particle has a kinetic energy of 0.80 MeV, what is the kinetic energy of the neutrino emitted simultaneously?
 A) 2.87 MeV
 B) 5.54MeV
 C) 9.36 MeV
 D) 6.58 MeV
- 15. Calculate the binding energy per nucleon for the nuclide $_{17}Cl^{37}$, if its mass is 36.9659 u (Given m (neutron) = 1.0087 u, m(proton) = 1.0078 u)
 - A) 317.53 MeV B) 8.58 MeV C) 7.689 MeV D) 7.88 MeV
- 16. A nuclear explosion has taken place leading to increase in concentration of C^{14} in nearby areas. C^{14} concentration is C_1 in nearby areas and C_2 in areas far away. If the age of the fossil is determined to be T_1 and T_2 at the places respectively, then

space for rough work

A) The age of the fossil will increase at the place where explosion has taken and

$$T_1 - T_2 = \frac{1}{\lambda} \ln \frac{C_1}{C_2}$$

B) The age of the fossil will decrease at the place where explosion has taken and

$$T_1 - T_2 = \frac{1}{\lambda} \ln \frac{C_1}{C_2}$$

C) The age of fossil will be determined to be same

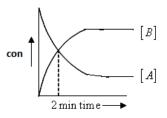
D) $\frac{T_1}{T_2} = \frac{C_1}{C_2}$

SECTION –IV

(INTEGER ANSWER TYPE)

This section contains 7 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the ORS have to be darkened.

17. The human body contains about 18% carbon by weight. Of total carbon, 1.50×10^{-10} % is


 C^{14} (by weight). The number of disintegrations occurring per minute in a person of

70 kg is $x \times 10^{y}$. The value of (x+y) is nearly (half-life of C^{14} is 5570 years)

18.
$$\overset{A}{\underset{(1M)}{\longleftarrow}} \overset{k=3}{\underset{k=1}{\longleftarrow}} \overset{B}{\underset{(1M)}{\longrightarrow}} \overset{k=2}{\underset{(1M)}{\longleftarrow}} \overset{C}{\underset{(1M)}{\longleftarrow}}$$

If all the reactions in the above system give first order kinetics what is the rate of disappearance of 'B' in the given instant

19. For a first order reaction $A_{(g)} \rightarrow 3B_{(g)}$ the concentration verses time graph is given below

What is the half life in minutes (answer to the nearest integer) ?

 $(\log 2 = 0.3, \log 3 = 0.48)$

space for rough work

- 20. ${}_{92}U^{238}$ disintegrates to give 4α and 6β particles. The group number of the daughter element in modern periodic table is
- 21. For a reaction $A \to B$, the rate law expression is $\frac{-d[A]}{dt} = K[A]^{1/2}$. If initial concentration of A is A₀. The number of correct statements are i) The plot of \sqrt{A} against 't' will be linear

ii) The half life period is
$$t_{1/2} = \frac{\sqrt{2}(\sqrt{2}-1)}{K}\sqrt{A_0}$$

iii) The integrated form of rate expression is $\sqrt{A} = \frac{-K}{2}t + \sqrt{A_0}$

iv) Time taken for reaction is decreased for second half life than first half life period

- v) When concentration of reactant is doubled rate increases to 4 times at that instant
- 22. The rate constant of a reaction at $27^{\circ}C$ is $3 \times 10^{-3} \text{ min}^{-1}$. The fraction of molecules crossing the energy barrier of the reaction at that temperature is $10^{-3}\%$. If temperature is increased, the maximum value of rate constant k can be attained is $x \times 100 \text{ min}^{-1}$. The value of x is
- 23. Half life of a radioactive nuclide is 20 years. If a sample of this nuclide has activity of 6400 dpm today, its activity (in dpm) after 100 years would be x×100 dpm; the value of 'x' is :

space for rough work

PHYSICS:

SECTION – I (SINGLE CORRECT CHOICE TYPE)

This section contains 7 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONLY ONE is correct

24. A smooth wire frame in the form of a parabola $x^2 = cy$ is rotated about its vertical axis (y-axis) at angular speed ω . A bead of mass m is at rest relative to wire frame at (-a,b). Then the value of ' ω ' is :

A)
$$\sqrt{\frac{2g}{a}}$$
 B) $\sqrt{\frac{2g}{c}}$ C) $\sqrt{\frac{2g}{b}}$ D) $\sqrt{\frac{2gc}{ab}}$

25. A small block of mass 1 kg is connected by a light string passing through a hole in a smooth table with a block of mass 5kg which hangs vertically. Find the angular velocity of the block on the table moving in a circle of radius 0.1 m in order to keep the other block at rest?

