(d) Summary of Reactions of Esters

Solved Examples

JEE Main/Boards

Example 1: Select the correct statement about the following compounds I, II, II.

- (A) (I) decarboxylates faster than (II) on heating.
- (B) Only *CO₂ is eliminated on heating of compound(I).
- (C) Compound (I) eliminates a mixture of CO_2 and $*CO_2$ on heating.
- (D) The rate of decarboxylation of (II) is faster than (III).

Sol 1: (A) Nature of functional group also has an influence on rate of decarboxylation. Presence of Electron Withdrawing Group-Increases its rate of decarboxylation.

rate of decarboxylation : III > I > II

Example 2: Which of these represents correct reaction ?

Sol 2: (A, B, C, D) H-C-O
$$\xrightarrow{Conc.NaOD}$$
 DCOO⁻ + DCH₂OD
II

Cannizzaro reaction

(B)
$$CH_3 - C - H + H - C - H \xrightarrow{\text{NaOH}} C(CH_2OH)_4 + HCOO^-$$

 $H = H = HCOO^-$
(excess)

Aldol + Cannizzaro reaction

(C)
$$CH_3 - CH_3 - C - OH \xrightarrow{P+Br_2} CH_3 - CH - COOH$$

 II
 O
 Br

HVZ reaction

(D)
$$CH_3$$
-C-OH + CH_3 -CH₂-C-OH $\xrightarrow{Conc.H_2SO_4}$ CH_3 -CH₂-C-O-C-CH₃
 $\downarrow C_2H_5$ $\downarrow O$ $\downarrow C_2H_5$
(Esterification reaction)

Example 3: Final product is :

Phthalic acid

Sol 3: (B)

Example 4: Identify (A), (B), (C) and (D).

$$C_{3}H_{5}CI (A) \xrightarrow{Mg/dry \text{ ether}} (B) \xrightarrow{(i) CO_{2}} (C) \xleftarrow{[O]} C_{8}H_{12} (D)$$

Saturated

Sol: First step is preparation of gringnard reagent Second is reaction of G. R. with CO₂ to form an acid

Example 5: Give the reaction of preparation of propanoic acid from ethyl alcohol.

Sol:
$$CH_3 - CH_2OH \xrightarrow{PCI_5} CH_3 - CH_2 - CH_3$$

$$\frac{KCN}{Nucleophilic substitution} CH_3 - CH_2 - CN$$

$$\frac{H_2O/H^+}{\text{hydrolysis}} \leftarrow CH_3 - CH_2 - COOH$$
Propanoic acid

Example 6: Identify (A), (B) and (C).

$$C_{3}H_{6}CI_{2}$$
 (A) \xrightarrow{KCN} (B) $\xrightarrow{H_{2}O/H^{*}}$ (C) $\xrightarrow{\Delta}$

2-Methylpropanoic acid

Sol: First step is Nocleophilic substitution (CN⁻) followed by Hydrolysis. (Both Cl is replaced by CN)

It produces diacarboxylic acid which on mono decarboxylation produces 2-methyl propanoic acid.

$$CH_{3}-C-CH_{3} \xrightarrow{\bigoplus \\ KCN \\ CH_{3}-C-CH_{3} \xrightarrow{\bigoplus \\ KCN \\ CH_{3}-C-CH_{3} \xrightarrow{\Delta \\ -CO_{2}}} 2-Methyl propanoic acid$$

JEE Advanced/Boards

Example 1: Predict A, B, C, D and E.

Acid(A) $\xrightarrow{\Delta}$ B $\xrightarrow{\text{Mesitylene/AlCl}_3}$ C + CH₃COOH Zn-Hg/Conc. HCl (D)

Sol 1: (A) = CH₃COOH;

Example 2: Find the rate of soda-lime decarboxylation.

Sol 2: Rate of soda-lime decarboxylation. I > II > III > IV > V

Presence of Electron withdrawing group Increases the rate of decarboxylation.

Presence of Eelectron donating group. decreases the rate of decarboxylation.

 $-NO_{2'}$ $-CI^-$ Electron withdrawing group thus rate of decarboxylation increases

 $-\text{CH}_{\scriptscriptstyle 3'}$ -OCH $_{\scriptscriptstyle 3}$ Electron donating group and hence rate decreases.

