

Master JEE CLASSES Kukatpally, Hyderabad.

JEE-ADVANCE-2016-P2-MODEL

IMPORTANT INSTRUCTIONS:

- 1) This booklet is your Question Paper.
- 2) Use the Optical Response Sheet (ORS) provided separately for answering the questions
- 3) Blank spaces are provided within this booklet for rough work.
- 4) Write your name, roll number and sign in the space provided on the back cover of this booklet.
- 5) You are allowed to take away the Question Paper at the end of the examination.

OPTICAL RESPONSE SHEET:

6) Darken the appropriate bubbles on the ORS by applying sufficient pressure. This will leave an impression at the corresponding place on the Candidate's sheet.

Max. Marks: 186

- 7) The ORS will be collected by the invigilator at the end of the examination.
- 8) Do not tamper with or mutilate the ORS. Do not use the ORS for rough work.
- Write your name, roll number and code of the examination center, and sign with pen in the space provided for this purpose on the ORS. Do not write any of these details anywhere else on the ORS. Darken the appropriate bubble under each digit of your roll number.

DARKENING THE BUBBLES ON THE ORS

- 10) Use a **BLACK BALL POINT PEN** to darken the bubbles on the ORS.
- 11) Darken the bubble **COMPLETELY**.
- 12) The correct way of darkening a bubble is as:
- 13) The ORS is machine-gradable. Ensure that the bubbles are darkened in the correct way.
- 14) Darken the bubbles ONLY IF you are sure of the answer. There is NO WAY to erase or

"un-darken" a darkened bubble.

JEE-ADVANCE-2016-P2-Model

IMPORTANT INSTRUCTIONS

PHYSICS:

1115[65.					
Section	Question Type +Ve - Ve Marks Marks		+Ve - Ve Marks Marks		Total marks
Sec - I(Q.N : 1 - 6)	Questions with Single Correct Choice			Qs 6	18
Sec – II(Q.N : 7 – 14)	Questions with Multiple Correct Choice (Partial Marking +1)		-2	8	32
Sec – III(Q.N : 15 – 18)	Questions with Comprehension Type (2 Comprehensions – 2 + 2 = 4Q)	3	0	4	12
	Total	•		18	62

CHEMISTRY:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 19 – 24)	Questions with Single Correct Choice	3	-1	6	18
Sec – II(Q.N : 25 – 32)	Questions with Multiple Correct Choice (Partial Marking +1)	4	-2	8	32
Sec – III(Q.N : 33 – 36)	Questions with Comprehension Type (2 Comprehensions $-2 + 2 = 4Q$)	3	0	4	12
	Total			18	62

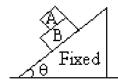
MATHEMATICS:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 37 – 42)	Questions with Single Correct Choice	3	-1	6	18
Sec – II(Q.N : 43 – 50)	Questions with Multiple Correct Choice (Partial Marking +1)	4	-2	8	32
Sec – III(Q.N : 51 – 54)	Questions with Comprehension Type (2 Comprehensions – 2 + 2 = 4Q)	3	0	4	12
	Total			18	62

space for rough work

Page 2

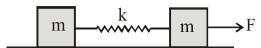
Max Marks: 186


PHYSICS Max Marks: 62

SECTION - I (SINGLE CORRECT ANSWER TYPE)

This section contains 6 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which ONLY ONE option can be correct.

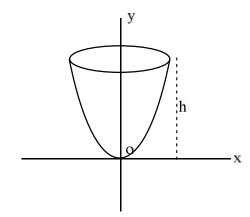
Marking scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases.


A block A placed over another block B which is placed over a smooth inclined plane as shown in figure. The coefficient of friction between the two blocks A and B is u. Mass of block B is two times the mass of block A. Now the blocks are released. The acceleration of the centre of mass of two blocks is

- A) $g \sin \theta$

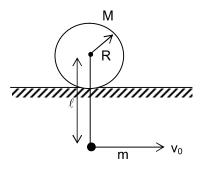
- B) $\frac{g \sin \theta \mu g \cos \theta}{3}$ C) $\frac{g \sin \theta}{3}$ D) $\frac{2g \sin \theta \mu g \cos \theta}{3}$

2. Two blocks of equal mass m are connected by an unstretched spring and the system is kept at rest on a frictionless horizontal surface. At t=0, a constant force F is applied on the first block pulling it away from the other as shown in figure.



