

Master JEE CLASSES Kukatpally, Hyderabad.

IIT-JEE ADVANCED-2016-P2-MODEL

Max.Marks:186

PHYSICS: Refraction at plane surface, TIR and Prism,

Refraction at curved surface (exclude problems involving relative motion and differential and integral calculus)

CHEMISTRY: De-Broglie Equation, Heisenberg's Uncertainty principle, Schrodinger's wave equation; Quantum numbers, Pauli's exclusion Principle; Hund's rule; Electronic configuration of the elements, (70%)

Atomic Structure : Fundamental Particles - their characteristics; Thomson's, Rutherford's atomic model, Plank's Quantum theory, Bohr's atomic model, Applications of Bohr's atomic model - calculation of radius, velocity, frequency, time period and energy of electron in an orbit, Electromagnetic spectra, Hydrogen spectrum, Photoelectric effect, (30%)

MATHS: Real numbers, Factor Theorem, Remainder Theorem, Finding roots of Polynomial Equation, Finding Polynomial with given roots using factor Theorem, Wavy curve method, Rational Inequations, Irrational Equation & Inequation, Modulus & its properties, Logarithm & its properties, Equations/Inequation involving Logarithms, Exponentials, Modulus; Greatest Integer, Least Integer & Fractional Part Functions (30%); Quadratic Equation (70%)

JEE-ADVANCE-2016-P2-Model

Time: 3:00 hours

P

IMPORTANT INSTRUCTIONS

Max Marks: 186

HYSICS:					
Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 1 – 6)	Questions with Single Correct Choice	3	-1	6	18
Sec – II(Q.N : 7 – 14)	Questions with Multiple Correct Choice (Partial Marking +1)	4	-2	8	32
Sec – III(Q.N : 15 – 18)	Questions with Comprehension Type (2 Comprehensions $- 2 + 2 = 4Q$)	3	0	4	12
	Total	•		18	62

CHEMISTRY:

Section	Question Type	- Ve Marks	No.of Qs	Total marks	
Sec – I(Q.N : 19 – 24)	Questions with Single Correct Choice	3	-1	6	18
Sec – II(Q.N : 25 – 32)	Questions with Multiple Correct Choice (Partial Marking +1)	4	-2	8	32
Sec – III(Q.N : 33 – 36)	Questions with Comprehension Type (2 Comprehensions – 2 + 2 = 4Q)	3	0	4	12
	Total			18	62

MATHEMATICS:

Section	Question Type	No.of Qs	Total marks		
Sec – I(Q.N : 37 – 42)	Questions with Single Correct Choice	3	-1	6	18
Sec – II(Q.N : 43 – 50	Questions with Multiple Correct Choice (Partial Marking +1)	4	-2	8	32
Sec – III(Q.N : 51 – 54	-54) Questions with Comprehension Type (2 Comprehensions $-2 + 2 = 4Q$) 3		0	4	12
	Total			18	62

space for rough work

3. A ray of light from a liquid $(\mu = \sqrt{3})$ is incident on a system of two right angled prism of refractive indices $\sqrt{3}$ and $\sqrt{2}$ as shown. The ray suffers zero deviation when emerges into air from CD. The angle of incidence i is

4. A particle revolves in clockwise direction (as seen from point A) in a circle C of a radius 1 cm and completes one revolution in 2 sec. The axis of the circle and the principal axis of the mirror M coincide. The radius of curvature of the mirror is 20 cm. Then the direction of revolution (as seen from A) of the image of the particle and its speed is

A) Clockwise, 1.57 cm/s

B) Clockwise, 3.14 cm/s

C) Anticlockwise, 1.57 cm/s

D) Anticlockwise, 3.14 cm/s

space for rough work

12. Which of the following statement is/are correct about the refraction of light from a plane surface when light ray is incident from a denser medium. [where C is the critical angle]
A) The maximum angle of deviation during refraction is π/2 – C, it will be at angle of

incidence C.

B) The maximum angle of deviation for all the angle of incidences is π - 2C, when angle of incidence is slightly greater than C.