Example 3: Identify (A), (B) and (C).

$$CH_{3} - CH_{2} - COOH \xrightarrow{Br_{2}(1 \text{ eqv})/P} (A) \xrightarrow{KCN} (B)$$
$$\xrightarrow{H_{2}O/H'/\Delta} (C)$$

Sol 3: (A)
$$CH_3 - CH - COOH$$
 (B) $CH_3 - CH - COOH$
Br CN
(C) $CH_3 - CH(COOH)_2$

Example 4: Write the structures of (A) C_3H_7NO which on acid hydrolysis gives acid (B) and amine (C). Acid (B) gives (+)ve silver-mirror test.

Sol: Since it gives positive silver mirror Test, It has to be an aldehyde (-CHO)

 $C_3H_7NO-CHO=C_2H_6N$,

Now C_2H_6N can be either $(CH_3)_2N$ or CH_3CH_2 -NH group. Thus A can be.

$$A = H-C-NH-C_2H_5 \text{ or } H-C-N-CH_3$$

Example 5: Which are correct against property mentioned?

(A)
$$CH_3COCI > (CH_3CO)_2O > CH_3COOEt > CH_3CONH_2$$

(Rate of hydrolysis)

(B)
$$CH_3 - CH_2 - COOH > CH_2 - CH - COOH > CH_3 - COOH
 $H_1 - CH_3 - CH_3 - COOH - CH_3 - CH_3$$$

(Rate of esterification)

(D) CH_3 -C-COOH > CH_3 -C-CH₂-COOH > Ph-CH₂-COOH (Rate of decarboxylation)

Sol 5: (A, B) Self explanatory

Sol: A
$$\rightarrow$$
 r; B \rightarrow s; C \rightarrow p; D \rightarrow q

Self explanatory

JEE Main/Boards

Exercise 1

Q.1 Two isomeric carboxylic acids H and I, $C_9H_8O_2$, react with H_2/Pd giving compounds $C_9H_{10}O_2$. H gives a resolvable product and I gives a non-resolvable product. Both isomers can be oxidized to C_6H_5COOH .

Give the structure of H and I.

Q.2 Identify the products (A), (B), (C) and (D) in the following sequence:

$$C_{15}H_{31}COOH \xrightarrow{\text{LiAlH}_4} (A) \xrightarrow{\text{HCl}} (B) \xrightarrow{(i) \text{ Mg, ether}} (C) \xrightarrow{(i) \text{ Mg, ether}} (C)$$

Q.3 A neutral liquid (Y) has the molecular formula $C_6H_{12}O_6$. On hydrolysis it yields an acid (A) and an alcohol (B). Compound (A) has a neutralization equivalent of 60. Alcohol (B) is not oxidized by acidified KMnO₄, but gives cloudiness immediately with Lucas reagent. What are (Y), (A) and (B) ?

Q.4 Esterification does not take place in the presence of ethyl alcohol and excess of concentrated H_2SO_4 at 170°C. Explain.

Q.5 Why does carboxylic acid functions as bases though weak ones?

Q.6 Which ketone of the formula $C_5H_{10}O$ will yield an acid on halo form reaction?

Q.7 Highly branched carboxylic acids are less acidic than unbranched acids. Why?

Q.8 A carboxylic acid does not form an oxime or phenyl hydrazone. Why?

Q.9 Formic acid reduce Tollen's reagent. Why?

Q.10 The K_2 for fumaric acid is greater than maleic acid. Why.

Q.11 Identify the final product in the following sequence of reaction.

$$CH_{3}-CH_{2}-MgBr \xrightarrow{H_{2}C-CH_{2}} X \xrightarrow{H_{3}O^{+}} Y \xrightarrow{KMnO_{4}}$$

Q.12 What is (Z) in the following sequence of reactions ?

$$HC \equiv CH \xrightarrow{(i) 2NaNH_2} (X) \xrightarrow{HgSO_4} (Y)$$
$$(Z) \xleftarrow{(i)NaOH/Br_2} (I) \xrightarrow{(i)H_3O^-} (I)$$

Q.13 Acetic acid has a molecular weight of 120 in benzene solution why ?

Q.14 Place the following in the correct order of acidity

(i) CH=C-COOH;
 (ii) CH₂=CH-COOH;
 (iii) CH₃CH₂COOH

Q.15 Phenol is a weaker acid than acetic acid why?