If the extension of the spring is x_0 at time t, then the displacement of the first block in time t is

- A) $\frac{1}{2} \left(\frac{Ft^2}{2m} + x_0 \right)$ B) $-\frac{1}{2} \left(\frac{Ft^2}{4m} + x_0 \right)$ C) $\frac{1}{2} \left(\frac{Ft^2}{2m} x_0 \right)$ D) $\left(\frac{Ft^2}{2m} + x_0 \right)$

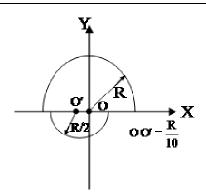

space for rough work

- In a boat of mass 4M and length 'L' on a frictionless water surface. Two men A (mass = 3. M) B(mass = 2M) are standing on the opposite ends. Now A travels a distance L/4 relative to boat towards its centre and B moves a distance 3L/4 relative to boat and meet A. The displacement of the boat on water till A and B meet is
 - A) $\frac{5L}{28}$
- B) zero
- C) $\frac{L}{2}$ D) $\frac{23L}{2}$
- A paraboloid shaped solid object is formed by rotating on parabola $y = 2x^2$ about y-axis 4. as shown in figure. If the height of the body is 'h' then the position of centre of mass from origin. (Assume density to be uniform throughout).

space for rough work

5. A disc of radius R and mass M is placed on smooth horizontal surface as shown in figure. A light rod of length ℓ is hanged from the centre of disc and a small mass m is attached at the end as shown in figure. Now a velocity V₀ is given to mass m. Find the maximum height which mass m can attain. (Assume rod can rotate $< 90^{\circ}$)

A)
$$\frac{1}{2} \frac{V_0^2}{g} \frac{m}{M+m}$$


B)
$$\frac{1}{2} \frac{V_0^2}{g} \frac{M}{2m}$$

$$C) \frac{1}{2} \frac{V_0^2}{g} \frac{m}{2M}$$

A)
$$\frac{1}{2} \frac{V_0^2}{g} \frac{m}{M+m}$$
 B) $\frac{1}{2} \frac{V_0^2}{g} \frac{M}{2m}$ C) $\frac{1}{2} \frac{V_0^2}{g} \frac{m}{2M}$ D) $\frac{1}{2} \frac{V_0^2}{g} \frac{M}{M+m}$

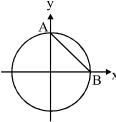
Two solid hemispheres of radii R and R/2 with centers O and O' respectively as shown in figure. The density of bigger hemisphere is ρ and that of smaller hemisphere is 2ρ . Taking center of bigger hemisphere is at origin and the distance between centers of two hemispheres OO' is R/10, find co-ordinates of center of mass of the system.

space for rough work

A)
$$\left(\frac{-R}{50}, \frac{21R}{80}\right)$$
 B) $\left(\frac{-R}{30}, \frac{21R}{80}\right)$ C) $\left(\frac{-R}{50}, \frac{7R}{16}\right)$

B)
$$\left(\frac{-R}{30}, \frac{21R}{80}\right)$$

C)
$$\left(\frac{-R}{50}, \frac{7R}{16}\right)$$


$$D)\left(\frac{-R}{30}, \frac{7R}{16}\right)$$

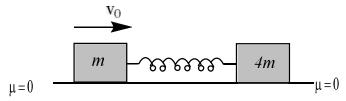
SECTION - II (MULTIPLE CORRECT ANSWER TYPE)

This section contains 8 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which ONE OR MORE than ONE option can be correct.

Marking scheme: +4 for all correct options & +1 partial marks, 0 if not attempted and -2 in all wrong cases

An object comprises of a uniform ring of radius R and a uniform chord AB (not 7. necessarily made of the same material) as shown. Which of the following can not be the center of mass of system

A)
$$\left(\frac{R}{3}, \frac{R}{3}\right)$$


A)
$$\left(\frac{R}{3}, \frac{R}{3}\right)$$
 B) $\left(\frac{R}{3}, \frac{R}{4}\right)$

C)
$$\left(\frac{R}{2}, \frac{R}{2}\right)$$

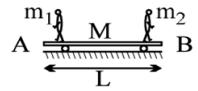
D)
$$\left(\frac{R}{\sqrt{2}}, \frac{R}{\sqrt{2}}\right)$$

space for rough work

- 8. Which of the following is/are correct?
 - A) If the center of mass of three particles is at rest and it is known that two of them are moving along different non- collinear lines, then the third particle must also be moving.
 - B) If the center of mass of a system remains at rest, then the net work done by all the forces acting on the system must be zero.
 - C) If the velocity of center of mass of a system remains zero, then the net external force acting on the system must be zero.
 - D) If the speed of center of mass is changing, then there must be some work being done by the internal forces on the system.
- 9. Two blocks of masses m and 4m lie on a smooth horizontal surface connected with a spring in its natural length. Mass m is given initial velocity V_0 as shown in figure. Which of the following is true about subsequent motion?

- A) Kinetic energy of mass m is maximum in ground frame and centre of mass (CM) frame simultaneously.
- B) Value of maximum and minimum kinetic energy is same in CM and ground frame.
- C) Minimum kinetic energy is zero in CM frame but non-zero in ground frame.
- D) Maximum and minimum kinetic energy of m in ground frame is, respectively, $\frac{1}{2}mv_0^2$ and zero.

