

## **Master JEE CLASSES**

## Kukatpally, Hyderabad.

JEE-ADVANCE-2014-P2-Model Max.Marks:180

# 2014\_PAPER-II

#### **IMPORTANT INSTRUCTIONS:**

1) This booklet is your Question Paper.

2) Use the Optical Response Sheet (ORS) provided separately for answering the questions

3) Blank spaces are provided within this booklet for rough work.

4) Write your name, roll number and sign in the space provided on the back cover of this booklet.

5) You are allowed to take away the Question Paper at the end of the examination.

#### **OPTICAL RESPONSE SHEET:**

6) Darken the appropriate bubbles on the ORS by applying sufficient pressure. This will leave an impression at the corresponding place on the Candidate's sheet.

7) The ORS will be collected by the invigilator at the end of the examination.

8) Do not tamper with or mutilate the ORS. Do not use the ORS for rough work.

9) Write your name, roll number and code of the examination center, and sign with pen in the space provided for this purpose on the ORS. **Do not write any of these details anywhere else** on the ORS. Darken the appropriate bubble under each digit of your roll number.

#### DARKENING THE BUBBLES ON THE ORS

10) Use a **BLACK BALL POINT PEN** to darken the bubbles on the ORS.

11) Darken the bubble **COMPLETELY**.

12) The correct way of darkening a bubble is as:

13) The ORS is machine-gradable. Ensure that the bubbles are darkened in the correct way.

14) Darken the bubbles ONLY IF you are sure of the answer. There is NO WAY to erase or

"un-darken" a darkened bubble.

## JEE-ADVANCE-2014-P2-Model

## Time: 3:00 Hours

### IMPORTANT INSTRUCTIONS

Max Marks: 180

## **PHYSICS:**

| 11101000               |                                                                         |              |               |             |                |
|------------------------|-------------------------------------------------------------------------|--------------|---------------|-------------|----------------|
| Section                | Question Type                                                           | +Ve<br>Marks | - Ve<br>Marks | No.of<br>Qs | Total<br>marks |
| Sec– I(Q.N: 01 – 10)   | Questions with Single Correct Choice                                    | 3            | -1            | 10          | 30             |
| Sec- II(Q.N: 11 - 16)  | Questions with Comprehension Type (3 Comprehensions $-2 + 2 + 2 = 6Q$ ) | 3            | -1            | 6           | 18             |
| Sec– III(Q.N: 17 – 20) | Matrix Matching Type                                                    | 3            | -1            | 4           | 12             |
|                        | Total                                                                   |              |               | 20          | 60             |

#### CHEMISTRY:

| Section                  | Question Type                                                           | +Ve<br>Marks | - Ve<br>Marks | No.of<br>Qs | Total<br>marks |
|--------------------------|-------------------------------------------------------------------------|--------------|---------------|-------------|----------------|
| Sec – I(Q.N : 21 – 30)   | Questions with Single Correct Choice                                    | 3            | -1            | 10          | 30             |
| Sec – II(Q.N : 31 – 36)  | Questions with Comprehension Type (3 Comprehensions $-2 + 2 + 2 = 6Q$ ) | 3            | -1            | 6           | 18             |
| Sec – III(Q.N : 37 – 40) | Matrix Matching Type                                                    | 3            | -1            | 4           | 12             |
|                          | 20                                                                      | 60           |               |             |                |

## MATHEMATICS:

| Section                  | Question Type                                                           | +Ve<br>Marks | - Ve<br>Marks | No.of<br>Qs | Total<br>marks |
|--------------------------|-------------------------------------------------------------------------|--------------|---------------|-------------|----------------|
| Sec – I(Q.N : 41 – 50)   | Questions with Single Correct Choice                                    | 3            | -1            | 10          | 30             |
| Sec – II(Q.N: 51 – 56)   | Questions with Comprehension Type (3 Comprehensions $-2 + 2 + 2 = 6Q$ ) | 3            | - 1           | 6           | 18             |
| Sec – III(Q.N : 57 – 60) | Matrix Matching Type                                                    | 3            | -1            | 4           | 12             |
|                          | Total                                                                   |              |               | 20          | 60             |

space for rough work

PHYSICS

Max Marks: 60

## SECTION – I (SINGLE CORRECT ANSWER TYPE)

This section contains 10 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** option can be correct. **Marking scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases.** 

1. When a film of soap solution is created inside a loop formed by rectangular wire frame and an inextensible light thread *AB* of length *l*, the thread assumes shape of a semicircle and remains equilibrium. By pulling the midpoint of thread with a force *F*, the thread can be given shape of two semicircles as shown in Figure. Calculate surface tension  $\sigma$  of the soap solution.



2. A wire forming a loop is dipped into soap solution and taken out, so that a film of soap solution is formed. A loop of 6.28 *cm* long thread is gently put on the film and pricked

space for rough work



3. A liquid is filled in a spherical container of radius *R* till a height *h*. At this positions the liquid surface at the edges is also horizontal. The contact angle is



4. A capillary of the shape as shown is dipped in a liquid. Contact angle between the liquid and the capillary is 0<sup>0</sup> and effect of liquid inside the meniscus is to be neglected. *T* is surface tension of the liquid, *r* is radius of the meniscus, *g* is acceleration due to gravity and ρ is density of the liquid then height *h* in equilibrium is

space for rough work



5. A spherical glass vessel filled with liquid is kept in uniform gravity. Horizontal surface represents meniscus of liquid. Now complete system is taken to gravity free space. *C* is the center of sphere.



space for rough work

A) Vessel + liquid is a wetting combination

B) Liquid forms drop & leaves contact of vessel

C) Finally, liquid forms a drop touching vessel

D) Finally, liquid spreads over entire surface of vessel

6. The following observations were taken for determining surface tension *T* of water by capillary method. Diameter of capillary  $d = 1.25 \times 10^{-2} m$ , rise of water  $h = 1.45 \times 10^{-2} m$ .

Using  $g = 9.80m/s^2$  and the simplified relation  $T = \frac{rhg}{2} \times 10^3 N/m$ , the possible error in

surface tension is closest to

A) 1.5% B) 2.4% C) 10% D) 0.15%

7. A glass capillary tube is of the shape of truncated cone with an apex angle α so that its two ends have cross-sections of different radii. When dipped in water vertically, water rises in it to a height h, where the radius of its cross-section is b. If the surface tension of water is S, its density is ρ, and its contact angle with glass is θ, the value of h will be (g is the acceleration due to gravity)

space for rough work



9. Assume that a drop of liquid evaporates by decrease in its surface energy, so that its temperature remains unchanged. What should be the minimum radius of the drop for this to be possible? The surface tension is *T*, density of liquid is  $\rho$  and *L* is its latent heat of vaporization

A) 
$$\frac{\rho L}{T}$$
 B)  $\sqrt{\frac{T}{\rho L}}$  C)  $\frac{T}{\rho L}$  D)  $\frac{2T}{\rho L}$ 

10. A cube of mass m = 3.2kg floats on the surface of water. Water wets it completely.

The cube is 0.2m on each edge. By what additional distance it is buoyed up or down

by surface tension? Surface tension of water = 0.07Nm<sup>-1</sup>.