Q.16 Which acid derivative show most vigorous alkaline hydrolysis ?

Q.17 59 g of amide obtained from the carboxylic acid RCOOH, on heating with alkali gave 17g of ammonia. What is the formula of acid ?

Q.18 Which carboxylic acid (X) of equivalent mass of 52g / eq loses CO_2 when heated to give an acid (Y) of equivalent mass of 60g/eq.

Q.19 Which of the reagent reacts with $C_6H_5CH_2CONH_2$ to form $C_6H_5CH_2CN$.

Q.20 Consider the following ester -

(i) MeCH ₂ COOH	(ii) Me ₂ CHCOOH
(iii) Me₃CCOOH	(iv) Et₃CCOOH

Correct order of the rate of esterification

Q.21 An organic compound (A) on treatment with ethyl alcohol gives a carboxylic acid (B) and compound (C). Hydrolysis of (C) under acidic conditions gives (B) and (D). Oxidation of (D) with $KMnO_4$ also gives (B). (B) on heating with $Ca(OH)_2$ gives (E) (Molecular formula C_3H_6O) (E) does not gives Tollen's test and does not reduce Fehling solution but forms 2, 4-dinitrophenylhydrazone. Identify (A) to (E).

Q.22 Two mole of an ester (A) are condensed in presence of sodium ethoxide to give a β -ketoester (B) and ethanol. On heating in an acidic solution(B) gives ethanol and β -ketoacid(C). On decarboxylation (C) gives 3-pentanone. Identify (A), (B) and (C) with reactions.

Q.23 Compound(A)($C_6H_{12}O_2$) on reaction with LiAlH₄ yields two compounds (B) and (C). The compound (B) on oxidation gave (D) 2 moles of (D) on treatment with alkali (aqueous) and subsequent heating furnished (E). The later on catalytic hydrogenation gave (C). The compound (D) was oxidized further to give (F) which was found to be a monobasic acid (m.wt.60.0). Deduce structures of (A) to (E).

Q.24 Compound (A) $C_5H_8O_2$ liberated CO_2 on reaction with sodium bicarbonate. It exists in two forms neither of which is optically active. It yielded compound (B). $C_5H_{10}O_2$ on hydrogenation. Compound (B) can be separated into enantimorphs. Write structures of (A) and (B).

Q.25 The sodium salt of a carboxylic acid, (A) was produced by passing a gas (B) into aqueous solution of caustic alkali at an elevated temperature and pressure (A) on heating in presence of sodium hydroxide followed by treatment with sulphuric acid gave a dibasic acid (C). A sample of 0.4g of (C) on combustion gave 0.08 g of H_2O and 0.39 g of CO_2 . The silver salt of the acid, weighing 1.0 g, on ignition yielded 0.71 g of Ag as residue. Identify (A), (B) and (C).

Q.26 An organic compound (A) on treatment with acetic acid in presence of sulphuric acid produces an ester (B). (A) on mild oxidation gives (C). (C) with 50% KOH followed by acidification with dilute HCl generates (A) and (D). (D) with PCl_5 followed by reaction with ammonia gives (E). (E) on dehydration produces hydrocyanic acid. Identify (A) to (E).

Q.27 Acetophenone on reaction with hydroxylaminehydrochloride can produce two isomeric oximes. Write structures of the oximes.

Q.28 An acidic compound (A), C_4H_8O loses its optical activity on strong heating yielding (B). $C_4H_6O_2$ which reacts readily with KMnO₄. (B) forms a derivative (C) with SOCl₂, which on reaction with (CH₃)₂NH gives (D). The compound (A) on oxidation with dilute chromic acid gives an unstable compound (E) which decarboxylates readily to give (F), C_3H_6O . The compound (F) gives a hydrocarbon (G) on treatment with amalgamated Zn and HCl. Give structures of (A) to (G) with proper reasoning.

Q.29 An organic acid (A), $C_5H_{10}O_2$ reacts with Br_2 in the presence of phosphorus to give (B). Compound (B) contains an asymmetric carbon atom and yields (C) on dehydrobromination. Compound (C) does not show geometric Isomerism and on decarboxylation gives an alkene (D) which on ozonolysis gives (E) and (F). Compound (E) gives a positive Schiff's test but (F) does not. Give structures of (A) to (F) with reasons.