10. Two identical buggies move one after other due to inertia (without friction) with the same velocity v_o . A man of mass m rides the rear buggy. At a certain moment the man jumps into the front buggy with a velocity u relative to his buggy. If mass of each buggy is equal to M and velocity of buggies after jumping of man are v_{rear} and v_{front} . Then

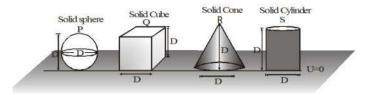

A)
$$v_{rear} = v_0 + \frac{m}{m+M}u$$

$$B) v_{rear} = v_0 - \frac{m}{m+M} u$$

C)
$$v_{front} = v_0 + \frac{m}{(m+M)^2}u$$

D)
$$v_{front} = v_0 - \frac{m}{(m+M)^2} u$$

11. Two person of mass m_1 and m_2 are standing at the two ends A and B respectively, of a trolley of mass M as shown. When the person standing at A jumps from the trolley towards left with u_{rel} with respect to the trolley, then (Ground it frictionless)

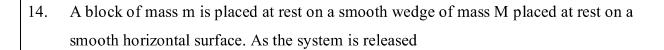

- A) the trolley moves towards right
- B) the trolley rebounds with velocity $\frac{m_1 u_{rel}}{m_1 + m_2 + M}$
- C) the trolley rebounds with velocity $\frac{m_1 u_{rel}}{m_2 + M}$
- D) the centre of mass of the system consisting of two persons and trolley remains stationary

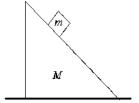
space for rough work		space	for	rough	work
----------------------	--	-------	-----	-------	------

Choose the correct statement(s) regarding center of mass frame 12.

- A) If $\overline{F_{ext}} = 0$ center of mass frame is inertial frame
- B) Centre of mass frame is a zero momentum frame
- C) Kinetic energy of a system is minimum in centre of mass frame
- D) None of these

13. Assuming potential energy 'U' at ground level to be zero.


All objects are made up of same material.


 U_P = Potential energy of solid sphere U_Q = Potential energy of solid cube

 U_R = Potential energy of solid cone U_S = Potential energy of solid cylinder

- A) $U_S > U_P$

- B) $U_Q > U_S$ C) $U_P > U_Q$ D) $U_S > U_R$

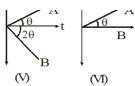
- A) The COM of the system remains stationary
- B) The COM of the system has an acceleration g vertically downward
- C) Momentum of the system is conserved along the horizontal direction
- D) Acceleration of COM vertically downward is a < g

SECTION – III (PARAGRAPH TYPE)

This section contains **2** groups of questions. Each group has 2 multiple choice questions based on a paragraph. Each question has 4 choices A), B), C) and D) for its answer, out of which **ONLY ONE** is **correct**. **Marking scheme:** +3 for **correct answer**, **0** if not attempted and **0** in all other cases.

Paragraph For Questions 15 and 16:

An initially stationary box on a frictionless floor explodes into two pieces, piece A with mass m_A and piece B with mass m_B. Two pieces then move across the floor along x-axis. Graph of position versus time for the two pieces are given.


space for rough work	Page 10

Based on the above question, Match column A with the column B. 15.

Column A

Column B

(Graph number)

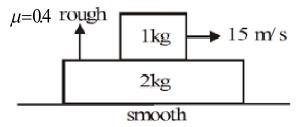
P)
$$m_A = m_B$$

$$Q) m_A > m_B$$

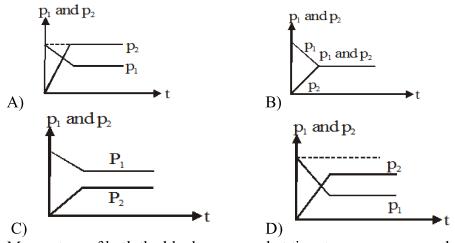
$$R)$$
 $m_A < m_B$

A)
$$P - VI$$
, $Q - III$, $R - I$

B)
$$P - II$$
, $Q - V$, $R - IV$


C)
$$P - II$$
, $Q - IV$, $R - V$

- If all the graphs are possible then, in which of the following cases external force must be 16. acting on the box:-
 - A) I & II
- B) II & III
- C) I, III & VI
- D) I, III, V


space for rough work

Paragraph For Questions 17 and 18:

A 1 kg block is given a velocity of 15 m/s towards right over a very long rough plank of mass 2 kg as shown in figure.

17. The correct graph showing linear momentum of 1 kg (i.e. p₁) and of 2kg (i.e. p₂) versus time is:

18. Momentum of both the blocks are equal at time $t = \dots$ seconds:

- A) 1.75
- B) 1.875
- C) 2.5
- D) 1.25

space for rough work

CHEMISTRY Max Marks: 62

SECTION – I (SINGLE CORRECT ANSWER TYPE)

This section contains 6 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases.