A)  $2.8 \times 10^{-4} m$  B)  $1.4 \times 10^{-4} m$  C)  $3.2 \times 10^{-6} m$  D)  $6.1 \times 10^{-2} m$  +

#### SECTION - II (PARAGRAPH TYPE)

This section contains **3 Paragraph of questions**. Each paragraph has 2 multiple choice questions based on a paragraph. Each question has 4 choices A), B), C) and D) for its answer, out of which ONLY **ONE IS** correct. **Marking scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases.** 

Paragraph for Question Nos. 11 & 12

A glass capillary sealed at the upper end is of length 0.11 *m* and internal diameter

 $2 \times 10^{-5} m$ . The tube is immersed vertically into a liquid of surface tension

 $5.06 \times 10^{-2} N/m$  (Assume complete wetting liquid)

space for rough work

To what length has the capillary to be immersed so that the liquid level inside and 11. outside the capillary becomes the same. A) 0.01m B) 0.11*m* C) 0.02*m* D) 0.20m The length of water column inside the capillary tube when the seal is broken is 12. A) 0.01*m* B) 0.10*m* C) 0.11*m* D) 1.01*m* Paragraph for Question Nos. 13 & 14 When liquid medicine of density  $\rho$  is to be put in the eye, it is done with the help of a dropper. As the bulb on the top of the dropper is pressed, a drop forms at the opening of the dropper. We wish to estimate the size of the drop. We first assume that the drop formed at the opening is spherical because that requires a minimum increase in its surface energy. To determine the size, we calculate the net vertical force due to the surface tension T when the radius of the drop is R. When this force becomes smaller than the weight of the drop, the drop gets detached from the dropper. 13. If the radius of the opening of the dropper is r, the vertical force due to the surface tension on the drop of radius R (assuming  $r \ll R$ ) is

| A) $2\pi rT$ | B) $2\pi RT$ | C) $\frac{2\pi r^2 T}{R}$ | D) $\frac{2\pi R^2 T}{r}$ |
|--------------|--------------|---------------------------|---------------------------|
|              |              |                           |                           |

space for rough work

If  $r = 5 \times 10^{-4} m$ ,  $\rho = 10^{3} kgm^{-3}$ ,  $g = 10ms^{-2}$ ,  $T = 0.11Nm^{-1}$ , the radius of the drop when it 14. detaches from the dropper is approximately A)  $1.4 \times 10^{-3} m$ B)  $3.3 \times 10^{-3} m$ C)  $2.0 \times 10^{-3} m$ D)  $4.1 \times 10^{-3} m$ Paragraph for Question Nos. 15 & 16 A long capillary tube of radius 0.2 mm is placed vertically inside a beaker of water If the surface tension of water is  $7 \times 10^{-2} N/m$  and the angle of contact between glass of 15. water is zero, then determine the height of water column in the tube above the surface of water in beaker A) 3*cm* B) 9*cm* C) 7*cm* D) 5cm 16. If the tube is now pushed into water so that only 5.0cm of its length is above the surface, then determine the angle of contact between the liquid and glass surface. A)  $\cos^{-1}\left(\frac{4}{5}\right)$  B)  $\cos^{-1}\left(\frac{5}{7}\right)$  C)  $\cos^{-1}\left(\frac{3}{5}\right)$  D)  $\cos^{-1}\left(\frac{5}{4}\right)$ space for rough work Page 10

## SECTION - III (Matching List Type)

This section contains four questions, each having two matching lists (List-1 & List-II). The options for the correct match are provided as (A), (B),(C) and (D) out of which **ONLY ONE** is correct. **Marking scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases.** 

17. One end of a capillary tube dipped into a liquid of surface tension T. as show in

Figure.



If the rise in liquid in capillary tube is 'h' and angle of contact  $\theta = 37^{\circ}$ . If the points 'a' and 'b' are lying just above & just below the meniscus and point 'c' and 'd' are on the same horizontal level as shown in the Figure. The radius of the capillary tube is r, and atmospheric pressure is  $P_{\theta}$  and  $\rho$  is the density of liquid Match Column – I & II based on above paragraph.

space for rough work



water is  $0^0$ .

space for rough work

|      | Column – I                                                                                                                                   |    | Column – II                       |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------|
| I)   | If the arrangement is placed in an elevator going up with acceleration $g/2$                                                                 | P) | 3 <i>h</i> /2                     |
| II)  | If the whole arrangement is falling freely                                                                                                   | Q) | 2 <i>h</i>                        |
| III) | If a glass rod of radius $R/2$ is inserted<br>symmetrically in the capillary tube                                                            | R) | 2h/3                              |
| IV)  | If water in tub is replaced by fluid having<br>density double and surface tension 3 times the<br>values for water keeping other things same. | S) | Water spills out of the capillary |

A)  $I \to R; II \to P; III \to Q; IV \to P$ 

B)  $I \to R; II \to Q, S; III \to Q; IV \to P$ 

C)  $I \to R; II \to Q; III \to P; IV \to P$ 

D)  $I \rightarrow P; II \rightarrow R; III \rightarrow Q; IV \rightarrow P$ 

space for rough work

|   | Cł           | nanges made Most                         | prob  | bable effect of changes made on the |
|---|--------------|------------------------------------------|-------|-------------------------------------|
| _ |              | surta                                    | ce te | nsion of liquid                     |
|   | A            | Increase in temperature of liquid        | Q     | decrease                            |
|   | В            | Addition of soluble impurities to liquid | Р     | Increase                            |
|   | G            | Addition of insoluble impurities to      |       | N 1                                 |
|   | C            | liquid                                   | K     | No change                           |
| - | D            | Changing container in which liquid is    | G     | Cannot predict probable effect on   |
|   | D            | there                                    | 3     | surface tension                     |
| L | A)           | ) A-Q, B-P, C-R, D-S B) A                | -Q, E | B-Q, C-P, D-S                       |
|   | $\mathbf{C}$ | (A-O, B-P, C-O, D-R, D)                  | -P B  | -S C-R D-R                          |
|   |              |                                          |       |                                     |
|   |              |                                          |       |                                     |
|   |              | space for roug                           | h woi | rk Page 1-                          |
|   |              | space for roug                           | h woi | rk Page 1-                          |
|   |              | space for roug                           | h woi | rk Page 1-                          |
|   |              | space for roug                           | h woi | ∙k Page 1                           |
|   |              | space for roug                           | h woi | k Page 14                           |
|   |              | space for roug                           | h woi | rk Page 1-                          |
|   |              | space for roug                           | h woi | k Page 1                            |
|   |              | space for rous                           | h woi | k Page 14                           |