Q.30 An liquid (X) having molecular formula $C_6 H_{12}O_2$ is hydrolysed with water in presence of an acid to give a carboxylic acid (Y) and an alcohol (Z). Oxidation of (Z) with chromic acid gives (Y). What are (X), (Y) and (Z) ?

Exercise 2

Single Correct Choice Type

$$\mathbf{Q.1} \underbrace{\bigcap_{\substack{\mathsf{N} \\ \mathsf{I} \\ \mathsf{CH}_2 - \mathsf{CO}_2\mathsf{Et}}}^{\mathsf{EtO}^{\ominus}} \xrightarrow{\underset{\Delta}{\mathsf{H}_3\mathsf{O}^{\oplus}}} \frac{\mathsf{Zn}(\mathsf{Hg})}{\mathsf{HCI}}(\mathsf{X})$$

Product (X) of above reaction is :

Q.2 Correct order of reactivity of following acid derivatives is

(I) MeCOCI (II) MeCON₃

(III) MeCOOCOMe

(A) > >	(B) > >
(C) > >	(D) > >

Q.8 Me -
$$\overset{O}{C}$$
 - O - CH₂ + CH₂ - $\overset{\oplus}{NH_3}$ \xrightarrow{NaOH} Q , Q is?
(A) Me - C - O - CH₂ - CH₂ - NH₂
(B) Me - C - O - CH₂ - CH₂ - OH
(C) \overbrace{H}^{U}_{H}
(D) MeCOONa + HOCH₂CH₂NH₂

Q.9 Which of the following give two alcohols when it reacts with $\text{LiAlH}_{4}.$

(A)
$$CH_3 - C - O - CH_3$$

(B) $CH_3 - C - O - C - CH_2 - CH_3$
(C) $CH_3 - CH_2 - CH_2 - CH_3$
(C) $CH_3 - CH_2 - CH_2 - CH_3$
(D) All

Q.10 In which of the following reaction CO_2 gas will be evolved.

Q.11 Which of the following pair will form same osazone when it reacts phenyl hydrazine

$$\begin{array}{c} O \\ \parallel \\ Ph - C - O - H + HO^{18}CH(CH_3)_2 \xrightarrow{HCI} (X) \end{array}$$
Major product (X) is :

Major product (X) is :

$$\begin{array}{c} O & O^{18} \\ (A) \ Ph - C - O^{18} - & (B) \ Ph - C & O^{18} \\ O & (C) \ Ph - C - O - & (D) \ Ph - O^{-18} \\ \end{array}$$

Q.13 COOEt

$$\downarrow$$
 $\xrightarrow{\text{EtO Na}}_{\text{H}_3O^{\oplus}/\Delta}$ (P)

Select incorrect statement

- (A) P can turn blue litmus red
- (B) P can not give effervescence of CO_2 with NaOH₃.
- (C) It is Dieckmann condensation
- (D) Product is a bicylo compound

Product is:

- 'C' form white precipitate compound 'C' is:

- **Q.17** Which of the following esters cannot undergo self Claisen condensation
- (A) CH₃CH₂CH₂CH₂CO₂C₂H₅
 (B) C₆H₅CO₂C₂H₅
 (C) C₆H₅CH₂CO₂C₂H₅
 (D) CH₃CH₂CO₂C₂H₅

- **Q.19** Method to distinguish RNH₂ & R₂NH
- (A) NaNO₂/HCI
- (B) Hoffmann's mustard oil reaction
- (C) Hinsberg test
- (D) All of the above

Previous Years' Questions

Q.1 When propionic acid is treated with aqueous sodium bicarbonate, CO_2 is liberated. The C of CO_2 comes from (1999)

(A) Methy	group	(B) Carboxylic acid	group

(C) Methylene group (D) Bicarbonate group

Q.2 Benzoyl chloride is prepared from benzoic acid by (2000)

(A) Cl_2 , hv (B) SO_2Cl_2 (C) $SOCl_2$ (D) Cl_2 , H₂O

Q.3 The product of acid hydrolysis of P and Q can be distinguished by (2003)