19.	Which of the foll	owing species	will have the	lone pair	effects	cancelled

- A) ICl,
- B) ClF₃
- C) PCl₃
- D) BrF_5

20. SH_6 does not exist because

A) Hydrogen is too small to overlap with large orbital of sulphur atom

B) Hydrogen cannot cause contraction of d-orbital of sulphur as it cannot induce a

high positive formal charge on sulphur

C) Sulphur cannot expand it's octet

D) Sulphur is unreactive towards Hydrogen

21. What hybridization is expected on the central atom of each of the following molecules.

i) BeH₂

ii) CH₂Br₂

iii) PF₆-

iv) BF₃

A) SP^2 , SP, SP^3 , SP^2

B) SP,SP^3,SP^3d,SP^2

C) SP,SP^3,SP^3d^2,SP^2

D) SP^2 , SP, SP^2 , SP^3

space for rough work

22.
$$\theta_1$$
 C

$$\begin{array}{c}
F \\
\Theta_{2} \\
C = 0
\end{array}$$

$$Cl$$
 θ_3
 $C = 0$

Identify the correct order of bond angle

- A) $\theta_1 > \theta_2 > \theta_3$ B) $\theta_1 > \theta_3 > \theta_2$ C) $\theta_3 > \theta_2 > \theta_1$ D) $\theta_1 = \theta_2 = \theta_3$

Which is correct statement 23.

As the % S-character of a hybrid orbital decreases

- I) The bond angle decreases
- II) Size of orbital decreases
- III) The bond length increase
- IV) Size of orbital increase
- A) I,III,IV
- B) II,III,IV
- C) I & II
- D) All are correct

- Shape of IF_7 molecule is 24.
 - A) Pentagonal bipyramidal
- B) Trigonal pyramidal

C) Tetrahedral

D) Square planar

space for rough work

SECTION - II (MULTIPLE CORRECT ANSWER TYPE)

This section contains 8 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which ONE OR MORE than ONE option can be correct.

Marking scheme: +4 for all correct options & +1 partial marks, 0 if not attempted and -2 in all wrong cases

- In the structure of H_2CSF_4 which of the following statement is /are correct.
 - A) Two C-H bonds are in the same plane of axial S-F bonds.
 - B) Two C-H bonds are in the same plane of equatorial S-F bonds
 - C)Total six atoms are in the same plane
 - D) Equitorial S-F bonds are perpendicular to plane of π bond
- 26. Identify the correct statement in the following
 - A) Hybridisation of carbon in C_3O_2 is SP
 - B) $N(Me)_3$ and $N(SiMe_3)_3$ are iso structural
 - C) In trigonal bipyramidal arrangement lone pair of electron are usually occupied at

equatorial position.		
D) The shape of I_3^- is lin	near.	
	space for rough work	Page 15

27	Which of the fellowing statement(s) is/one a wall-dimensional (s) of values a hand-th-sam?
27.	Which of the following statement(s) is/are a valid postulate(s) of valence bond theory?
	A) Overlapping orbitals have unpaired electron
	B) Greater is the extent of overlapping higher is the bond strength
	C) Greater is the orbital overlapping higher is the bond length
	D) Lateral overlapping of atomic orbitals results in formation of π –bond
28.	Which of the following statement is (are) correct?
	A) In ClF_3 , the axial $Cl-F$ bond length is longer than equatorial $Cl-F$ bond length.
	B) In SF_4 $F-S-F$ equatorial bond angle is 120°
	C) In $[ICl_4]^- Cl - I - Cl$ bond angle is 90°
	D) There are two $P^{\Pi} - d^{\Pi}$ bonds in SO_3
29.	There is a change in the hybridisation when
	A) NH_3 combines with H^+
	B) AlH_3 combines with H^-
	C) NH_3 forms NH_2^-
	D) SiF_4 forms SiF_6^{-2}
	space for rough work Page 16

30.	Which of the follo	owing orbital can	form δ-bond (Delta	a bond).	
	A) $dx^2 - y^2$ orbital	$\mathbf{B}) dz^2$ orbital	C) dxy Orbital	$D) P_z$ orbital	
31.	In which compou	nd vacant orbitals	s take part in hybrid	isation	
	A) Al_2Cl_6	$B)C_2H_5Cl$	$C)B_2H_6$	$D)H_3BO_3$	
32.	Indentify the inco	rrect statement(s)) amongst the follow	ving.	
	A) molecule havi	ng trigonal bipyra	amidal geometry an	d <i>SP³d</i> hypridisa	tion,
	the d- orbital invo	olved in hybridiz	ation is $dx^2 - y^2$		
	B) In SP^3d^2 hybrid	disation, $dx^2 - y^2$,	dz^2 sets of d-orbital	is involved	
	C) I_3^+ and XeF_7^+ has	ave same hybridiz	zation		
	D) CO_3^{-2} and SO_3 a	re iso electronic	and isostructural.		
paraç Marki	graph. Each question ho	as 4 choices A), B), C rrect answer, 0 if no	n group has 2 multiple c) and D) for its answer, of attempted and -2 in	out of which ONLY	
rara	• .		cule can often be pre	edicted by using	what is called the
	valence shell Elec	etron pair repulsio	on (VSEPR) model.	Electrons in bon	ds and in lone
			space for rough work		Page 17