A) 10rad/s B)
$$10\sqrt{5} rad / s$$
 C) $10\sqrt{2} rad / s$ D) $\frac{10}{\sqrt{2}} rad / s$

26. A thin rod of mass m and length ℓ' is rotated in a horizontal plane about one of its ends with a constant angular speed ω in gravity free space. Then the tension at the midpoint of the rod is :

A)
$$\frac{ml\omega^2}{2}$$
 B) $\frac{ml\omega^2}{4}$ C) $\frac{ml\omega^2}{8}$ D) $\frac{3}{8}ml\omega^2$

27. A small sphere of mass 0.2 kg is attached to a light string of length 1.3 m whose upper end is fixed to a ceiling. The sphere is made to describe a horizontal circle of radius 0.5 m. Then the time taken to complete one revolution is :

A)
$$\frac{2\pi}{5}\sqrt{3}$$
 sec B) $\frac{\pi}{5}\sqrt{3}$ sec C) $\frac{\pi}{5}$ sec D) $\frac{2\pi}{5}$ sec

space for rough work

Page 10

Max.Marks: 80

28. A smooth horizontal circular table is rotating at an angular speed ω about its vertical axis. A groove is made on the surface along a radius. A particle is gently placed inside the groove at a distance 'a' from the center. The speed of the particle w.r.t table when its distance from the center is 'x' is :

A)
$$\omega \sqrt{x^2 - a^2}$$
 B) $\frac{\omega}{2} \sqrt{x^2 - a^2}$ C) $\omega \sqrt{x^2 + a^2}$ D) $\frac{\omega}{2} \sqrt{x^2 + a^2}$

- 29. A car is moving in a circular horizontal track of radius 10 m with a constant speed of 10 m/s. A plumb bob is suspended from the roof of the car by a light string. The angle made by the string with the vertical(in steady state) is $(g = 10 \text{ m/s}^2)$ A) zero B) 30° C) 45° D) 60°
- 30. A point moves along an arc of a circle of radius R. Its velocity depends from upon the distance covered s as $V = a\sqrt{s}$, where a is constant. The angle θ between the vector of total acceleration and tangential acceleration is

A)
$$\tan \theta = \sqrt{\frac{s}{R}}$$
 B) $\tan \theta = \sqrt{\frac{s}{2R}}$ C) $\tan \theta = \frac{2s}{R}$ D) $\tan \theta = \frac{s}{2R}$

SECTION – II (MULTIPLE CORRECT CHOICE TYPE)

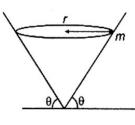
This section contains 4 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONE OR MORE is/ are correct

31. The position of a particle varies with time as $\overline{r} = a \sin 2t\hat{i} + a \cos 2t\hat{j} + bt\hat{k}$. Then the

A) trajectory of particle as seen by an observer moving with a velocity $b\hat{k}$ is a circle.

B) trajectory of the particle w.r.t ground observer is a circle.

C) Angle between velocity and acceleration is $\pi/2$


D) Angle between velocity and acceleration is constant.

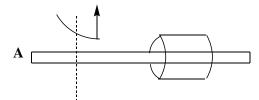
space for rough work

- 32. A block of mass 1kg is placed on a horizontal turn table rotating at a constant angular velocity ω rad/s. at a distance 1m from the axis by connecting it to a string of length 1m whose other end is fixed at the centre of table. The value (/s) of ω for which tension in string is zero is/are : [the coefficient friction between block and surface is 0.4]
 - A) 2rad/s B) 1rad/s C) 0.5rad/s D) 4 rad/s

33. A particle is moving along y-axis with a speed of 10m/s. At some instant of time it is at (0,4m). The magnitude of its angular velocity about a point,

- A) (0,0) is zero B) (0,0) is infinity
- C) (3m,0) is 1.2rad / s D) (-3m,0) is 1.2rad / s
- 34. A ball of mass m is rotating in a circle of radius r with uniform speed v inside a smooth cone as shown in figure. Let N be the normal reaction on the ball by the cone then choose the correct option

A) N = mg cos θ B) g sin $\theta = \frac{v^2}{r} cos \theta$ C) N sin $\theta = \frac{mv^2}{r}$ D) None of these


SECTION – III (PARAGRAPH TYPE)

This section contains 2 paragraphs. Based upon one of the paragraphs 3 multiple choice questions based on the 3 multiple choice questions have to be answered. Each of these questions has 4 choices (A), (B), (C) and (D) for its answer, out of which ONLY ONE is correct.