| SECLON - 1<br>(SINCLE CORRECT ANSWER TYPE)         This section contains 10 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its inserver, out of which ONLY ONE option can be correct.         And CH333 CD B) (CH333 COD C) (CD333 CD D) (CD333 COD         A) (CH3)3 CD B) (CH333 COD C) (CD333 CD D) (CD333 COD         22. How many structural isomers (carbonyl compounds) of C3H100 Show ENOLIZATION?         A) 4       B) 5       C) 6       D) 7         23. In which of the following compounds the methylene hydrogens are most acidic?         A) CH3COCH2CH3       B) CH3CH2COOEt         C) CH3CH2CH (COOEt)2       D) CH3COCH2CN       | CHE                               | MISTRY                                                                  |                                                                                                    |                                                                                         | Max Marks: 6                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| <ul> <li>(CH<sub>3</sub>)<sub>3</sub> CMgCl on reaction with D<sub>2</sub>O produces</li> <li>A) (CH<sub>3</sub>)<sub>3</sub> CD B) (CH<sub>3</sub>)<sub>3</sub> COD C) (CD<sub>3</sub>)<sub>3</sub> CD D) (CD<sub>3</sub>)<sub>3</sub> COD</li> <li>How many structural isomers (carbonyl compounds) of C<sub>5</sub>H<sub>10</sub>O show ENOLIZATION?</li> <li>A) 4 B) 5 C) 6 D) 7</li> <li>In which of the following compounds the methylene hydrogens are most acidic?</li> <li>A) CH<sub>3</sub>COCH<sub>2</sub>CH<sub>3</sub> B) CH<sub>3</sub>CH<sub>2</sub>COOEt</li> <li>C) CH<sub>3</sub>CH<sub>2</sub>CH (COOEt)<sub>2</sub> D) CH<sub>3</sub>COCH<sub>2</sub>CN</li> </ul> | This se<br>answe<br><b>Mark</b> i | ection contains 10 mul<br>er, out of which ONLY<br>ing scheme: +3 for c | SE<br>(SINGLE COR<br>Itiple choice questions. E<br>ONE option can be co<br>orrect answer, 0 if not | ECTION – I<br>RECT ANSWER TY<br>Each question has 4 op<br>rrect.<br>attempted and -1 in | ( <b>PE)</b><br>ptions (A), (B), (C) and (D) for its<br><b>all other cases.</b> |
| A) (CH <sub>3</sub> ) <sub>3</sub> CD B) (CH <sub>3</sub> ) <sub>3</sub> COD C) (CD <sub>3</sub> ) <sub>3</sub> CD D) (CD <sub>3</sub> ) <sub>3</sub> COD<br>22. How many structural isomers (carbonyl compounds) of C <sub>3</sub> H <sub>10</sub> O show<br>ENOLIZATION?<br>A) 4 B) 5 C) 6 D) 7<br>23. In which of the following compounds the methylene hydrogens are most acidic?<br>A) CH <sub>3</sub> COCH <sub>2</sub> CH <sub>3</sub> B) CH <sub>3</sub> CH <sub>2</sub> COOEt<br>C) CH <sub>3</sub> CH <sub>2</sub> CH (COOEt) <sub>2</sub> D) CH <sub>3</sub> COCH <sub>2</sub> CN<br>space for rough work Page 17                                                           | 21.                               | (CH <sub>3</sub> ) <sub>3</sub> CMgCl c                                 | on reaction with $D_2C$                                                                            | ) produces                                                                              |                                                                                 |
| <ul> <li>How many structural isomers (carbonyl compounds) of C<sub>5</sub>H<sub>10</sub>O show<br/>ENOLIZATION?</li> <li>A) 4 B) 5 C) 6 D) 7</li> <li>In which of the following compounds the methylene hydrogens are most acidic?</li> <li>A) CH<sub>3</sub>COCH<sub>2</sub>CH<sub>3</sub> B) CH<sub>3</sub>CH<sub>2</sub>COOEt</li> <li>C) CH<sub>3</sub>CH<sub>2</sub>CH (COOEt)<sub>2</sub> D) CH<sub>3</sub>COCH<sub>2</sub>CN</li> </ul>                                                                                                                                                                                                                                         |                                   | A) $(CH_3)_3 CD$                                                        | $\mathbf{B}) (CH_3)_3 COD$                                                                         | $C) (CD_3)_3 CD$                                                                        | D) $(CD_3)_3 COD$                                                               |
| ENOLIZATION?<br>A) 4 B) 5 C) 6 D) 7<br>3. In which of the following compounds the methylene hydrogens are most acidic?<br>A) CH <sub>3</sub> COCH <sub>2</sub> CH <sub>3</sub> B) CH <sub>3</sub> CH <sub>2</sub> COOEt<br>C) CH <sub>3</sub> CH <sub>2</sub> CH (COOEt) <sub>2</sub> D) CH <sub>3</sub> COCH <sub>2</sub> CN<br>Free For rough work Page 17                                                                                                                                                                                                                                                                                                                           | 22.                               | How many struc                                                          | tural isomers (carbo                                                                               | onyl compounds) o                                                                       | of $C_5H_{10}O$ show                                                            |
| A) 4       B) 5       C) 6       D) 7         23.       In which of the following compounds the methylene hydrogens are most acidic?         A) CH <sub>3</sub> COCH <sub>2</sub> CH <sub>3</sub> B) CH <sub>3</sub> CH <sub>2</sub> COOEt         C) CH <sub>3</sub> CH <sub>2</sub> CH (COOEt) <sub>2</sub> D) CH <sub>3</sub> COCH <sub>2</sub> CN                                                                                                                                                                                                                                                                                                                                  |                                   | ENOLIZATION                                                             | 1?                                                                                                 |                                                                                         |                                                                                 |
| 23. In which of the following compounds the methylene hydrogens are most acidic?         A) CH <sub>3</sub> COCH <sub>2</sub> CH <sub>3</sub> B) CH <sub>3</sub> CH <sub>2</sub> COOEt         C) CH <sub>3</sub> CH <sub>2</sub> CH (COOEt) <sub>2</sub> D) CH <sub>3</sub> COCH <sub>2</sub> CN    Space for rough work Page 17                                                                                                                                                                                                                                                                                                                                                      |                                   | A) 4                                                                    | B) 5                                                                                               | C) 6                                                                                    | D) 7                                                                            |
| A) CH <sub>3</sub> COCH <sub>2</sub> CH <sub>3</sub> B) CH <sub>3</sub> CH <sub>2</sub> COOEt<br>C) CH <sub>3</sub> CH <sub>2</sub> CH (COOEt) <sub>2</sub> D) CH <sub>3</sub> COCH <sub>2</sub> CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23.                               | In which of the f                                                       | following compound                                                                                 | ds the methylene h                                                                      | ydrogens are most acidic?                                                       |
| C) CH <sub>3</sub> CH <sub>2</sub> CH (COOEt) <sub>2</sub> D) CH <sub>3</sub> COCH <sub>2</sub> CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   | A) CH <sub>3</sub> COCH <sub>2</sub> C                                  | CH <sub>3</sub>                                                                                    | B) CH <sub>3</sub> CH <sub>2</sub> CO                                                   | <b>DEt</b>                                                                      |
| space for rough work Page 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | C) CH <sub>3</sub> CH <sub>2</sub> CH (                                 | (COOEt) <sub>2</sub>                                                                               | D) CH <sub>3</sub> COCH <sub>2</sub>                                                    | CN                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                                                         | space                                                                                              | e for rough work                                                                        | Page 17                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                                                         |                                                                                                    |                                                                                         |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                                                         |                                                                                                    |                                                                                         |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                                                         |                                                                                                    |                                                                                         |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                                                         |                                                                                                    |                                                                                         |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                                                         |                                                                                                    |                                                                                         |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                                                         |                                                                                                    |                                                                                         |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                                                         |                                                                                                    |                                                                                         |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                                                         |                                                                                                    |                                                                                         |                                                                                 |