C) If the angle of incidence is less than C then the deviation increases if the angle of incidence is also increased

D) If the angle of incidence is greater than C then the angle of deviation decreases if angle of incidence is increased

13. For a concave mirror of focal length f, image is 2 times larger. Then the object distance from the mirror is

A)
$$\frac{f}{2}$$
 B) $3\frac{f}{2}$ C) $\frac{f}{4}$ D) $4\frac{f}{3}$

14 A sphere of glass is placed symmetrically an x-axis. Aray parallel to x-axis is incident on the sphere at point P and emerges on z-axis. If angle of refraction at P is 30^{0} , find the refraction index of the glass:

space for rough work

CHEMISTRY

SECTION – I (SINGLE CORRECT ANSWER TYPE)

This section contains 6 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases.

19. In hydrogen spectrum v_1 and v_2 are the frequencies series limit for Lyman and Balmer

series, Which relation is correct for frequency v_3 of 1^{st} line of Lyman series.

A)
$$v_3 = v_1 + v_2$$
 B) $v_3 = v_1 - v_2$ C) $v_3 = v_1 \times v_2$ D) $v_3 = \frac{v_1}{v_2}$

20. Let us consider following graph for radial distribution function. Which of the following has correct matching of curve and orbital?

space for rough work

Page 11

Max Marks: 62

The number of electrons in *d*-subshell of $Cr^{2+}(Z = 24)$ is equal to: 28. A) s-electrons in Ne (Z = 10)B) unpaired electrons in Fe(Z = 26)C) *p*-electrons in O(Z = 8)D) *d*-electrons in $Fe^{3+}(Z=26)$ The ratio of de Broglie wavelength of a proton and α – particles will be 1 : 2 if their 29. A) Velocity are in the ratio 1:8 B) Velocity are in the ratio 8:1 C) Kinetic energy are in the ratio 16:1 D) Kinetic energy are in the ratio 1:16 30. Which of the following sets of quantum number is/are not permitted? A) $n = 3, l = 3, m = +1, s = +\frac{1}{2}$ B) $n = 3, l = 2, m = +2, s = -\frac{1}{2}$ D) $n = 3, l = 0, m = 0, s = +\frac{1}{2}$ C) $n = 3, l = 1, m = +2, s = -\frac{1}{2}$ The angular momentum of electron can have the value(s): 31. A) $0.5 \frac{h}{\pi}$ B) $\frac{h}{\pi}$ C) $\frac{h}{0.5\pi}$ D) $2.5\frac{h}{2\pi}$ 32. Select the correct statement(s) A) The number of maxima in 2s orbital (for radial probability distribution) are two B) $3d_{2}$ orbital has 2 angular nodes and 1 radial node C) $3d_{2}$ has 3 angular nodes D) YZ and XZ are nodal planes for d_{xy} orbital Page 14 space for rough work

SECTION - III (PARAGRAPH TYPE)

This section contains 2 groups of questions. Each group has 2 multiple choice questions based on a paragraph. Each question has 4 choices A), B), C) and D) for its answer, out of which ONLY ONE is correct. Marking scheme: +3 for correct answer, 0 if not attempted and 0 in all other cases. Paragraph For Questions 33 and 34: According to Heisenberg., It is impossible to measure simultaneously the position and momentum of small particle with absolute accuracy or certainty. If an attempt is made to measure any one of these two quantities with higher accuracy, the other becomes less accurate. The product of the uncertainty in position (Δx) and uncertainty momentum (Δp) is always constant and is equal to or greater than h/4 π , where h is Planck's constant i.e. $(\Delta x)(\Delta p) \ge \frac{h}{4\pi}$ Uncertainty in position is twice the uncertainty in momentum, uncertainty in velocity is 33. B) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$ C) $\frac{1}{2m}\sqrt{h}$ D) $\frac{1}{2m}\sqrt{\frac{h}{2\pi}}$ A) $\sqrt{\frac{h}{\pi}}$ A golf ball bas a mass of 40g and a speed of $40ms^{-1}$. If the speed can be measured with 34. an accuracy of 2%, calculate the uncertainty in the position. A) $1.46 \times 10^{-33} m$ B) $1.46 \times 10^{-32} m$ C) $1.46 \times 10^{-31} m$ D) $1.46 \times 10^{-30} m$ space for rough work Page 15