Passage-1

The figure shows a rod which starts rotating with angular acceleration α about vertical

axis passing through one of its end (A) in horizontal plane. A bead of mass m just fits space for rough work Page 12 the rod and is situated at a distance r from end A. Friction exist between rod and the bead with coefficient μ . As the angular velocity of rod increases the bead starts sliding over the rod (say after time t₀) Based on above information answer the following questions)

35. The normal force acting on bead at time $t(< t_0)$ is

A) mg B)
$$mr(\alpha t)^2$$
 C) $m\sqrt{g^2 + r^2(\alpha t)^4}$ D) $m\sqrt{g^2 + (r\alpha)^2}$

36. Friction force acting on bead at time $t(< t_0)$ is given by

A)
$$\mu mg$$
 B) $mr(\alpha t)^2$ C) $m\mu\sqrt{g^2 + (r\alpha)^2}$ D) $\mu m\sqrt{g^2 + r^2(\alpha t)^4}$

37. If the bead start sliding at $t = t_0$ then value of t_0 is given by

A)
$$\sqrt{\frac{\mu\sqrt{g^2 + (r\alpha)^2}}{r\alpha^2}}$$
 B) $\sqrt{\frac{mg}{r\alpha^2}}$ C) $\sqrt{\frac{\mu\sqrt{g^2 + (r\alpha)^2}}{r\alpha^2}} - \sqrt{\frac{mg}{r\alpha^2}}$ D) None of these

Passage-2

The role of friction is very important in determing the range of speeds of a vehicle on a banked road. It can change both in magnitude and direction to prevent the vehicle from slipping or skidding A turn of radius 20m is banked for vehicles going at a speed of 36 kmph. The coefficient of static friction between road and tyre is 0.4. Then mark the correct options.

space for rough work

38.	The maximum s	speed of vehicle w	ithout skidding?									
	A) 36 kmph	B) 54 m/s	C) 54 kmph	D) 72 kmph								
39.	The minimum s	peed of vehicle wi	thout slipping is (ap	proximate value)								
	A) 4 m/s	B) 5 kmph) 5 kmph C) 36 kmph D) 6 m/s									
		(INTEG) stions. The answer to e		a single digit integer, ranging from 0 s in the ORS have to be darkened.								
40.	A particle move	es on a circular pat	h of radius 0.2m with	h an angular acceleration 0.25								
	$rad./s^2$. The particular radius of the part	article starts from r	test at $t = 0$. The time	e at which magnitude of radial								
	acceleration and tangential acceleration are same issec.											
41.	A circular ring of	of mass 3.14 kg an	d radius 0.05 m is ro	tating with a constant angular								
	velocity 10 rad/	s about its vertical	axis on a smooth ho	rizontal table. Then the tension								
	in the ring is 10	/n N, then n is	·									
42.	A long horizont	al rod has a bead v	which can slide along	g its length and is initially placed								
	at a distance L f	from one end A. th	e rod is rotated in a l	norizontal plane about end A,								
	with a constant	angular acceleratio	on $\alpha = 0.1 rad / s^2$. The	e coefficient of friction between								
	rod and bead is	$\mu = 0.4$. Neglecting	g gravity, the time at	fter which the bead starts								
	slipping is	sec.										
		ace for rough work		Page 14								

- 43. A small block slides on a frictionless horizontal table. It is constrained to move inside a ring of radius 1m fixed to the table. At t = 0 the block is moving along the circumference inside the ring with speed 10 m/s. the coefficient of friction between block and ring is 0.1. the speed of the block at t = 1 sec is :_____m/s
- 44. A particle moves in the x-y plane with velocity $\vec{v} = a\hat{i} + bt\hat{j}$. At the instant $t = \frac{a\sqrt{3}}{b}$ the magnitude of radial acceleration is $\frac{b}{n}$. find n =?
- 45. A particle of mass 1kg is moving in x-y plane with a velocity of 6 m/s at angle of 53° with x-axis. A force of 15N is applied along x-axis at t = 0 on it. The radius of curvature of the path of the particle just after application of force is _____m.
- 46. A particle of mass 1 kg is at origin. At t = 0. It is given a velocity of 1m/s at angle of 30° with y-axis in x-y plane. It is moved under the influence of a force $\vec{F} = \vec{V} \times \vec{A}$, where \vec{A} is constant vector of magnitude π units directed along positive x-axis. The xcoordinate of particle at t = 2s is: _____m (\vec{V} - instantaneous velocity)

space for rough work

MATHEMATICS:

Max.Marks: 80

SECTIC)N –	I
		AF TV/P

	ection contains 7 multi ONLY ONE is correct	(SINGLE) ple choice questions. Eac	CORRECT CHOICE TYPE) ch question has 4 choices (A), (B), (C) and (D) for its answer, out of						
47.	If $p(1+\frac{t}{\sqrt{2}}, 2+\frac{t}{\sqrt{2}})$ is any point on a line, then the range of the value of t for which									
	the point P lies between the parallel lines $x+2y=1$ and $2x+4y=15$ is									
	A) $-4\sqrt{2}/3 < t < 5\sqrt{2}$	/2/6	B) $0 < t < 5\sqrt{2}/6$							
	C) $4\sqrt{2} < t < 0$		D) none of these	;						
48.	If the lines $ax + bar = bar + bar $	y+1=0, x+by+1=0	and $x + y + c = 0(a, b, c)$	c being distinct and different						
	from 1) are cor	icurrent, then $\left(\frac{1}{1-1}\right)$	$\frac{1}{a} + \left(\frac{1}{1-b}\right) + \left(\frac{1}{1-c}\right) =$							
	A) 0	B) 1	C) $1/(a+b+c)$	D) none of these						
49.	The straight lin	e $x + 2y - 9 = 0, 3x + 5$	5y-5=0 and $ax+by$	v-1=0 are concurrent, if the						
	Straight line $35x - 22y + 1 = 0$ passes through the point									
	A) (a, b)	B) (b, a)	C) (-a, -b)	D) none of these						
50.	The locus of th	e image of the poin	tt $(2, 3)$ in the line							
	$(x-2y+3)+9\lambda($	(2x-3y+4) = 0 is (.	$\lambda \in R$)							
	A) $x^2 + y^2 - 3x$	-4y-4=0								
	B) $2x^2 + 3y^2 + 2$.	x + 4y - 7 = 0								
	C) $x^2 + y^2 - 2x - $	4y + 4 = 0								
	D) $x^2 + y^2 - 2x - $	4y + 3 = 0								
51.	The line x+3y-	2=0 bisects the ang	le between a pair of	straight lines of which one has						
	equation x-7y+	5=0. The equation	of the other line is							
	A) 3x+3y-1=0	B) x-3y+2=0	C) 5x-5y-3=0	D) 5x+5y-3=0						
		space for rough work		Page 16						

52.	_			$5y^2 = 0$ are such that each pair
	-	e between the other		
	A) -1	B) -7	,	D) -15
53.	The equation a	$\left(x^4 + y^4\right) - 4bxy\left(x^2 - y^4\right)$	y^2)+6 cx^2y^2 = 0 repre	sents two pairs of perpendicular
	lines. The two	pairs will coincide	if	
	A) $b^2 = a + 3ac$			D) $2b^2 = a^2 + 3ac$
This s out o 54.	f which ONE OR MO	(MULTIPLE C tiple choice questions. I RE is/ are correct		TYPE) oices (A), (B), (C) and (D) for its answer, s an angle measure 45 ^o at the
	major segment	of the circle, then the	ne value of 'm' can	be
	A) 2	B) 1	C) -1	D) none of these
55.	If (α, α^2) lies in	nside the triangle fo	ormed by the lines	
	2x + 3y - 1 = 0, x + 3y - 1, x + 3y - 1 = 0,	-2y-3=0, 5x-6y-1	=0 then	
	A) $2\alpha + 3\alpha^2 - 1 >$	0 B) $\alpha + 2\alpha^2 - 3 > 0$	$C)\alpha + 2\alpha^2 - 3 < 0$	0 D) $6\alpha^2 - 5\alpha + 1 > 0$
56.	The sides of a t	riangle are the straig	ght lines x+y=1, 7y	$y=x$ and $\sqrt{3}y + x = 0$. Then
	which of the fo	llowing is an interio	or point of the trian	gle?
	A) Circumcent	er B) Centroid	C) Incenter	D) Orthocenter
57.	The distance of	any point (x,y) from	m the origin is defi	ined as $d = \max\{ x , y , \}$ then
	the distance of	the common point	for the family of lin	nes
	$x(1+\lambda)+\lambda y+2$	$2 + \lambda = 0 (\lambda \ being \ points)$	arameter) from the	origin is
	A) 1	B) 2	C) √5	D) 0
<u> </u>		space for rough work		Page 17