| Iso<br>A)<br>B)<br>C)<br>D)<br>27. Me<br>1.w<br>2. H<br>3. I<br>A)<br>28. WI                                                                     | butane was obtained as one of<br>methyl chloride and propyl cl<br>methyl chloride and ethyl chl<br>Isopropyl chloride and methyl<br>Isopropyl chloride and ethyl of<br>thane cannot be synthesised a<br>purtz reaction<br>Colbe's reaction<br>De- Carboxylation of salts of<br>1,2 B) 2,3 | f chief product. The two<br>hloride<br>oride<br>l chloride<br>chloride<br>as chief product under w<br>fatty acids | o chlorine compou | nds are |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|---------|--|--|
| <ul> <li>A)</li> <li>B)</li> <li>C)</li> <li>D)</li> <li>27. Mee</li> <li>1.w</li> <li>2. H</li> <li>3. I</li> <li>A)</li> <li>28. WI</li> </ul> | methyl chloride and propyl ch<br>methyl chloride and ethyl chl<br>Isopropyl chloride and methyl<br>Isopropyl chloride and ethyl of<br>thane cannot be synthesised a<br>purtz reaction<br>Colbe's reaction<br>De- Carboxylation of salts of<br>1,2 B) 2,3                                  | hloride<br>oride<br>l chloride<br>chloride<br>as chief product under w<br>fatty acids                             | vhich reaction    |         |  |  |
| <ul> <li>B)</li> <li>C)</li> <li>D)</li> <li>27. Me</li> <li>1.w</li> <li>2. H</li> <li>3. I</li> <li>A)</li> <li>28. WI</li> </ul>              | methyl chloride and ethyl chl<br>Isopropyl chloride and methy<br>Isopropyl chloride and ethyl o<br>thane cannot be synthesised a<br>purtz reaction<br>Kolbe's reaction<br>De- Carboxylation of salts of<br>1,2 B) 2,3                                                                     | oride<br>l chloride<br>chloride<br>is chief product under v<br>fatty acids                                        | which reaction    |         |  |  |
| C)<br>D)<br>27. Me<br>1.w<br>2. H<br>3. I<br>A)<br>28. WI                                                                                        | Isopropyl chloride and methy<br>Isopropyl chloride and ethyl of<br>thane cannot be synthesised a<br>purtz reaction<br>Kolbe's reaction<br>De- Carboxylation of salts of<br>1,2 B) 2,3                                                                                                     | l chloride<br>chloride<br>is chief product under v<br>fatty acids                                                 | which reaction    |         |  |  |
| D)<br>27. Me<br>1.w<br>2. H<br>3. I<br>A)<br>28. WI                                                                                              | Isopropyl chloride and ethyl of<br>thane cannot be synthesised a<br>rurtz reaction<br>Kolbe's reaction<br>De- Carboxylation of salts of<br>1,2 B) 2,3                                                                                                                                     | chloride<br>is chief product under v<br>fatty acids                                                               | which reaction    |         |  |  |
| 1.w<br>2. H<br>3. I<br>A)<br>28. WI                                                                                                              | Purtz reaction<br>Kolbe's reaction<br>De- Carboxylation of salts of<br>1,2 B) 2,3                                                                                                                                                                                                         | fatty acids                                                                                                       |                   |         |  |  |
| 2. H<br>3. I<br>A)<br>28. WI                                                                                                                     | Kolbe's reaction<br>De- Carboxylation of salts of<br>1,2 B) 2,3                                                                                                                                                                                                                           | fatty acids                                                                                                       |                   |         |  |  |
| 3. I<br>A)<br>28. WI                                                                                                                             | De- Carboxylation of salts of 1,2 B) 2,3                                                                                                                                                                                                                                                  | fatty acids                                                                                                       |                   |         |  |  |
| A)<br>28. Wi                                                                                                                                     | 1,2 B) 2,3                                                                                                                                                                                                                                                                                | () 1 2 2                                                                                                          |                   |         |  |  |
| 28. WI                                                                                                                                           |                                                                                                                                                                                                                                                                                           | C) 1,2,3                                                                                                          | D) 1,3            |         |  |  |
|                                                                                                                                                  | nen sodium acetate is heated v                                                                                                                                                                                                                                                            | with sodalime the react                                                                                           | ion is called     |         |  |  |
| A)                                                                                                                                               | Dehydration                                                                                                                                                                                                                                                                               | B) Decarboxylati                                                                                                  | on                |         |  |  |
| C)                                                                                                                                               | Dehydrogenation                                                                                                                                                                                                                                                                           | D) Dehydrohalog                                                                                                   | genation          |         |  |  |
| 29. Eth                                                                                                                                          | Ethane cannot be obtained by the following                                                                                                                                                                                                                                                |                                                                                                                   |                   |         |  |  |
| A)                                                                                                                                               | A) Heating methyl iodide with sodium metal in ether                                                                                                                                                                                                                                       |                                                                                                                   |                   |         |  |  |
| B)                                                                                                                                               | B) Hydrogenation of ethene                                                                                                                                                                                                                                                                |                                                                                                                   |                   |         |  |  |
| C)                                                                                                                                               | Sodium acetate on Kolbe's el                                                                                                                                                                                                                                                              | ectrolysis                                                                                                        |                   |         |  |  |
| )                                                                                                                                                |                                                                                                                                                                                                                                                                                           | pace for rough work                                                                                               |                   | Page 19 |  |  |





#### Paragraph for Question Nos. 33 & 34

Wurtz reaction: Alkyl halide reacts with metallic sodium in the presence of dry ether to form alkanes containing the double the number of C atoms present in the alkyl halide. Corey-House Synthesis: Dialkyl copper lithium reacts with Alkyl halide gives alkane

33. A mixture of ethyl iodide and methyl iodide is subjected to wurtz reaction the product which is not possible is

A) ethane B) butane C) propane D) 2-methyl propane

34. The most convenient method to prepare 2-methyl pentane among the following is

A) 
$$CH_{3} - CH - CH_{2}Br + CH_{3}CH_{2}Br \xrightarrow{Na} dryether$$
  
B)  $CH_{3} - CH - Br + CH_{3}CH_{2}CH_{2}Br \xrightarrow{Na} dryether$   
 $CH_{3}CH_{2}CH_{2} + \left(CH_{3}CH_{2}CH_{2}Dr \xrightarrow{Na} dryether\right)$   
C)  $Br = CH_{3}CH_{2}CH_{2} + \left(CH_{3}CH_{2}Dr \xrightarrow{Na} D\right)$   
C) All of these