Paragraph For Questions 35 and 36:

The emission of electrons from a metal surface when exposed to light radiation of appropriate wavelength is called photoelectric effect. The emitted electrons are called photo-electrons. Work function of threshold energy may be defined as the minimum amount of energy required to eject electrons from a metal surface. According to Einstein,

Maximum kinetic energy of ejected electron = Absorbed energy – Work function

$$\frac{1}{2}mv_{\max}^2 = h(v) - h(v_0) = hc\left[\frac{1}{\lambda} - \frac{1}{\lambda_0}\right]$$

36.

Where v_0 and λ_0 are threshold frequency and threshold wavelength, respectively.

Stopping potential: It is the minimum potential at which the photoelectric current

becomes zero. If V_0 is the stopping potential $eV_0 = h(v - v_0)$

35. When a certain metal was irradiated with light of frequency $1.6 \times 10^{16} H_z$, the photoelectrons emitted had twice the kinetic energy as the photoelectrons emitted when the same metal was irradiated with light of frequency $1.0 \times 10^{16} H_z$. Calculate the threshold frequency (v_0) for the metal.

A) $4 \times 10^{16} Hz$ B) $4 \times 10^{15} Hz$ C) $4 \times 10^{14} Hz$ D) $2 \times 10^{16} Hz$ A light source of wavelength λ illuminates a metal and ejects photoelectrons with

 $(kE)_{max} = 1 \text{ eV}$. Another light source of wave length $\frac{\lambda}{3}$, ejects photoelectrons from same

metal with $(KE)_{max}$ =4eV. Find the value of work function.

 A) 1eV
 B) 2eV
 C) 0.5eV
 D) 3eV

 space for rough work
 Page 16

MATHEMATICS Max Marks: 62 **SECTION – I** (SINGLE CORRECT ANSWER TYPE) This section contains 6 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which ONLY ONE option can be correct. Marking scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases. The number of integers not satisfying $\lceil |x-1| \rceil + \lceil |7-x| \rceil - 6 \neq 0$ is ([.] denotes G.I.F) 37. C)8 A) 7 B)6 D)2 38. Let $\{x_1, x_2, \dots, x_k\}$ be the set of positive integers 'n' such that $n^2 + 256$ is a perfect square. Then A) $\sum_{i=1}^{k} x_i = 135$ B) $\sum_{i=1}^{k} x_i = 268$ C) $\sum_{i=1}^{k} x_i = 160$ D) $\sum_{i=1}^{k} x_i = 240$ If $\alpha, \beta; \beta, \gamma; \gamma, \alpha$ are the roots of $a_i x^2 + b_i x + c_i = 0$ for $i = 1, 2, 3(\alpha, \beta, \gamma > 0)$ and 39. If $\sum \alpha + \sum \alpha \beta + \alpha \beta \gamma = \prod_{i=1}^{3} \left(\frac{a_i - b_i + c_i}{1 + c_i} \right)^{1/2} + k$, then k=____

40.
$$a,b,c > 0$$
 are in *G.P* and $(a+di)x^2 + 2(b+ei)x + (c+if) = 0$ has one real root then $\frac{a}{b}, \frac{b}{c}, \frac{c}{f}$ are