SECTION – III (COMPREHENSION TYPE)

the 3		graphs. based upon or ons have to be answere		3 multiple choice questions based on ons has 4 choices (A), (B), (C) and (D)								
Pase	sage - 1											
	Let L be the line belonging to the family of straight lines											
	$(a+2b)x+(a-3b)y+a-8b=0, a, b \in R$ which is the farthest from the point (2, 2)											
58.	The equation of line L is											
	A) $x + 4y + 7 = 0$	B) $2x+3y+4=0$	$\mathbf{C})4x-y-6=0$	D) none of these								
59.	Area enclosed by	the line L and the	coordinate axes is									
	A) 4/3 sq. units	B) 9/2 sq. units	C) 49/8 sq. units	D) none of these								
Pase	sage - 2											
	A(1, 3) and C (-	-2/5, -2/5) are the v	vertices of a triangle	e ABC and the equation of								
	the internal angle	bisector of $\angle ABC$	is x+y=2									
60.	The equation of s	side BC is										
	A) 7x+3y-4=0	B) 7x+3y+4=0	C) 7x-3y+4=0	D) 7x-3y-4=0								
61.	The coordinates	of vertex B are										
	A) (3/10,17/10)	B) (17/10,3/10)	C)(-5/2,9/2)	D) (1,1)								
62.	The equation of s	side AB is										
	A) $3x + 7y = 24$	B) $3x + 7y + 24 = 0$	C) $13x + 7y + 8 = 0$	D) $13x - 7y + 8 = 0$								
	sp	pace for rough work		Page 18								

SECTION –IV (INTEGER ANSWER TYPE)

This section contains 7 questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the ORS have to be darkened.

63. In a plane there are two families of lines: y = x + r, y = -x + r, where $r \in \{0, 1, 2, 3, 4\}$ The

Number of the squares of the diagonal of length 2 formed by these lines is

- 64. The straight lines $L \equiv x + y + 1 = 0$ and $L_1 \equiv x + 2y + 3 = 0$ are intersecting, 'm' is the Slope of the straight line L_2 such that L is the bisector of the angle between L_1 and L_2 . The value of m^2 is
- 65. Let 'P' any point on x-y+3=0 and 'A" be fixed point (3,4). If the family of lines given by $(3\sec\theta + 5\cos ec\theta)x + (7\sec\theta 3\cos ec\theta)y + 11(\sec\theta \cos ec\theta) = 0$ are concurrent at *B* for all permissible values of '\theta' and maximum of $1|PA PB| = 2\sqrt{2n} (n \in N)$ then n=
- 66. If the point $P(\tan^2 \theta, \tan \theta)$ lies in the region corresponding to the acute angle between the lines 2y = x and 4y = x, then $\left[\frac{\tan \theta}{2}\right]$ is equal to (where [.] denotes greatest integer function)
- 67. The difference of the slopes of the lines represented by $x^{2}(\tan^{2}\theta + \cos^{2}\theta) + 2xy\tan\theta + y^{2}\sin^{2}\theta = 0$ is
- 68. If the area of the triangle formed by the lines $3x^2 2xy 8y^2 = 0$ and the line 2x + y k = 0 is 5 sq. units. then '|k|' is
- 69. For all real values of a and b, lines (2a+b)x+(a+3b)y+(b-3a)=0 and mx+2y+6=0 are concurrent. Then |m| is equal to

space for rough work

Master JEE CLASSES Kukatpally, Hyderabad.