Page 22

space for rough work



| This so<br>match<br><b>Mark</b> | ection contains<br>are providec<br>ing scheme: - | s four que<br>d as (A), (<br><b>+3 for co</b> | estions, e<br>B),(C) a<br><b>rrect an</b> | (Mate<br>each having t<br>nd (D) out of<br>swer, 0 if nc | ching List Ty<br>wo matching lis<br>which ONLY O | <b>be)</b><br>ts (List-1 &<br>NE is corr<br><b>d -1 in al</b> | & List-II)<br>rect.<br><b>I other</b> | . The options for <b>cases.</b> | the correct |
|---------------------------------|--------------------------------------------------|-----------------------------------------------|-------------------------------------------|----------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|---------------------------------------|---------------------------------|-------------|
| 37.                             | Match the                                        | e follov                                      | ving                                      | ·                                                        | •                                                |                                                               |                                       |                                 |             |
|                                 | Column I                                         | (Carboı                                       | nyl cor                                   | npound)                                                  | Column I                                         | I (Enol o                                                     | conten                                | t %)                            |             |
|                                 | (A) PhCO                                         | CH <sub>2</sub> COC                           | $CH_3$                                    |                                                          | (1) 6 x 10                                       | (1) $6 \times 10^{-5}$                                        |                                       |                                 |             |
|                                 | (B) <i>EtOO</i>                                  | CCH <sub>2</sub> CO                           | OEt                                       |                                                          | (2) 2 x $10^{-1}$                                |                                                               |                                       |                                 |             |
|                                 | (C) $NCCH_2COOEt$                                |                                               | (3) 89                                    |                                                          |                                                  |                                                               |                                       |                                 |             |
|                                 | (D) <i>CH</i> <sub>3</sub> <i>C</i> <sub>4</sub> | HO                                            |                                           |                                                          | (4) 7.7 x $10^{-3}$                              |                                                               |                                       |                                 |             |
|                                 | The corre                                        | ct comb                                       | inatior                                   | n is                                                     |                                                  |                                                               |                                       |                                 |             |
|                                 | A) A-3                                           | B-4                                           | C-2                                       | D-1                                                      | B) A-3                                           | B-4                                                           | C-1                                   | D-2                             |             |
|                                 | C) A-1                                           | В-2                                           | C-3                                       | D-4                                                      | D) A-4                                           | В-3                                                           | C-1                                   | D-2                             |             |



|                                                      | Column-II                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P) $CH_3Cl + (CH_3)_2 CuLi \rightarrow H_3C - CH_3$  | 1) Free radical intermediate                                                                                                                                                                                                                                                                      |
| Q) $CH_3COONa \xrightarrow{NaOH}_{CaO} CH_4$         | 2) Carbanion intermediate                                                                                                                                                                                                                                                                         |
| R) $CH_2 = CH_2 \xrightarrow{H_2}{N_i} H_3C - CH_3$  | 3) Carbocation intermediate                                                                                                                                                                                                                                                                       |
| S) $CH_3COONa \xrightarrow{electroysis} H_3C - CH_3$ | 4) No intermediate                                                                                                                                                                                                                                                                                |
| A) P-4 Q-2 R-4 S-1                                   | B) P-2 Q-1 R-4 S-3                                                                                                                                                                                                                                                                                |
| C) P-1 Q-3 R-2 S-4                                   | D) P-4 Q-2 R-3 S-1                                                                                                                                                                                                                                                                                |
|                                                      |                                                                                                                                                                                                                                                                                                   |
|                                                      |                                                                                                                                                                                                                                                                                                   |
|                                                      |                                                                                                                                                                                                                                                                                                   |
|                                                      |                                                                                                                                                                                                                                                                                                   |
|                                                      | P) $CH_3Cl + (CH_3)_2CuLi \rightarrow H_3C - CH_3$<br>Q) $CH_3COONa \xrightarrow{NaOH}_{CaO} \rightarrow CH_4$<br>R) $CH_2 = CH_2 \xrightarrow{H_2}_{Ni} \rightarrow H_3C - CH_3$<br>S) $CH_3COONa \xrightarrow{electroysis} \rightarrow H_3C - CH_3$<br>A) P-4 Q-2 R-4 S-1<br>C) P-1 Q-3 R-2 S-4 |

| 40. | Preparation methods for alkanes is g            | given in list –I. Some information about bond  |  |  |  |  |
|-----|-------------------------------------------------|------------------------------------------------|--|--|--|--|
|     | formation and cleavages of each pre             | paration method is given in list II.           |  |  |  |  |
|     | List – I                                        | List - II                                      |  |  |  |  |
|     | P) $RCOONa \xrightarrow{soda \lim e}$           | 1) $C - C$ bond formation                      |  |  |  |  |
|     | Q) $R - X \xrightarrow{(C_2H_5)_2CuLi}$         | 2) $C - C$ bond cleavage                       |  |  |  |  |
|     | R) $RCOOK(aq) \xrightarrow{electrolysis}$       | 3) both $C - C$ bond formation and cleavage    |  |  |  |  |
|     | S) $R - X \xrightarrow{Na}_{ether} \rightarrow$ | 4) neither $C - C$ bond formation nor cleavage |  |  |  |  |
|     | Correct Matching is                             |                                                |  |  |  |  |
|     | P Q R S                                         | P Q R S                                        |  |  |  |  |
|     | A) 2 1 3 1                                      | B) 3 4 2 1                                     |  |  |  |  |
|     | C) 4 3 2 1                                      | D) 2 4 3 1                                     |  |  |  |  |
|     |                                                 |                                                |  |  |  |  |

MATHEMATICS

Max Marks: 60

#### SECTION – I (SINGLE CORRECT ANSWER TYPE)

This section contains 10 multiple choice questions. Each question has 4 options (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** option can be correct. **Marking scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases.** 

41. If L, M are the feet of the perpendiculars from (2, 4, 5) to xy - plane and yz – plane

respectively, then distance LM is ------units

- A)  $9\sqrt{2}$  B)  $2\sqrt{2}$  C)  $\sqrt{29}$  D)  $\sqrt{31}$
- 42. Let A (4, 7, 8), B (2,3, 4) and C(2, 5, 7) be the vertices of  $\triangle ABC$ . The length of the

median AD is----units

A) 
$$\sqrt{2}$$
 B)  $\frac{\sqrt{2}}{2}$  C)  $\frac{\sqrt{77}}{2}$  D)  $\frac{\sqrt{89}}{2}$ 

43. If A(3, 2, 0), B(5, 3, 2), C(-9, 6, -3) are three points forming a triangle then the coordinates of a point in which the bisector of  $\angle BAC$  meets BC are given by------

| A) $\left(\frac{88}{16}, \frac{57}{16}, \frac{27}{16}\right)$    | B) $\left(\frac{38}{16}, \frac{57}{16}, \frac{17}{16}\right)$ |
|------------------------------------------------------------------|---------------------------------------------------------------|
| C) $\left(\frac{-88}{16}, \frac{-57}{16}, \frac{-27}{16}\right)$ | D) $\left(\frac{38}{16}, \frac{57}{16}, \frac{27}{16}\right)$ |

space for rough work

The lines  $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z-2}{-1}, \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{4}$  are 44. A) parallel lines B) intersecting lines C) perpendicular skew lines D) none of the above If the d.c's l, m, n of two lines are connected by the relations l + m + n = 0 and 45.  $l^2 + m^2 - n^2 = 0$ , then the angle between the lines is A)  $30^{\circ}$ B)45°  $C)90^{\circ}$  $D)60^{\circ}$ The lines  $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{\lambda}$  and  $\frac{x}{1} = \frac{y}{2} = \frac{z+1}{-1}$  are 46. A) coplanar for all  $\lambda$ B) coplanar for  $\lambda = 19/3$ C) intersect at  $\left(+\frac{1}{5}, -\frac{2}{5}, -\frac{4}{5}\right)$ D) intersect at  $\left(\frac{1}{2}, -\frac{1}{2}, -1\right)$ The point on the line  $\frac{x-2}{1} = \frac{y+3}{-2} = \frac{z+5}{-2}$  at a distance of 6 from the point (2, -3, -5) is 47. A) (3,-5,-3) B) (4,-7,-9) C) (0,2,-1) D) (-3,5,3)