in
$$(a,b,c,d,e,f \in R, i = \sqrt{-1})$$

A) A.P B)G.P C)H.P D)A.G.P

space for rough work

Let α , β ($0 < \alpha < \beta$) be the roots of $ax^2 + bx + c = 0$ and γ , δ ($\gamma > \delta$) be the roots of 41. $a^{3}x^{2} + abcx + c^{3} = 0$ then $\frac{\gamma^{2}}{s}$ is independent of A) α , but not β B) β , but not α C)Both α and β D)neither α nor β The degree of the equation whose roots are integer values of 'x' for 42. which $\log_{[x^2]}(4-|x|) + \log_3(\sqrt{x})$ is real is ___([.] denotes G.I.F, {.} denotes fraction part). A)4 B)1 C)2 D)3 **SECTION – II** (MULTIPLE CORRECT ANSWER TYPE) This section contains 8 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which ONE OR MORE than ONE option can be correct. Marking scheme: +4 for correct answer, 0 if not attempted and -2 in all other cases Let $f(x) = ax^2 + bx + c$, a < o, c > 0 and $f(\alpha) = 0, \alpha > 0$, Let 43. $A = \sum_{i=1}^{n} f(x_{i-1}), B = \sum_{i=1}^{n} f(x_i), C = \sum_{i=1}^{n} f\left(\frac{x_{i-1} + x_i}{2}\right) \text{ where } 0 \le x_{i-1} < x_i < \alpha \text{ then}$ C) A + B < 2CA) A > B**B**) B > AD) A + B > 2CThe values of x satisfying $\frac{2\{x\}-1}{x-2\{x\}} \ge 0$ given by all the values belongs to____ 44. $(\{x\}$ denotes fraction part) A) $n, n + \frac{1}{2}$, $n \in I^-$ B) $n + \frac{1}{2}, n+1$, $n \in I^+$ $D)\left(0,\frac{1}{2}\right)$ C)(1, ∞)- I^+ space for rough work Page 18

	A) 0	B) 1	C) at least 2	D) finite, but at least 3				
50.	The number of so	olutions of the equat	tion $x^3 - [x] = 3$, ([.]d	enotes G.I.F) is				
	A) $ab + cd = 5$	$\mathbf{B})a+b+c+d=1$	C) $ab + cd = -9$	$\mathbf{D})2ac-bd=0$				
	x is given by $[a, b]$	$b]-\{0\}$ and exhausti	ve set of values of	<i>m</i> is given by $R-(c,d)$, then				
49.	If x,m satisfy log	$_{1/2} x^2 \ge \log_{1/2} (x+2)$ and	d $49x^2 - 4m^4 \le 0$, the	en the exhaustive set of values of				
	A) $(0,\infty) - \{1\}$	B)(1, ∞)	C)[2,∞)	$D)(-\infty,1)$				
40.	of 'a' contains.	+(u-b)x+1-u-b-0	$b, \forall b \in K$ are real and	i unequal then the set of values				
18	A) $pr < 0$ If the roots of r^2 .	D) $qr < 0$ + $(a-b)x+1-a-b-0$	$D / \alpha < 0$ $D / \alpha < 0$					
47.	If $1, 1, \alpha$ are the roo	ots of $px^3 + q(x^2 + x)$ -	r = 0, then	\mathbf{D}				
47	$A)\left(-\frac{3}{4},\frac{3}{4}\right)$	B)(-1,1)	$C)\left(-\frac{1}{4},1\right)$	$D\left(-\frac{1}{2},\frac{1}{2}\right)$				
	$x^{2}-2(a+1)x+a(a+1)$	$(n-1) = 0$ such that α, μ	$\beta \in (\gamma, \delta)$. Then the	set of values of 'a' is a subset of $\begin{pmatrix} 1 & 1 \end{pmatrix}$				
46.	Let α, β be the ro	ots of $x^2 - 2x - a^2 + 1$	= 0 and γ, δ are the	e roots of				
	$C)\left(\frac{3-\sqrt{14}}{2},\sqrt{3}\right)-$	{0}	$\mathbf{D}\left(\frac{3-2\sqrt{3}}{2},\sqrt{3}\right) - \{0\}$					
	$\mathbf{A}\left(\frac{3-2\sqrt{3}}{2},2\right)-\left\{0\right\}$)}	$\mathbf{B}\left(\frac{3-\sqrt{13}}{2},2\right)-\{0\}$					
	({.} denotes fracti	on part)						
45.	The exhaustive set of solutions if $\{x-2\} - x(x-2) > 0$ is							