JEE-ADVANCE-2011-P1-Model

Max.Marks:240 Key Sheet

CHEMISTRY

1	D	2	В	3	Α	4	Α	5	С	6	Α
7	В	8	BCD	9	ABCD	10	CD	11	CD	12	В
13	Α	14	В	15	В	16	Α	17	7	18	0
19	5	20	3	21	4	22	3	23	2		

PHYSICS

24	В	25	В	26	D	27	Α	28	Α	29	С
30	C	31	ACD	32	ABC	33	ACD	34	BC	35	D
36	В	37	Α	38	С	39	Α	40	2	41	4
42	2	43	5	44	2	45	3	46	1		

MATHS

47	A	48	В	49	A	50	D	51	D	52	D
53	D	54	BC	55	ACD	56	BC	57	В	58	Α
59	С	60	В	61	С	62	Α	63	9	64	4
65	5	66	1	67	2	68	5	69	2		

SOLUTIONS

CHEMISTRY

- rate constant increases exponentially with temperature. 1.
- For elementary reactions order is equal to molecularity. 2.
- Conceptual 3.

4.
$${}^{1}_{0}n \rightarrow {}^{1}_{1}H + {}^{0}_{-1}e + V \text{ or } \overline{V}$$

5.
$${}_{24}Cr^{53} + {}_{2}He^4 \rightarrow {}_{0}^{1}n + {}_{26}Fe^{56}$$

6. ${}^{27}_{13}Al + {}^{4}_{2}\alpha \rightarrow {}^{30}_{14}Si + {}^{1}_{1}H(X)$

$${}^{27}_{13}Al + {}^{4}_{2}\alpha \rightarrow {}^{30}_{15}P + {}^{1}_{0}n(Y)$$
$${}^{30}_{15}P \rightarrow {}^{30}_{14}Si + {}^{0}_{+1}e(Z)$$

$$^{30}_{15}P \rightarrow ^{30}_{14}Si + ^{0}_{+1}e(Z)$$

9.
$$+\frac{1}{4}\frac{d(NO_{2})}{dt} = +\frac{1}{6}\frac{d(H_{2}O)}{dt}$$
11.
$$\frac{[B]}{[C]} = \frac{3K_{1}}{8K_{1}} = \frac{3}{8} = \alpha; \frac{[C]}{[D]} = \frac{8K_{1}}{7.5K_{1}} = \frac{8}{7.5}$$
12 & 13.
$$\frac{df}{dt} = k(1-f)$$

$$\frac{df}{(1-f)} = kdt$$
On integration
$$-\ln(1-f) = kt + c$$
But C =0
$$k = -\frac{2.303}{t}\log(1-f)$$

$$k = \frac{-2.303}{t} \log(1-f)$$

$$200 = \frac{2.303 \times 3}{2.303 \times 3}$$

At half life

$$\frac{-2.303 \times 3}{200} = -\frac{2.303}{t_{12}} \log \left(1 - \frac{T}{2T}\right)$$

$$-\frac{3}{200} = \frac{1}{t_{12}} \log \frac{1}{2}$$

$$t_{12} = 46.2hrs$$
14.

$$\Delta M \times 931.5 = kE_1 + kE_2$$
15.

$$\Delta m = (20 \times 1.0087 + 17 \times 1.0078)u; \overline{B.E} = \frac{37.3066 - 36.9659}{37} = 8.58 \text{MeV}$$
16.

$$T_1 - T_2 = \frac{1}{\lambda} \ln \frac{C_1}{C_2}$$
17.
weight of $C^{14} = 70 \times \frac{18}{100} \times \frac{1.56 \times 10^{-10}}{100} = 1.9656 \times 10^{-11} kg$
Number of C^{14} atoms $= \frac{\frac{1.9656 \times 10^{-11} \times 10^3}{14} \times 6.023 \times 10^{23}}$

$$Rumber of C^{14} = \frac{0.693}{5570 \times 365 \times 24 \times 60} \times 8.54 \times 10^{14}$$

$$Activity = \lambda N = \frac{0.693}{5570 \times 365 \times 24 \times 60} \times 8.54 \times 10^{14}$$

$$a \times 3B$$

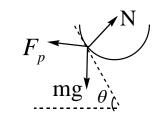
$$Att = 0 \ a \ 0$$

$$Att = t \ a - x \ 3x$$

$$At time t, (a - x) = 3x$$

$$a = 4x$$

$$k = \frac{2.303}{t} \log \frac{4}{3x} \Longrightarrow \frac{0.693}{t_{12}} = \frac{2.303}{t} \log \frac{4}{3}$$


$$t_{12} = 4.82 \min$$
no. of $\alpha = 4$ A = 238 - 16 = 222
20.
no. of $\beta = 6$ Z = 92 - 2 = 90

$$\sqrt{Th}^{322} \ belongs \ 3^{-d} \ group$$
21.
i, ij, ij, iv, v are correct statements