	pairs can be thou	ight of as charge	cloud that repel one	another and stay	as far apart as
	possible, thus ca	using molecules t	to assume specific s	hapes.	
	The repulsive into	eractions of Elect	ron pairs decrease i	n the order.	
	Lone pair- lone p	air > lone pair – l	bond pair > bond pa	ir – bond pair.	
	These repulsion e	effect result in dev	viations from idealis	sed shapes and al	Iteration in bond
	angles in molecul	le.			
33.	Among the follow	wing molecules			
	i) XeO ₃	ii) XeOF ₄	iii) XeO ₂ F ₂	iv) XeF ₆	
	Those having diff	ferent molecular	geometry but same	number of lone p	oairs on Xe are,
	A) (i),(ii) and (iii) only	B) (i),(ii),(iv) o	nly	
	C) (ii)(iii) and (iv) only	D) (i),(ii),(iii) a	and iv	
34.	which of the fallo	owing represent t	he isostructural pai	ir?	
	A) SF_5^- and IF_5		B) ClO ₂ F ₃ and So	OF ₄	
	C) SeF_3^+ and XeO_3	:	D) All of the ab	oove	
			space for rough work		Page 18

Paragraph for Questions 35 an	nd 36:	5 an	35	Questions	for	aph	Paragrai	F
-------------------------------	--------	------	----	-----------	-----	-----	----------	---

Different types of bonds are present in the chemical compounds. These bonds have different strengths and bond energies associated with them. These bonds are formed in different environments associated with atoms and the compounds in which they are present.

- 35. which of the following will form only σ bond (generally).
 - A) s-s overlapping

B) Hybrid orbital overlapping

C) s-p overlapping

- D) All of these
- 36. Shape of the molecule is decided by
 - A) σ bond

- B) π bond
- C) both σ and π bond
- D) neither σ nor π -band

space for rough work

MATHEMATICS

Max Marks: 62

SECTION – I (SINGLE CORRECT ANSWER TYPE)

This section contains 6 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which ONLY ONE option can be correct.

Marking scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases.

37.	The number of solutions of s	$\sin x = \frac{x}{-}$	is
		10	

- A) 6
- B) 7
- C) 10
- D) 9

38. The number of solutions of $2^x + 3^x + 4^x - 5^x = 0$ is

- A) 2
- B) 1
- C) 3
- D) 0

39. If $f: R \to R$ is a function satisfying the property f(x+1) + f(x+3) = 2 for $x \in R$, then the period of f(x) is

- A) 3
- B) 2
- C) 4
- D) 5

40. Let f(x) = 2x(2-x); $0 \le x \le 2$, then the number of solution of $f(f(f(x))) = \frac{x}{2}$ is

- A) 2
- B) 4
- C) 8
- D) 12

space for rough work

41. The number of ordered pairs (a,b) from the set $A = \{1,2,3,4,5\}$ so that the function

 $f(x) = \frac{x^3}{3} + \frac{ax^2}{2} + bx + 10$ is an injective mapping $\forall x \in R$, is

- A) 13
- B) 14
- C) 15
- D) 16

42. f(x) is a function satisfying the equation $f(1-x)+2.f(x)=3x, \forall x \in R$ then f(0)=

- A) -2
- B) -1
- C) 0
- D) 1

SECTION - II

(MULTIPLE CORRECT ANSWER TYPE)

This section contains 8 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which ONE OR MORE than ONE option can be correct.

Marking scheme: +4 for all correct options & +1 partial marks, 0 if not attempted and -2 in all wrong cases

43. Let f(x) be invertible function and let $f^{-1}(x)$ be its inverse, let equation

 $f(f^{-1}(x)) = f^{-1}(x)$ has two real roots α, β (within the domain of f(x)) then

- A) f(x) = x also has same two real roots
- B) $f^{-1}(x) = x$ also has same two real roots
- C) $f(x) = f^{-1}(x)$ also has the same two real roots
- D) Area of triangle formed by $(0,0)(\alpha, f(\alpha)), (\beta, f(\beta))$ is 1 unit

space for rough work

Let 'n' be a +ve integer with $f(n) = |\underline{1} + |\underline{2} + |\underline{3} + \dots + |\underline{n}|$ and p(x), q(x) be polynomials in 44.

'x' such that f(n+2) = p(n).f(n+1) + q(n).f(n) for all $n \ge 1$, then

- A) p(x) = x + 3
- B) q(x) = -x 2 C) p(x) = -x 2 D) q(x) = -x + 3

- All the periodic functions are 45.
 - A) one-one

B) Many one

C) Invertible

- D) Invertible by restricting the domain
- If $f:[1,\infty) \to [2,\infty)$ is given by $f(x) = x + \frac{1}{x}$ then $f^{-1}(x) =$

- A) $\frac{x+\sqrt{x^2-4}}{2}$ B) $\frac{x-\sqrt{x^2-3}}{2}$ C) $\frac{x+\sqrt{x^2-3}}{2}$ D) $\frac{x-\sqrt{x^2-4}}{2}$
- Let f:(2,4) \rightarrow (1,3) be a function defined by f(x) = $x \left[\frac{x}{2}\right]$ (where [.] denotes

the greatest integer function), then which of the following is/are true?