SECTION – III (PARAGRAPH TYPE) This section contains 2 groups of questions. Each group has 2 multiple choice questions based on a paragraph. Each question has 4 choices A), B), C) and D) for its answer, out of which ONLY ONE is correct. Marking scheme: +3 for correct answer, 0 if not attempted and 0 in all other cases. Paragraph For Questions 51 and 52: Let $\alpha, \beta; \alpha, \gamma; \alpha, \delta$ are the roots of $ax^2 + 2bx + c = 0, 2bx^2 + cx + a = 0, cx^2 + ax + 2b = 0$ where $a,b,c \in N$ 51. Least possible integer value of a+b+c is A) 4 B)5 D)7 C)3 $\sum_{p=0}^{99} \alpha^r = ___$ 52. **B**)1 C)100 D)51 A) 0 Paragraph For Questions 53 and 54: Consider the equation $|x^2 + bx + c| = k$ and $b^2 - 4c > 0$. 53. The given equation has four real roots if A) $o < k < \frac{b^2 - 4c}{4}$ B) $k > \frac{b^2 - 4c}{4}$ C) $k > \frac{4c - b^2}{4}$ D) $k < \frac{4c - b^2}{4}$ 54. The given equation has exactly two real roots if A) $o < k < \frac{b^2 - 4c}{4}$ B) $k > \frac{b^2 - 4c}{4}$ C) $k > \frac{4c - b^2}{4}$ D) $k < \frac{4c - b^2}{4}$ space for rough work Page 20

Master JEE CLASSES

Kukatpally, Hyderabad.

IIT-JEE ADVANCED-2016-P2-MODEL Max.Marks: 186

KEY SHEET <u>PHYSICS</u>

1	Α	2	В	3	А	4	А	5	А
6	В	7	AD	8	AD	9	Α	10	AD
11	В	12	ABCD	13	AB	14	В	15	Α
16	Α	17	С	18	В				

CHEMISTRY

19	В	20	Α	21	В	22	С	23	A
24	Α	25	AC	26	ABCD	27	AD	28	ABC
29	BC	30	AC	31	ABC	32	AD	33	D
34	Α	35	В	36	С				5

<u>MATHS</u>

37	Α	38	Α	39	D	40	С	41	Α
42	С	43	BC	44	ABD	45	В	46	BC
47	BCD	48	BC	49	BCD	50	В	51	В
52	В	53	Α	54	В				

SOLUTIONS

PHYSICS: $\mu = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4} + \dots +$ 1. Cauchy's relation $1(\sin\theta) = \sqrt{3}\sin\frac{\theta}{2}$ $\Rightarrow \cos\frac{\theta}{2} = \frac{\sqrt{3}}{2}$ 2. $\theta = 60^{\circ}$ 202 90 Br 90-81 Ð, 3. $\sqrt{3} \sin i = \sqrt{3} \sin \theta_1$ $\sqrt{3}\cos\theta_1 = \sqrt{2}\sin\theta_2$ $\sqrt{2}\cos\theta_2 = \sin i$ solving we get $i = 45^{\circ}$ $\frac{1}{-10} + \frac{1}{n} = \frac{1}{10}$ n = 5 $m = -\left(\frac{5}{-10}\right) = \frac{1}{2}$ (Erect image) 4. $V = r\omega = \frac{1}{2} \times \frac{2\pi}{2} = \frac{\pi}{2} = 1.57 \text{ cm/s}$ same direction of object

$$\frac{\frac{\mu_2}{\nu} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}}{\nu} = \frac{\mu_2 - \mu_1}{R}$$

$$0 - \frac{\mu_1}{(-2R)} = \frac{\mu_2 - \mu_1}{-R}$$
5.
$$\frac{\frac{\mu_1}{2}}{\mu_2} = \mu_2$$

$$\frac{\mu_1}{\mu_2} = 2$$
6.
$$\frac{\mu_1}{\mu_2} = 2$$
6.
$$\frac{\pi}{a/2} = \tan 30^0$$

$$r = \frac{a}{2}x \frac{1}{\sqrt{3}} = \sqrt{\frac{2}{3}}$$
Total dark area = $6a^2 - 6\pi r^2$

$$= 12 - 6\pi \frac{2}{3}$$

$$= 12 - 4\pi$$

7.