22.
$$f = e^{-Ea/RT} = \frac{10^{-3}}{100} = 10^{-5}$$

 $K = A.e^{-Ea/RT}$
 $3 \times 10^{-3} = A.10^{-5}$
 $A = \frac{3 \times 10^{-3}}{10^{-5}} = 300 \text{ min}^{-1}$
23. No. of half lives (h) $= \frac{100}{20} = 5$

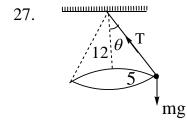
$$A = \lambda N = \lambda \frac{No}{2^{n}} = \frac{6400}{2^{5}} = 200$$

PHYSICS

 $N\cos\theta = mg$

24.

 $N\sin\theta = mr\omega^2$


$$\tan \theta = \frac{r\omega^2}{g}$$
$$\frac{dy}{dt} = \frac{r\omega^2}{g}$$

$$\frac{dx}{dx} = \frac{dy}{g}$$

$$\omega = \sqrt{\frac{2g}{c}}$$

25. $m, r\omega^2 = m_2 g$

$$26. \qquad T = \int_{r=\frac{2}{2}}^{2} d m r \omega^2$$

$$T \cos \theta = mg$$

$$T \sin \theta = mr\omega^{2}$$

$$T \operatorname{ime} \operatorname{taken} = \frac{2\pi}{\omega}$$
28. $a = r\omega^{2} = x\omega^{2} = \upsilon \frac{d\upsilon}{dx}$
29. $\tan \theta = \frac{g}{a} = \frac{gr}{\upsilon^{2}}$
30. $N = mr\omega^{2} \& mg \sin \theta - f = ma_{t}$

$$\therefore f = mg \sin \theta = 5N$$
31. $\overline{S}_{rel} = a \sin 2t\hat{i} + a \cos 2t\hat{j}$

$$\overline{a} \pm \overline{\nu}$$
32. $T + f = mr\omega^{2}$

$$T = 0 \Rightarrow f = mr\omega^{2} \le \mu mg$$
33. $w = \frac{v_{\perp}}{r}$
34. $N \cos \theta = mg$

$$N \sin \theta = \frac{m\upsilon^{2}}{r}$$
35-37. $N_{1} = mg \& N_{2} = ma_{t} = mr\alpha$

$$N = \sqrt{N_{1}^{2} + N_{2}^{2}}$$
For $t < t_{0}, f = mr\omega^{2} = mr(\alpha t)^{2}$
At $t = t_{0} = f = \mu N$
38-39.

$$N \sin \theta \mp f \cos \theta = \frac{mv^2}{r}$$

$$N \cos \theta \pm f \sin \theta = mg$$
40. $R\alpha = R\omega^2, \omega = \alpha t$
41. $T = mr\omega^2/2\pi$
42. $N = ma_r = mr\alpha$
 $f = mr\omega^2$
 $t = \sqrt{\frac{\mu}{\alpha}}$
43. $N = mr\omega^2$
 $f = \mu N$
 $f = \mu mr\omega^2 = -mr\alpha$
 $\frac{d\omega}{dt} = -\mu\omega^2$
 $\int \frac{d\omega}{\omega^2} = \int -\mu dt$
44. $a = \sqrt{a_r^2 + a_r^2}$
45. $R = \frac{v^2}{a_N} = \frac{mv^2}{F \sin \theta}$
46. path followed is helix,
 $=1$

<u>MATHS</u>

with its axis along x-axis. X-coordinate = pitch = $\upsilon \, \upsilon \cos 60^{\circ} t$

47. Let P be on x+2y-1, then

$$1 + \frac{t}{\sqrt{2}} + 2\left(2 + \frac{t}{\sqrt{2}}\right) - 1$$

Let P be on 2x+4y=15, then
 $2\left(1 + \frac{t}{\sqrt{2}}\right) + 4\left(2 + \frac{t}{\sqrt{2}}\right) - 15$

Since the point lies between the lines and x=t, $t \in \left(\frac{-4\sqrt{2}}{3}, \frac{5\sqrt{2}}{3}\right)$ 48. If the given lines are concurrent, then $\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0$ Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_1$) or a(b-1)(c-1) - (c-1)(1-a) - (b-1)(1-a) = 0Dividing by (1-a)(1-b)(1-c)Adding 1 on both sides we get $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 1$ 49. The three lines are concurrent if $\begin{vmatrix} 1 & 2 & -9 \\ 3 & 5 & -5 \\ a & b & -1 \end{vmatrix} = 0$ or 35a-22b+1=0