space for rough work

If lines x = y = z and  $x = \frac{y}{2} = \frac{z}{3}$ , and third line passing through (1, 1, 1) from a 48. triangle of area  $\sqrt{6}$  units, then point of intersection of third line with second line can be C)  $\left(\frac{4}{3}, \frac{8}{3}, \frac{12}{3}\right)$  D) (0, 2, 3)B) (2,4,6) A) (1,2,3) 49. If a variable line in two adjacent positions has directional cosines l, m, n and  $l + \delta l, m + \delta m, n + \delta n$  and  $\delta \theta$  is small angle between two positions then  $\left(\delta l\right)^2 + \left(\delta m\right)^2 + \left(\delta n\right)^2 =$ A)  $(\delta\theta)^2$ B)  $3(\delta\theta)^2$ C)  $2(\delta\theta)^2$ D) constant that does not depend on  $\delta\theta$ The point of intersection of the lines  $\frac{x-5}{3} = \frac{y-7}{-1} = \frac{z+2}{1}$  and  $\frac{x+3}{-36} = \frac{y-3}{2} = \frac{z-6}{4}$  is 50. A)  $\left(21, \frac{5}{3}, \frac{10}{3}\right)$  B) (2,10,4) C) (-3,3,6) D) (5,7,-2) space for rough work Page 30

#### SECTION - II (PARAGRAPH TYPE)

This section contains **3 Paragraph of questions**. Each paragraph has 2 multiple choice questions based on a paragraph. Each question has 4 choices A), B), C) and D) for its answer, out of which ONLY **ONE IS** correct. **Marking scheme: +3 for correct answer**, **0 if not attempted and -1 in all other cases**.

#### Paragraph for Question Nos. 51 & 52

A line  $L_1$  with direction ratios -3 ,2, 4 passes through the point A(7, 6, 2) and a line  $L_2$  with direction ratios 2, 1, 3 passes through the point B(5, 3, 4). A line  $L_3$  with direction ratios 2, -2,-1 intersects  $L_1$  and  $L_2$  at C and D.

51. The length CD is equal to

A) 4 B) 6 C) 9 D) 11

52. Centroid of  $\triangle BCD$  is -----

| (3 3 3) $(3 3 )$ $(3 3 )$ $(3 3 )$ | A) $\left(\frac{13}{3}, \frac{4}{3}, \frac{7}{3}\right)$ | $B)\left(\frac{2}{3},\frac{1}{3},7\right)$ | C) $\left(\frac{7}{3}, 12, \frac{5}{3}\right)$ | D) $\left(\frac{13}{3}, \frac{17}{3}, 7\right)$ |
|------------------------------------|----------------------------------------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------|
|------------------------------------|----------------------------------------------------------|--------------------------------------------|------------------------------------------------|-------------------------------------------------|

#### Paragraph for Question Nos. 53 & 54

In a parallelogram OABC with position vectors of A is  $3\hat{i} + 4\hat{j}$  and C is  $4\hat{i} + 3\hat{j}$  with

reference to O as origin. A point E is taken on the side  $\overline{BC}$  which divides it in the ratio

of 2: 1. Also, the line segment AE intersects the line bisecting the ∠AOC internally at

P.

space for rough work



#### SSECTION-3 (MATCHING LIST TYPE)

This section contains four questions, each having two matching lists (List-1 & List-II). The options for the correct match are provided as (A), (B),(C) and (D) out of which **ONLY ONE** is correct.

- Marking scheme: +3 for correct answer, 0 if not attempted and -1 in all other cases.
- 57. Match the column I with column II

|                     |                             |                                |                 | Colu      | mn I                                        |                   |          |         | Column II              |  |
|---------------------|-----------------------------|--------------------------------|-----------------|-----------|---------------------------------------------|-------------------|----------|---------|------------------------|--|
| (P) 7               | The c                       | o-ordii                        | nates o         | f a point | t on the line                               |                   |          |         |                        |  |
| $\frac{x-5}{4}$     | $=\frac{y}{1}$              | $\frac{-0}{z} = \frac{z+3}{3}$ | (1) (-1, -2, 0) |           |                                             |                   |          |         |                        |  |
| (Q) 7               | The p                       |                                |                 |           |                                             |                   |          |         |                        |  |
| $\frac{x+2}{1}$     | $\frac{y}{3} = \frac{y}{3}$ | (2) (5, 0, -6)                 |                 |           |                                             |                   |          |         |                        |  |
| (R) /               | A line                      |                                |                 |           |                                             |                   |          |         |                        |  |
| B(8,                | -1,2                        | 2). The                        | co-ore          | linates o | of a point on                               | this l            | ine nea  | arer to | (3) (2, 5, 7)          |  |
| the o               | origin                      | at a d                         | istance         | of 14 u   | nits from A                                 | is                |          |         |                        |  |
| (S) T               | The c                       | o-ordii                        | nates o         | f the foc | ot of the perj                              | pendi             | cular fi | om      |                        |  |
| the p               | oint                        | (3, -1,                        | 11) on          | the line  | $\frac{x}{2} = \frac{y-2}{3} = \frac{z}{3}$ | $\frac{-3}{4}$ is |          |         | (4) ( - 10, - 7, - 7 ) |  |
| COD                 | E                           |                                |                 |           |                                             |                   |          |         | -                      |  |
|                     | Р                           | S                              |                 |           |                                             |                   |          |         |                        |  |
| A)                  | 2                           | 2                              |                 |           |                                             |                   |          |         |                        |  |
| C) 3 2 4 1 D) 1 4 2 |                             |                                |                 |           |                                             |                   |          |         |                        |  |

space for rough work

| 58. C | onsider the | lines given | by $L_1: x +$ | 3y - 5 = 0, | $L_2: 3x - 1$ | ky - 1 = 0 | and |
|-------|-------------|-------------|---------------|-------------|---------------|------------|-----|
|-------|-------------|-------------|---------------|-------------|---------------|------------|-----|

 $L_3: 5x + 2y - 12 = 0$  in xy plane of 3dimensional space

|     |                         |                     |                                     | Colı                        | ımn – I      |                           |   |   | Column – II |
|-----|-------------------------|---------------------|-------------------------------------|-----------------------------|--------------|---------------------------|---|---|-------------|
| Р   | <i>L</i> <sub>1</sub> , | $L_2$ and           | $L_3$ ar                            | e concu                     | 1            | $k = -9, -\frac{6}{5}, 5$ |   |   |             |
| Q   | One the                 | e of $L_1$<br>other | , $L_2$ antwo, if                   | nd <i>L</i> <sub>3</sub> is | 2            | $k = -\frac{6}{5}, -9$    |   |   |             |
| R   | L <sub>1</sub> , 1)     | $L_2$ and           | $L_3$ fo                            | rm a tri                    | 3            | $k = \frac{5}{6}$         |   |   |             |
| S   | $L_1,$<br>k =           | $L_2$ and           | l <i>L</i> <sub>3</sub> d<br>- (k ≤ | 4                           | <i>k</i> = 5 |                           |   |   |             |
| COD | E                       |                     |                                     |                             |              |                           |   |   |             |
|     | Р                       | Q                   | R                                   | S                           | R            | S                         |   |   |             |
| A)  | 2 1 4 3 B) 4 2          |                     |                                     |                             |              |                           |   |   | 2           |
| C)  | 3                       | 2                   | 4                                   | 1                           | D)           | 1                         | 4 | 2 | 3           |