A) $f^{-1}\left(\frac{5}{4}\right) = \frac{9}{4}$

B) $f^{-1}\left(\frac{7}{4}\right) = \frac{11}{4}$

C) $f^{-1}(2) = 3$

D) f is not bijective function

48. The function
$$f: X \to Y$$
 where $f(x) = \sin x + \cos x + 2\sqrt{2}$ is invertible if

A)
$$X = \left[\frac{\pi}{4}, \frac{5\pi}{4}\right], Y = \left[\sqrt{2}, 3\sqrt{2}\right]$$

A)
$$X = \left[\frac{\pi}{4}, \frac{5\pi}{4}\right], Y = \left[\sqrt{2}, 3\sqrt{2}\right]$$
 B) $X = \left[\frac{\pi}{4}, \frac{\pi}{2}\right], Y = \left[1 + \sqrt{2}, 3\sqrt{2}\right]$

C)
$$X = \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right], Y = \left[\sqrt{2}, 2\sqrt{2}\right]$$

C)
$$X = \begin{bmatrix} \frac{3\pi}{4}, \frac{5\pi}{4} \end{bmatrix}, Y = \begin{bmatrix} \sqrt{2}, 2\sqrt{2} \end{bmatrix}$$
 D) $X = \begin{bmatrix} -\frac{\pi}{4}, \frac{3\pi}{4} \end{bmatrix}, Y = \begin{bmatrix} 2\sqrt{2}, 3\sqrt{2} \end{bmatrix}$

49. For the function
$$f(x) = \log_{10}(3x^2 - 4x + 5)$$

A) domain is $(0, \infty)$

B) range is R

C) domain is R

D) range is $\left[\log_{10}\left(\frac{11}{3}\right),\infty\right)$

50. The equation
$$||x-1|+a|=4$$
 $a \in R$ has

- A) 3 distinct real roots for unique value of 'a'
- B) 4 distinct real roots for $a \in (-\infty, -4)$
- C) 2 distinct real roots for |a| < 4
- D) no real root for a > 4

SECTION - III (PARAGRAPH TYPE)

This section contains 2 groups of questions. Each group has 2 multiple choice questions based on a paragraph. Each question has 4 choices A), B), C) and D) for its answer, out of which ONLY ONE is correct. Marking scheme: +4 for correct answer, 0 if not attempted and -2 in all other cases.

Paragraph for Questions 51 and 52:

	•		
space	tor	rougn	work

Let f(x) be a real valued continuous function such that

 $f(0) = \frac{1}{2}$; $f(x+y) = f(x)f(a-y) + f(y).f(a-x) \forall x, y \in R$ then for some real values of 'a'

- f(x) is a 51.
 - A) periodic function

- B) periodic function with no fundamental period
- C) Not a periodic function
- D) increasing function

- 52. f(x) =
 - A) $\frac{\cos x}{2}$ B) $\frac{-1}{2}$ C) $\frac{1}{2}$
- D) $\sin x$

Paragraph for Questions 53 and 54:

Consider the function $f: R \to (0,\infty)$ defined by $f(x) = 2^x + 2^{|x|}$

f(x)is

A) One-One Onto

B) One-One IntoS

C) Many-One Onto

- D) Many-One Into
- The number of solutions of f(x) = 2x + 3 is 54.
 - A) 0
- B) 1
- C) 2
- D) 4

space for rough work

Master JEE CLASSES Kukatpally, Hyderabad.

Max.Marks: 186

JEE-ADVANCE-2016-P2-MODEL

KEY SHEET PHYSICS

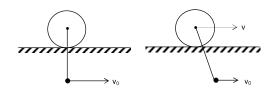
1	A	2	A	3	A	4	С	5	D
6	A	7	BCD	8	AC	9	ACD	10	ВС
11	ABD	12	ABC	13	ABD	14	CD	15	В
16	С	17	D	18	С				

CHEMISTRY

19	A	20	В	21	С	22	В	23	A
24	A	25	AC	26	ACD	27	ABD	28	ACD
29	BD	30	AC	31	AC	32	ACD	33	D
34	D	35	D	36	A		_		_

MATHS

37	В	38	В	39	С	40	С	41	С
42	В	43	ABC	44	AB	45	BD	46	A
47	ABC	48	ABC	49	CD	50	ABCD	51	В
52	С	53	D	54	С				


02.
$$\vec{S}_{block wrt g} = \vec{S}_{wrtcm} + \vec{S}_{cm,g}$$

$$= \frac{x_0}{2} + \frac{1}{2} \times a_{cm} \times t^2$$

03.
$$2M\left(\frac{3L}{4}-x\right)=M\left(\frac{L}{4}+x\right)+4Mx$$

04.
$$h_{cm} = \frac{\int y \, dm}{\int dm} = \frac{\int y \, dV}{\int dV}$$

$$dV = \left(\pi x^2\right) dy$$

05.