- (A) Lucas reagent (B) 2,4-DNP
- (C) Fehling's solution (D) NaHSO₃
- Q.4 Ethyl ester $\xrightarrow{CH_3MgBr}_{(excess)}$ P, the product 'P' will be (2003) (A) $\xrightarrow{H_3C}$ $\xrightarrow{CH_3}_{OH}$ (B) $\xrightarrow{H_3C}_{H_5C_2}$ $\xrightarrow{C_2H_5}_{OH}$ (C) $\xrightarrow{H_5C_2}$ $\xrightarrow{C_2H_5}_{OH}$ (D) $\xrightarrow{H_5C_2}$ $\xrightarrow{C_2H_5}_{OH}$

Q.5 An enantiomerically pure acid is treated with racemic mixture of an alcohol having one chiral carbon. The ester formed will be (2003)

(A) Optically active mixture

(B) Pure enantiomer

(C) Meso compound

(D) Racemic mixture

Q.6 Benzamide on treatment with POCI₃ gives : (2004)

- (A) Aniline (B) Benzonitrile
- (C) Chlorobenzene (D) Benzyl amine

Q.7 Statement-I: Acetic acid does not undergo haloform reaction.

Statement-II: Acetic acid has no alpha hydrogen. (1998)

Q.8 Statement-I: p-hydroxybenzoic acid has a lower boiling point than o-hydroxybenzoic acid.

Statement-II: o-hydroxybenzoic acid has intramolecularhydrogen bonding.(2007)

Q.9 Hydrolysis of an ester in presence of a dilute acid is known as saponification. (1983)

Q.10 The boiling point of propanoic acid is less than that of n-butyl alcohol, an alcohol of comparable molecular weight. (1991)

Q.11 A liquid was mixed with ethanol and a drop of concentrated H_2SO_4 was added. A compound with a fruity smell was formed. The liquid was: (2009)

(A) CH ₃ OH	(B) HCHO
(C) CH ₃ COCH ₃	(D) CH ₃ COOH

Q.12 Sodium ethoxide has reacted with ethanoyl chloride. The compound that is produced in the above reaction is: (2011)

(A) 2-Butanone	(B) Ethyl chloride

(C) Ethyl ethanoate (D) Diethyl ether

Q.13 The strongest acid amongst the following compounds is: (2011)

(A) HCOOH

(B) CH₃CH₂CH(Cl)CO₂H(C) ClCH₂CH₂CH₂COOH

(D) CH₂COOH

Q.14 Which of the following reagents may be used to distinguish between phenol and benzoic acid? **(2011)**

(A) Tollen's reagent	(B) Molisch reagent
(C) Neutral FeCl ₃	(D) Aqueous NaOH

Q.15 A compound with molecular mass 180 is acylated with CH₃COCl to get a compound with molecular mass 390. The number of amino groups present per molecule of the former compound is: **(2013)**

Q.16 Compound (A), C_8H_9Br , gives a white precipitate when warmed with alcoholic AgNO₃. Oxidation of (A) gives an acid (B), $C_8H_6O_4$. (B) easily forms anhydride on heating. Identify the compound (A). (2013)

Q.17 An organic compound A upon reacting with NH_3 gives B. On heating B gives C. C in presence of KOH reacts with Br_2 to given $CH_3CH_2NH_2$. A is: (2013)

(A) $CH_{3}COOH$ (B) $CH_{3}CH_{2}CH_{2}COOH$ (C) $CH_{3} - CH - COOH$ (D) $CH_{3}CH_{2}COOH$ $H_{3}CH_{3}$

Q.18 Sodium phenoxide when heated with CO_2 under pressure at 125°C yields a product which on acetylation produces C.

$$\bigcirc ONa + CO_2 \xrightarrow{125^{\circ}} B \xrightarrow{H^+} Ac_2O + C$$

The major product C would be

Q.19 In the reaction,

 $CH_2COOH \xrightarrow{\text{LiAIH}_4} A \xrightarrow{\text{PCI}_5} B \xrightarrow{\text{Alc.KOH}} C,$

the product C is (A) Acetaldehyde (B) Acetylene

(2014)

(C) Ethylene (D) Acetyl chloride

Q.20 In the following sequence of reactions:

$Toluene \xrightarrow{KMnO_4} A$	$A \xrightarrow{\text{SICI}_2} B \xrightarrow{H_2/\text{Pd}} B_{\text{BaSO}_4} \to C$	
the product C is:		(2015)
(A) C ₆ H ₅ COOH	(B) (B) C ₆ H ₅ CH ₃	
(C) (C) C ₆ H ₅ CH ₂ OH	(D) C ₆ H ₅ CHO	

Q.21 In the Hofmann bromamide degradation reaction, the number of moles of NaOH and Br_2 used per mole of amine produced are: (2016)

(A) Four moles of NaOH and two moles of Br₂

(B) Two moles of NaOH and two moles of Br₂

(C) Four moles of NaOH and one mole of Br₂

(D) One mole of NaOH and one mole of Br₂

JEE Advanced/Boards

Exercise 1

Q.1 (i) Give the structures of the four optically-active isomers of $C_4H_8O_3$ (D through G) that evolve CO_2 with aq. NaHCO₃.