space for rough work

59. A line *L* cuts 4 main diagonals  $L_1, L_2, L_3$  and  $L_4$  of a unit cube at angles  $\theta_1, \theta_2, \theta_3$  and  $\theta_4$  respectively. Then Match the following

| List – A                                                                  | List – B          |
|---------------------------------------------------------------------------|-------------------|
| P) Acute angle between $L_1$ and $L_3$ is $\alpha$ . Then $\cos \alpha =$ | 1) $\frac{1}{3}$  |
| $Q) \sum_{k=1}^{4} \sin^2 \theta_k = \underline{\qquad}$                  | 2) $\frac{16}{3}$ |
| $R) \sum_{k=1}^{4} \cos^2 \theta_k = \underline{\qquad}$                  | 3) $\frac{4}{3}$  |
| S) Acute angle between $L_2$ and $L_4$ is $\beta$ . Then $6\sin^2\beta =$ | 4) $\frac{8}{3}$  |
| CODE                                                                      |                   |

|    | r | Q | ĸ | Э |
|----|---|---|---|---|
| A) | 2 | 1 | 4 | 3 |
| B) | 4 | 1 | 3 | 2 |
| C) | 3 | 2 | 4 | 1 |
| D) | 1 | 4 | 3 | 2 |

space for rough work

60. l,m,n are directional cosines of a line in 3 – dimensional space, Then Match the following

| List – A                                              | List – B |
|-------------------------------------------------------|----------|
| P) Maximum value of $54l^2m^2n^2 = $                  | 1) 4     |
| Q) $(l+m-n)^2 + (m+n-l)^2 + (n+l-m)^2 + (l+m+n)^2 = $ | 2) 3     |
| R) Maximum value of $3(lm + mn + nl)$ is _            | 3) 2     |
| S) Maximum value of $ 4l+4m+2n $ is                   | 4) 6     |

## CODE

|    | Р | Q | R | S |
|----|---|---|---|---|
| A) | 2 | 1 | 4 | 3 |
| B) | 4 | 1 | 3 | 2 |
| C) | 3 | 1 | 2 | 4 |
| D) | 1 | 4 | 2 | 3 |

space for rough work



# **Master JEE CLASSES**

## Kukatpally, Hyderabad.

## JEE-ADVANCE-2014-P2-Model

#### Max.Marks:180 KEY SHEET

#### NEY SHEEI

## **PHYSICS**

| 1  | В | 2  | В | 3  | В | 4  | C | 5  | С |
|----|---|----|---|----|---|----|---|----|---|
| 6  | Α | 7  | D | 8  | A | 9  | D | 10 | В |
| 11 | Α | 12 | С | 13 | С | 14 | Α | 15 | С |
| 16 | В | 17 | A | 18 | В | 19 | C | 20 | Α |

## CHEMISTRY

| 21 | Α | 22 | C | 23 | D | 24 | В | 25 | С |
|----|---|----|---|----|---|----|---|----|---|
| 26 | С | 27 | Α | 28 | В | 29 | D | 30 | В |
| 31 | С | 32 | Α | 33 | D | 34 | C | 35 | Α |
| 36 | D | 37 | A | 38 | С | 39 | Α | 40 | Α |

## MATHS

| 41 | C | 42 | С | 43 | В | 44 | С | 45 | D |
|----|---|----|---|----|---|----|---|----|---|
| 46 | В | 47 | В | 48 | В | 49 | Α | 50 | Α |
| 51 | C | 52 | D | 53 | D | 54 | В | 55 | В |
| 56 | C | 57 | A | 58 | В | 59 | D | 60 | С |



$$(p_w) \left(\frac{4}{3}\pi R^3\right) g \le (T)(2\pi r) \sin \theta$$
  

$$\Rightarrow \sin \theta = \frac{r}{R}$$
  
Solving,  $r = \sqrt{\frac{2\rho_w R^4 g}{3T}} = R^2 \sqrt{\frac{2\rho_w g}{3T}}$   
6.  $\frac{\Delta T}{T} = \frac{\Delta d}{d} + \frac{\Delta h}{h}$   
7. Using geometry  
 $\frac{b}{R} = \cos\left(\theta + \frac{\alpha}{2}\right)$ 

Using pressure equation

$$p_0 - \frac{25}{R} + h\rho g = p_0$$

8. The bubble will detach if,



 $\int \sin \theta T \times dl = T \left( 2\pi r \right) \sin \theta$ 

Buoyant force  $\geq$  Surface tension force

$$\frac{4}{3}\pi R^{3}\rho_{w}g \ge \int T \times dl\sin\theta$$
$$(\rho_{w})\left(\frac{4}{3}\pi R^{3}\right)g \ge (T)(2\pi r)\sin\theta$$
$$\Rightarrow \sin\theta = \frac{r}{R}$$
Solving  $r = \sqrt{\frac{2\rho_{w}R^{4}g}{3T}}$ 
$$= R^{2}\sqrt{\frac{2\rho_{w}g}{3T}}$$

No option matches with the correct answer.

9. Conceptual

10. If surface tension is neglected, by the law of floatation  $mg = (a^2 x \rho)g$  where *a* is the side the density of water and *m* is the mass of cube.

 $3.2g = 0.2^2 \times (10^3)g$ 

The height to which the cube is immersed  $x = \frac{3.2}{(0.2)^2 \times 10^3} = 0.08m$ 

Since water wets the cube, the angle of contact is zero and the force of surface tension acts vertically downwards. So its is buoyed down the surface tension  $mg + 4aT^2x'\rho g$ , where *T* is surface tension of water  $3.2g + 4(0.2)(0.07) = (0.2)^2 x'(10^3)g$ 

$$x' = 0.8 + \frac{4(0.2)(0.7)}{(0.2)^2 (10^3)(0.8)} = (0.08 + 1.4 \times 10^{-4})m$$

The additional distance it is buoyed down by surface tension  $=1.4 \times 10^{-4} m$ 

11. 
$$P_2 - \frac{2T}{r} = P_0 ieP_2 = P_0 + \frac{2T}{r}$$

If temperature is constant

$$P_1 v_2 = p_2 v_2$$
$$P_0 AL = \left[ P_0 + \frac{2T}{r} \right] A \left( L - x \right) \Longrightarrow x = \frac{0.11}{11} = 0.01m$$

12. If the seal is broken pressure inside the capillary will become atmospheric *ie*.  $P_0$  in raise in the height  $h = \frac{2T}{r\rho g} = \frac{2 \times 5.06 \times 10^{-2}}{10^{-5} \times 10^3} = 1.03m$ 

However the length of the tube outside water is 0.11 - 0.01 = 0.1mLiquid will rise to top of the tube

13. Vertical force due to surface tension,

$$F_{v} = F \sin \theta = (T2\pi r)(r/R)$$
$$= \frac{2\pi r^{2}T}{R}$$

 $\therefore$  Correct option is (c)