$$\frac{x}{\mu} = 5$$

$$\frac{y}{\mu} = 3$$

$$x + y = 12$$

$$\Rightarrow \mu = 1.5$$

$$x = 7.5$$
8.
$$\frac{n_2}{\nu} - \frac{n_2}{u} = \frac{n_2 - n_1}{R}$$
or
$$\frac{n_2}{f_2} - \frac{n_1}{\infty} = \frac{n_2 - n_1}{R}$$
or
$$f_2 = \frac{n_2 R}{(n_2 - n_1)}$$
Similarly,
$$\frac{n_2}{\infty} - \frac{n_1}{f_1} = \frac{n_2 - n_1}{R}$$
 will give

$$f_1 = (-1)\frac{n_1 R}{(n_2 - n_1)}$$

9.

y- axis is the normal.

$$\therefore (1.5) \frac{a}{\sqrt{a^2 + b^2}} = 2 \frac{c}{\sqrt{c^2 + d^2}}$$
$$\therefore \frac{a}{c} = \frac{2}{1.5} = \frac{4}{3}$$

10.

$$\frac{1.5}{\nu} - \frac{1}{\infty} = \frac{0.5}{+R}$$

⇒ $\nu = 3R$
∴ Realimage is formed at 60cm

11. From the following diagram it is clear that

12.

At i=c, $r=90^{\circ}$

$$\delta = r - i = \frac{\pi}{2} - c$$

At islightly more than c $\pi\,R$ takes place.

 $\delta = \pi - 2 c$

For refraction δ increase with i For reflection δ decrease with i

13.

14.

$$\therefore i = e = 60^{\circ} \delta = 60^{\circ}$$
$$\sin i = \mu \sin 30^{\circ}$$
$$\mu = \sqrt{3}$$

Images of eye appears at $% \left({\mu H + H} \right)$ a distance of ($\left({\mu H + H} \right)$ from mirror

$$\mathbf{d} = \frac{\mathbf{H}}{2} + \mu \mathbf{H} + \mathbf{H} = \mathbf{H} \left(\mu + \frac{3}{2} \right)$$

16.

$$d = H + \frac{H}{2\mu}$$

17.

$$\frac{2}{\nu} - \frac{1}{-X} = \frac{2-1}{R}$$

$$\frac{2}{\nu} = \frac{1}{R} - \frac{1}{X}$$
for image to be virtual v < 0
 $\Rightarrow X < R$

$$\frac{2}{\nu} = \frac{1}{R} - \frac{1}{2R}$$
18.
$$\frac{\nu}{\nu} = 4R \text{ (Inverted real image)}$$
 $\therefore \text{ Object dis tan ce for plane surface is 3R}$

$$\frac{1}{2} = 2(3R) = 6R$$

	CHEMISTRY
19.	For Lyman series limit: $v_1 = cR\left[\frac{1}{1^2} - \frac{1}{\infty^2}\right] = cR$ (i)
	For Balmer series limit: $v_2 = cR\left[\frac{1}{2^2} - \frac{1}{\infty^2}\right] = \frac{cR}{4}$ (ii)
	For I st line of Lyman series: $v_3 = cR\left[\frac{1}{1^2} - \frac{1}{2^2}\right] = \frac{3cR}{4}$ (iii)
	By (i), (ii) and (iii) $v_1 = v_2 + v_3$
20.	$v_3 = v_1 - v_2$ A(3p): Number of radial nodes = n- l- l
	= 3- 1- 1= 1
	B:(3d) Number of radial nodes $= n - l - l$
	= 3 - 2 - 1 = 0
	C(3s): Number of radial nodes = $n - l - l$
	= 3 - 0 - 1 = 2
21.	$\lambda = \frac{h}{2}$ $\frac{\lambda_A}{2} = \frac{P_B}{P_B}$
	$p \qquad \lambda_B P_A$
	$P_B = \frac{1}{2} P_A \qquad \qquad \frac{\lambda_A}{\lambda_B} = \frac{1}{2}$
	$\lambda_B = 2\lambda_A = 2 \times 5 \times 10^{-8} = 10^{-7} m$
22.	Orbital angular momentum = $\sqrt{\ell(\ell+1)} \frac{h}{2}$
	$\sqrt{a(a-a)}$ h \sqrt{a} h
	$\Rightarrow \sqrt{\ell(\ell+1)} \ \frac{1}{2\pi} = \sqrt{5} \ \frac{1}{\pi}$
	$\sqrt{\ell(\ell+1)} = 2\sqrt{5} = \sqrt{20} \qquad \qquad \Rightarrow \qquad \qquad \ell = 4$
	hence maximum number of electrons in this subshell = $2(2\ell + 1) = 18$. Ans. 18
23.	$\left(\Psi\right)_{2s} = \frac{1}{2\sqrt{2}\pi} \left(\frac{1}{a_0}\right)^{1/2} \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0}$
	For radial node at $r = r_0$, $\Psi_{2s}^2 = 0$
	This is possible only when $\left(2-\frac{r}{a}\right)=0$
	Or $2 = \frac{r_0}{r_0} \Rightarrow r_0 = 2a_0$
24.	a_0 $\Psi_{221}: n = 3, l = 2, m = 1$
	Angular momentum $=\frac{h}{2}\sqrt{l(l+1)}=\frac{\sqrt{6}h}{2}$
	Spherical nodes = $3-2-1=0$: Angular node = 2
	$\sum_{n=1}^{\infty} \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} \sum_{n$
	Sum of all the above $=\frac{\sqrt{3\pi}}{2\pi}+2=\frac{\sqrt{3\pi}+\pi}{2\pi}$
25.	$\overline{\mathbf{v}} = \mathbf{R}\mathbf{Z}^2 \left(\frac{1}{\mathbf{n}_1^2} - \frac{1}{\mathbf{n}_2^2}\right)$