$$mV_0 = (M + m) V$$

$$V = \frac{mV_0}{M+m}$$

From energy conservation

$$\frac{1}{2}mV_0^2 + Mg\ell = mgh + Mg\ell + \frac{1}{2}(M+m)V^2$$

$$\frac{1}{2}mV_0^2 - \frac{1}{2}\frac{m^2v_0^2}{(M+m)} = mgh$$

$$\frac{1}{2} \frac{m V_0^2 [M + m - m]}{[M + m]} = mgh$$

$$h = \frac{1}{2} \frac{V_0^2}{g} \frac{M}{(M+m)}$$

06.
$$x_{ex} = \frac{M_1(O) - M_2\left(\frac{R}{10}\right)}{M_1 + M_2} \qquad y_{ex} = \frac{M_1\left(\frac{3R}{8}\right) - M_2\left(\frac{3R}{16}\right)}{M_1 + M_2}$$

07. Centre of mass always lies b/w centre of mass of segments and always lies on

axis of symmetry.

- 08. Conceptual
- 09. In both CM and ground frame, K_{max} is there, when x is zero in spring, which occurs simultaneously.

$$v_{CM} = \frac{m(v_0) + 0}{5m} = \frac{v_0}{5}$$

$$K_{\max CM} = \frac{1}{2} m \left(\frac{4v_0}{5} \right)^2 + \frac{1}{2} (4m) \left(\frac{v_0}{5} \right)^2 = \frac{2}{5} m v_0^2$$

$$K_{\text{max ground}} = \frac{1}{2} m v_0^2$$

$$K_{\min CM} = 0$$

$$K_{\text{min ground}} = \frac{1}{2} (m + 4m) v_{CM}^2 = \frac{m v_0^2}{10}$$

$$K_{\text{max }m} = \frac{1}{2} m v_0^2$$
 (ground frame)

 $K_{\min m} = 0$ (ground frame when energy is shared by spring and 4m and m will reverse direction of motion).

10.
$$(M+m)V_0 = MV + m(V+u)$$

$$V = v_0 - \frac{mu}{M+m}$$

$$m(u+v)+MV_0=(M+m)V^1$$

$$V^{1} = v_{0} + \frac{Mmu}{\left(M+m\right)^{2}}$$

11.

 F_{ext} on the system $(m_1 + m_2 + M)$ in horizontal direction is zero.

.. centre of mass of the system remains stationary.

$$Again \quad \vec{v}_{m_l g} = \vec{v}_{m_l t} + \vec{v}_{tg} = \left(-u_{rel} + v\right)\hat{i}$$

$$\vec{v}_{(\mathbf{m}_2 + \mathbf{M})g} = v\hat{i}$$

Conserve linear momentum in horizontal direction

$$m_1(-u_{rel} + v)\hat{i} + (m_2 + M)v\hat{i} = 0$$

$$\therefore \qquad v = \left(\frac{m_1 u_{rel}}{m_1 + m_2 + M}\right) \hat{i}$$

13. Potential energy depends on both mass and centre of gravity.

CHEMISTRY

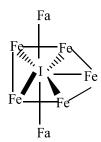
19. Ans: A

ICl⁻₂ have a Linear structure and lone pair of electrons occupied at equatorial positions

20. Ans: B

Conceptual

21. Ans: c


SINGLE BOND

22. Ans: B

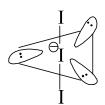
Higher the electronegativity of surrounding atom, lesser is the bond angle between the bonds.

23. Ans: A

24. Ans: A

25. Sol: A & C

$$\begin{array}{c}
H \\
C = S_{H}^{H} \\
F
\end{array}$$


C-SP² HYBRIDISATION

S-SP3d HYBRIDISATION

Sol: A,C,D 26.

$$O = C = C = C = O\left(C_3 O_2\right)$$

 $N(Me)_3$: pyramidal, $Ni(SiMe_3)_3$ -Trigonal planar

27. Sol: A,B,D

Conceptual

28. Sol: A,C, D

$$\begin{array}{c|c}
F \\
1.698 A^{\circ} \\
Cl & F \\
1.598 A^{\circ}
\end{array}$$

$$Cl \qquad Cl \qquad gg^{\circ}$$

$$Cl \qquad Cl \qquad Cl$$

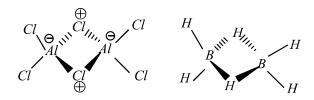
$$\begin{array}{c|c}
\mathbf{O} & & \\
& & \\
\mathbf{O} & & \\
& \mathbf{O} & \\
& \mathbf{O}$$