14. 
$$\frac{2\pi r^2 T}{R} = mg = \frac{4}{3}\pi R^3 \cdot \rho \cdot g$$

$$R^{4} = \frac{3r^{2}T}{2\rho g} = \frac{3 \times (5 \times 10^{-4})^{2} (0.11)}{2 \times 10^{3} \times 10}$$

$$= 4.125 \times 10^{-12} m^{4}$$

$$\therefore R = 1.425 \times 10^{-3} m = 1.4 \times 10^{-3} m$$

$$\therefore \text{ Correct option is } (a)$$
15. Conceptual
16. Conceptual
17. 
$$R = \frac{r}{\cos \theta} = \frac{5r}{4}$$

$$P_{a} = P_{c} = P_{a} = P_{0}$$

$$P_{a} - \frac{2T}{R} = P_{b}$$
18. 
$$h = \frac{2T}{r\rho g_{off}}$$
If  $g = 0$  tube has in sufficient length
$$2\pi (r_{i} + r_{i})T = \pi (r_{2}^{2} - r_{i}^{2})\rho hg$$
19. Conceptual
20. Conceptual
20. Conceptual
21. RMgX + Acidic H ------- R-H
22. aldehdes----- THREE Ketones----- THREE
23. CH\_{3}COCH\_{2}CN
24. (b) no  $\alpha - H^{+}s$ 
25. 1,2,3,4 are possible
26.  $(CH_{3})_{2} CHCl + CH_{3}Cl - \frac{M}{M} (CH_{3})_{2} CH - CH_{3}$ 
27.  $CH_{4}$  can't be prepared by wurtz and kolbe's reaction
28. De carboxylation
29.  $A_{4}C_{3}$  given  $CH_{4}$ 

(b) given  $H_2$ 30. 31.  $C_6H_5CH = CH - OH \rightleftharpoons C_6H_5 - CH_2 - CH = O$ 32. In accetoacetic ester keto form predominates end so x > y33. ethane, butane and propane are formed 34. Wurtz reaction is not suitable for the preparation of unsymmetrical alkanes 35. Enol has aromatic character 36. solvent, concentration and temperature 37. PhCOCH<sub>2</sub>COCH<sub>3</sub>-----89 *EtOOCCH*<sub>2</sub>*COOEt* -----7.7 x 10<sup>-3</sup> *NCCH*<sub>2</sub>*COOEt* ------2 x 10<sup>-1</sup> *CH*<sub>2</sub>*CHO* ------6 x 10<sup>-5</sup> 38. **Corey-House synthesis** 39. Conceptual 40. P-Decarboxylation Q-Corey House R-Kolbe's S-Wurtz **MATHS**  $L = (2, 4, 0) M = (0, 4, 5) LM = \sqrt{29}$ 41.  $D = (2, 4, 11/2) AD = \sqrt{\frac{77}{2}}$ 42. 43. Use BD: DC = c: b44. Conceptual Eliminate n and solve for dc's. We get  $\frac{l}{1} = \frac{m}{0} = \frac{n}{-1}$  or  $\frac{l}{0} = \frac{m}{1} = \frac{n}{-1}$   $\therefore \theta = 60^{\circ}$ 45. Use the condition for coplanarity  $\begin{vmatrix} 1 & -1 & 4 \\ 2 & -1 & \lambda \\ 1 & 2 & -1 \end{vmatrix} = 0 \Rightarrow \lambda = \frac{19}{3}$ 46. 47. Required point P = (r+2, -2r-3, -2r-5) and r = 2 $\therefore P = (4, -7, -9)$ Verify from options the given data 48. Use  $l^2 + m^2 + n^2 = (l + \delta l)^2 + (m + \delta m)^2 + (n + \delta n)^2 = 1$ 49.  $(3\lambda + 5, -\lambda + 7, \lambda - 2) = (-36\mu - 3, 2\mu + 3, 4\mu + 6)$  solving for  $\lambda \& \mu$  we have 50.  $\lambda = \frac{16}{3}, \mu = \frac{-2}{3}$ : Required point = (21, 5/3, 10/3)51&52.  $L_1 = \frac{x-7}{-3} = \frac{y-6}{2} = \frac{z-2}{4}$  and  $L_2 = \frac{x-5}{2} = \frac{y-3}{1} = \frac{z-4}{3}$ 

$$\overrightarrow{(-3\lambda+7,2\lambda+6,4\lambda+2)} \text{ and } D(2\mu+5,\mu+3,3\mu+4)$$
So  $\frac{2-3\lambda-2\mu}{2} = \frac{3+2\lambda-\mu}{-2} = \frac{-2+4\lambda-3\mu}{-1}$ 
 $\therefore \lambda = 2, \mu = 1$ 
So C(1,10, 10) and D(7, 4, 7)  $\Rightarrow l(CD) = 9$ 
S3.  $\overrightarrow{OB} = 7\hat{i} + 7\hat{j}, \overrightarrow{OE} = 5\hat{i} + \frac{13}{3}; \overrightarrow{OP} = \frac{21}{5}(\hat{i} + \hat{j})$ 
S4. Direction ratio of CP is (1,6,0) then equation of line passing through (2,3,4) and parallel to CP is  $\frac{x-2}{1} = \frac{y-3}{6} = \frac{z-4}{0}$ 
S5&56. Conceptual
S7. (A) The given line is  $x = 4y + 5, z = 3y - 6,$ 
or  $\frac{x-5}{4} = y; \frac{z+6}{3} = y$  or  $\frac{x-5}{4} = \frac{y}{1} = \frac{z+6}{3} = \lambda (say)$ 
any point on this line is of the form of  $(4\lambda + 5, \lambda, 3\lambda - 6)$ . the distance between  $(4\lambda + 5, \lambda, 3\lambda - 6)$  and  $(5, 3, -6)$  is 3 units (given). Therefore  $(4\lambda + 5-5)^2 + (\lambda - 3)^2 + (3\lambda - 6 + 6)^2 = 9 \Rightarrow \lambda = 0, \frac{3}{13}.$ 
so point is (5, 0, -6)
(B) The equation of the required plane is
 $\begin{vmatrix} x-2 & y+3 & z+5 \\ 1 & 4 & 7 \\ 3 & 5 & 7 \end{vmatrix} = 0 \Rightarrow x - 2y + z - 3 = 0$ 
point (-1, -2, 0) lies on this plane.
(C) The line passing through points  $\Lambda(2, -3, -1)$  and B(8, -1, 2) is
 $\frac{x-2}{8-2} = \frac{y-3}{2+1} = \frac{z+1}{2+1}$  or  $\frac{x-2}{2} = \frac{y+3}{2} = \frac{z+1}{3} = \lambda (say)$ 
any point on this line is of the form P( $6\lambda + 2, 2\lambda - 3, 3\lambda - 1$ ) whose distance from point  $\Lambda(2, -3, -1)$  is 14 units. So PA = 14, (PA)^2 = (14)^2 \Rightarrow (6\lambda)^2 + (2\lambda)^2 + (3\lambda)^2 = 196
 $\Rightarrow \lambda^2 = 4 \Rightarrow \lambda = \pm 2.$ 
The required points are (14, 1, 5).

(D) Any point on line AB,  $\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4} = \lambda$  is M(2 $\lambda$ , 3 $\lambda$  + 2, 4 $\lambda$  + 3). Therefore the direction ratios of PM are 2 $\lambda$  - 3, 3 $\lambda$  + 3 and 4 $\lambda$  - 8  $\int_{A}^{P} \int_{M}^{B} \frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4}$   $\therefore 2(2\lambda - 3) + 3(3\lambda + 3) + 4(4\lambda - 8) = 0 \Rightarrow \lambda = 1$ 

so foot of the perpendicular is M(2, 5, 7)

58,59,60. Conceptual