$$x = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right) = \frac{5R}{36}$$

$$\overline{v}_1 = Rx 2^2 \left(1 - \frac{1}{2^2}\right) = 3R = \frac{36}{5} X x 3 = \frac{108x}{5}$$
Wavelength of 2nd line of lyman series of H-atom
$$\frac{1}{\lambda} = Rx 1^2 \left(\frac{1}{1^2} - \frac{1}{3^2}\right)$$

$$\frac{1}{\lambda} = Rx \frac{8}{9}$$

$$\frac{1}{\lambda} = \frac{36x}{5} x \frac{8}{9}$$

$$\lambda = \frac{5}{32} x$$
26. CONCEPTUAL
27 N = 7 Is²2s²2p³

$$\boxed{\text{II}} \qquad \boxed{\text{II}} \qquad \boxed{\text{III}} \qquad \boxed{\text{III}} \qquad \boxed{\text{III}} \qquad \boxed{\text{IIII}} \qquad \boxed{\text{IIII}} \qquad \boxed{\text{IIII}} \qquad \boxed{\text{IIIII}} \qquad \boxed{\text{IIIII}} \qquad \boxed{\text{IIIIIIII}}$$
28. $Cr^{2^*} : Is^2 2s^2 2p^6 3s^2 3p^6 3d^4 : d\text{-}electron = 4$
 $Ne: 1s^2 2s^2 2p^6 : s\text{-}electrons = 2+2 = 4$
 $Fe: 1s^2 2s^2 2p^6 : ss^2 electrons = 2+2 = 4$
 $Fe: 1s^2 2s^2 2p^6 : 3s^2 3p^6 3d^6 : d\text{-}electrons = 5$
29. $\lambda = \frac{h}{mv} \cdot \frac{\lambda_a}{\lambda_a} = \frac{1}{2} \Rightarrow \frac{(mv)_F}{(mv)_a} = \frac{2}{1}$
 $\therefore m_a = 4m_p \Rightarrow \frac{V_p}{V_a} = \frac{8}{1}$
 $\frac{KE_F}{KE_a} = \frac{1/2m_FV_p^2}{1/2m_FV_p^2} = \frac{8^2}{4} = 16:1$
30. Conceptual
31. Conceptual
32. Conceptual
33. $Ax = 2Ap$
Now $Ax \cdot Ap \ge \frac{h}{4\pi}$
 $2Ap^2 \ge \frac{h}{4\pi}; 2(mAv)^2 \ge \frac{h}{4\pi}; Av \ge \frac{1}{2m} \sqrt{\frac{h}{2\pi}}$
34. Mass of the ball = 40g = 40 \times 10^{-3} kg
The uncertainty in the speed
 $Av = 45x \frac{2}{100} = 0.9ms^{-1}$
So the uncertainty in position
 $\Delta x = \frac{h}{4\pi\delta p} = \frac{h}{4\pi m\Delta v}$