29. Sol: B,D

$$NH_3$$
 $N\overset{+}{H}_4$

A) SP^3 SP^3

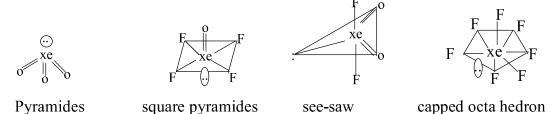
$$B)\frac{AlH_3}{SP^2} \quad \frac{AlH_4^-}{SP^3}$$


$$\begin{array}{ccc} \text{C)} & NH_3 & NH_2 \\ SP^3 & SP^3 \end{array}$$

$$D)\frac{SiF_4}{SiF_6^{-2}} \frac{SP^3}{SP^3d^2}$$

30. Sol: A & C

Conceptual


31. Sol: A & C

32. Sol: A, C, D

In Sp^3d hybridization dz^2 orbital is used I_3^+ have Sp^3 hybridisation, XeF_7^+ have Sp^3d^3 Comphrensinon: I CO_3^{2-} and SO_3 are is isostructural but not isoelectronic

33. Ans:D

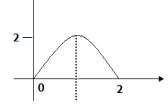
34. Ans: d

All pairs having same no of sigmas bonds and lone pair of e⁻ Comphrensinon: II

35. Ans:d

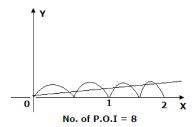
All the orbitals are overlap along the axis

36. Ans: a


Only sigma bond decided the shape of molecule.

MATHS

37. Draw the graphs of $y = \sin x$; $y = \frac{x}{10}$


38. Draw the graphs of
$$y = \left(\frac{2}{5}\right)^x + \left(\frac{3}{5}\right)^x + \left(\frac{4}{5}\right)^x & y = 1$$

39. $f(x) = f(x+4) \Rightarrow \text{period} = 4$

Since the graph of y = f(x) is symmetrical about the line x = 1

 \Rightarrow graph of y = f(f(x)) and y = f(f(x)) are also symmetrical about the line x = 1

41.
$$f^{1}(x) = x^{2} + ax + b$$
 is injective if disc ≤ 0

$$a = 1 \Rightarrow b = 1, 2, 3, 4, 5$$

$$= 2$$
 $= 1, 2, 3, 4, 5$

$$=3$$
 $=3,4,5$

$$=4$$
 $=4,5$

42. replace x by
$$\frac{1}{2} + x$$
 ______(1)

now replace x by $\frac{1}{2} - x$ (2)

$$(1) + (2) \Rightarrow f\left(\frac{1}{2} + x\right) = \frac{1}{2} + 3x$$

Put
$$x = -\frac{1}{2} \Rightarrow f(0) = -1$$

Multi answer question

43.
$$f^{-1}(f(x)) = f(f^{-1}(x)) = x$$
 if $f(f^{-1}(x)) = f^{-1}(x) \Rightarrow x = f^{-1}(x)$

If
$$f(f^{-1}(x)) = f^{-1}(x) \Rightarrow f(f^{-1}(f(x))) = f^{-1}(f(x))$$

$$\Rightarrow f(x) = f^{-1}(f(x)) = x$$

44.
$$f(n+2)-f(n+1) = |n+2|$$

 $= (n+2)|n+1|$
 $= (n+2)[f(n+1)-f(n)]$
 $\Rightarrow f(n+2) = (n+3)f(n+1)-(n+2)f(n)$
 $\therefore p(x) = x+3; Q(x) = -x-2$

45. Horizontal line test fails

46.
$$f^{-1}(x) = \frac{x \pm \sqrt{x^2 - 4}}{2}$$

But range of $f^{-1}(x)$ is $[1,\infty)$, so ignore $\frac{x-\sqrt{x^2-4}}{2}$

47. Conceptual

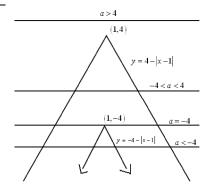
48.
$$f(x) = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right) + 2\sqrt{2} \text{ (or) } \sqrt{2}\cos\left(x - \frac{\pi}{4}\right) + 2\sqrt{2}$$
$$\frac{-\pi}{2} \le x + \frac{\pi}{4} \le \frac{\pi}{2} \Rightarrow X = \left[\frac{-3\pi}{4}, \frac{\pi}{4}\right]$$
$$\text{(or) } X = \left[\frac{\pi}{4}, \frac{5\pi}{4}\right]$$

Similarly
$$y = \lceil \sqrt{2}, 3\sqrt{2} \rceil$$

49.
$$3x^2 - 4x + 5 > 0$$

 $\Rightarrow \Delta < 0 \Rightarrow 3x^2 - 4x + (5 - 10^y) = 0$

X is real $\Rightarrow \Delta \ge 0$


$$10^{y} \ge \frac{11}{3} \Rightarrow y \ge \left[\log_{10}\left(\frac{11}{3}\right), \infty\right]$$

50. If
$$a > 0$$
If $a < 0$

4 real roots $a \in (-\infty, -4)$

$$-4 < a < 4$$
 2 roots

$$a > 4$$
 no root

Passage type questions 51 & 52 hint

 $f(x) = \frac{1}{2}$ \Rightarrow periodic constant function

Passage type questions 53 & 54 hint

Conceptual