Which is true if the line 35x-22y+1=0 passes through (a, b)

50. The family of lines $(x-2y+3)+\lambda(2x-3y+4)=0$ is concurrent at point P(1,2) If the images of point A(2, 3) in the above variable lines is B(h, k), then AP=BP

Or $(h-1)^{2} + (k-2)^{2} = (2-1)^{2} + (3-2)^{2}$

51. The family of line through the given lines is $L \equiv x - 7y + 5 + \lambda(x + 3y - 2) = 0$ For line L=0 n the diagram, the distance of any point say (2,0) on the line x+3y-2=0 from the line x-7y+5=0 and line L=0 must be the same, therefore

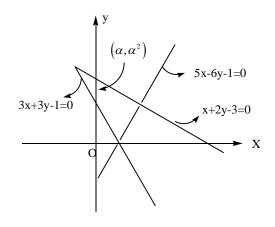
$$\left|\frac{2+5}{\sqrt{50}}\right| = \left|\frac{2+2\lambda+5-2\lambda}{\sqrt{\left(1+\lambda\right)^2+\left(3\lambda-7\right)^2}}\right|$$

Or $10\lambda^2 - 40\lambda = 0$
i.e $\lambda = 4$ or 0
 $x+3y-2=0$

Hence, $L = 0, \lambda = 4$

Therefore, the required line is 5x+5y-3=0

52. Use angular bisector formulae


53. Conceptual

54. The chord subtends 90° at the center (0,0) . Making $x^2 + y^2 = 1$ homogeneous in The second degree with help of y-mx+1, we get

$$x^{2} + y^{2} = (y - mx)^{2}$$

Or $(1 - m^{2})x^{2} + 2mxy = 0$

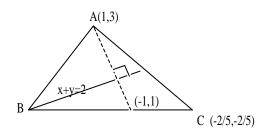
The angle between these lines is 90° if $1 - m^2 + 0 = 0$ i.e $m = \pm 1$

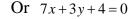
55.

O and the point (α, α^2) lie on the opposite sides with respect to 2x+3y-1=0 Hence,

O and the point (α, α^2) lie on the same side with respect to x+2y-3=0, Hence

 $\alpha + 2\alpha^2 - 3 < 0....(2)$


Again O and the point (α, α^2) lie on the same side with respect to 5x-6y-1=0 Hence


 $5\alpha - 6\alpha^2 - 1 < 0 \text{ or } 6\alpha^2 + 5\alpha + 1 > 0$

- 56. Clearly from the figure, the triangle is obtuse –angled. Hence the centroid and incenter lie inside the triangle. The orthocenter and circumcenter lie outside the triangle Therefore, it is an obtuse-angled triangle
 57. Conceptual
- 58. Given lines (x+y+1) + b(2x-3y-8) 0 are concurrent at the

Point of intersection of the lines x+y+1=0 and 2x-3y-8=0 which is (1, -2) Now, the line through A (1, -2) which is farthest from the point B(2, 2) is perpendicular to AB. Now, the slope of AB is 4. Then the required line is y+2=-(1/4)(x-1)or x+4y+7=0

- 59. Also, the line x+4y+7 = 0 meets the axes at C (-7,0) and D(0, -7/4). Then the area of triangle COD is (1/2) | (07) (-7/4) | or 49/8
- 60. The image of A(1, 3) in line x+y=2 is (1-2(2)/2, 3-2(2)/2=(-1,1))So line BC passes through (-1,1) and (-2/5, -2/5) The equation of line BC is

- 61. Vertex B is the point of intersection of 7x+3y+4=0 and x+y=2, ie $B = \left(-5/2, \frac{9}{2}\right)$
- 62. Line AB is $y-3 = \frac{3-9/2}{1+5/2}(x-1)$ or 3x+7y=24
- 63. Each family has parallel lines having the distance between them as $\frac{1}{\sqrt{2}}$ unit. Both the families are perpendicular to each other. So, to form a square of diagnomal 2 units, lines of alternate pair to be chosen. Both the families have three such pairs. So, the number of squares possible is $3 \times 3 = 9$
- 66. position of a point with respect to align

67. Use the formula
$$|m_1 - m_2| = \frac{2\sqrt{h^2 - ab}}{|b|}$$

- 68. Conceptual
- 69. Conceptual