$$= \frac{6.626 \times 10^{-34} Js}{4 \times 3.14 \times (40 \times 10^{-3} kg) \times (0.9 m s^{-1})} = 1.46 \times 10^{-33} m$$
35. $hv = hv_0 + KE$
 $KE_1 = h(v - v_0)$
 $KE_2 = h(v_2 - v_0) = \frac{KE_1}{2}$
 $\therefore \frac{v_2 - v_0}{v_1 - v_0} = \frac{1}{2} \Rightarrow \frac{1.0 \times 10^{16} - v_0}{1.6 \times 10^{16} - v_0} = \frac{1}{2}$
 $\Rightarrow v_0 = 4 \times 10^{15} Hz$
36. $\frac{hc}{\lambda} = 1 + \phi$(i)
 $3\frac{hc}{\lambda} = 4 + \phi$(ii)
From Eqs. (i)and (ii),
 $\phi = 0.5 eV$

MATHS

- 41. X=1,2,.....7
- 42. N=12,30,63

43.
$$(1+\alpha)(1+\beta) = \frac{a_1 - b_1 + c_1}{a_1}$$
$$\therefore (1+\alpha)(1+\beta)(1+\gamma) = \left(\prod_{i=1}^3 \frac{a_i - b_i + c_i}{a_i}\right)^{1/2}$$
44.
$$a\alpha^2 + 2b\alpha + c + i\left(a\alpha^2 + 2e\alpha + f\right) = 0$$
$$a\alpha^2 + 2b\alpha + c = 0, d\alpha^2 + 2e\alpha + f = 0$$
$$a\alpha^2 + 2\sqrt{ac\alpha} + c = 0, \frac{dc}{a} - 2e\frac{\sqrt{c}}{\sqrt{a}} + f = 0$$
$$\alpha = -\frac{\sqrt{c}}{\sqrt{a}} \qquad \frac{d}{a} - \frac{2e}{b} + \frac{f}{c} = 0$$
45. 2 from 1 obtained by $x \to \frac{ax}{c}$
$$\gamma = \frac{c}{a}\beta, \delta = \frac{c}{a}\alpha$$

46. $x > o, x \notin \left(-\sqrt{2}, \sqrt{2}\right), -4 < x < 4 \Longrightarrow x = 2, 3$

47. Curve is concave down $\Rightarrow f(x_{i-1}) > f(x_i) \Rightarrow A > B$

and
$$C > \frac{A+B}{2}$$

48. draw the graphs of $\{x\}, \frac{x}{2}$

$$\frac{1}{2} \le \{x\} < \frac{x}{2}$$
$$\Rightarrow x \in \left[n + \frac{1}{2}, n + 1\right], n \in I^+$$
$$\frac{x}{2} < \{x\} \le \frac{1}{2} \Rightarrow x \in \left(n, n + \frac{1}{2}\right], n \in I^-$$
also $n \in \left(0, \frac{1}{2}\right]$

49. draw the graph of $\{x\}, x^2 - 2x$ and solve

50.
$$\alpha = 1 - a, 1 + a, f(\alpha) < o, f(\beta) < 0$$

51.
$$\alpha = -1 \Rightarrow pq < 0, qr < 0, pr > 0$$

52.
$$\Delta > 0 \Longrightarrow b^2 - 2(a-2)b + a^2 + 4a - 4 > 0, b \in \mathbb{R}$$

Again $\Delta < 0 \Longrightarrow a > 1$

53.
$$x^2 - x - 2 \le 0 \Longrightarrow x \in [-1, 2] \text{ and } x \ne 0$$

 $2m^2 \ge \text{maximum of } 7|x| \Longrightarrow m \in R - (-\sqrt{7}, \sqrt{7})$

54. Draw graphs of x^3 , [x]+3

Paragraph -I

Put $x = \alpha$ and add all,

Then $\alpha^2 + \alpha + 1 = 0$ $\therefore a = 2b = c$

1)min value = $5 \quad 2)1+33(0)=1$

Paragraph-II