(ii) Find the structure of (D), the isomer that reacts with $LiAlH_4$ to give an achiral product.

(iii) Give chemical reactions to distinguish among (E), (F) and (G).

Q.2 Complete the following equation:

$$H_{3}C-C=CH_{2} \xrightarrow{HCl} Peroxide ? \xrightarrow{Mg}{Ether} ? \xrightarrow{CO_{2}} ? \xrightarrow{H_{2}O/H^{+}} ?$$

Q.3 Give structures of compounds:

Acetylene +CH₃MgBr_{-CH₄}(G) $\xrightarrow{CO_2}$ (H) (C₃H₄O₃)(J) $\xleftarrow{H_2O,H_2SO_4}$ (C₃H₂O₂)(I) $\xleftarrow{H_2O}$ (KMnO₄)CH₂(COOH)₂

Q.4 An ester $C_6H_{12}O_2$ was hydrolysed with water an acid (A), and an alcohol (B), were obtained. Oxidation of (B) with chromic acid produced A. What is the structure of the original ester? Write equations for all the reactions.

Q.5 Complete the following equation:

 $\text{RCO}_2\text{H} \xrightarrow{\text{SOCI}_2} ? \xrightarrow{\text{NaN}_2} ? \xrightarrow{\text{D}} ? \xrightarrow{\text{Hydrolysis}} ?$

Q.6 Acid halides of formic acid are unstable. Why?

Q.7 What is the product of the following reaction?

2-Methyl-2-pentenal

Q.8 An unsaturated acid (A) of molecular formula $C_5H_6O_4$ eliminates CO_2 easily and gives another unsaturated acid (B) of formula $C_4H_6O_2$. By saturation with H_2 /Pt (B) gives butanoic acid. Neither (A) nor (B) shows cis-trans isomerism. What are (A) and (B)?

Q.9 An organic compound 'A' on treatment with ethyl alcohol gives a carboxylic acid 'B' and compound 'C' Hydrolysis of 'C' under acidic conditions gives 'B' and 'D' Oxidation of 'D' with $KMnO_4$ also gives 'B'. 'B' on heating with $Ca(OH)_2$ gives 'E'(molecular formula C_3H_6O). 'E' doesnot give Tollen's test and does not reduce Fehling's solution but forms a 2,4-dinitrophenyl hydrazine. Identify 'A. B' C' 'D' and 'E'.

Q.10 Two moles of an ester (A) are condensed in the presence of sodium ethoxide to give a β -keto ester (B) and ethanol. On heating in an acidic solution (B) gives ethanol and β -keto acid (C). On decarboxylation (C) gives 3-pentanone. Identify (A), (B) and (C) with proper reasoning. Name the reaction involved in the conversion of (A) to (B).

Q.11 An alkali salt of palmitic acid is known as?

Q.12 Acid do not react with sodium bisulphite though O \parallel they have -C- group. Why ?

Q.13 In the reaction sequence

$$X \xrightarrow{Ca(OH)_2} Y \xrightarrow{Dry} Acetone \xrightarrow{Conc.} Z$$

X, Y and Z are ?

Q.14 CH₃CH₂COOH
$$\xrightarrow{[0]}{\text{SeO}_2}$$
 X, Product X is-

Q.15 Which of the reagent attack only the carbonyl group of a fatty acid?

Q.16 In the sequence

$$\begin{array}{ccc} \mathsf{CH} & \mathsf{CH}_3 & \mathsf{CH}_3 \\ \blacksquare & \downarrow & 3 & \downarrow & 3 \\ \mathsf{CH} \xrightarrow{\mathsf{X}} & \mathsf{CHO} \xrightarrow{\mathsf{Y}} & \mathsf{COOH} \xrightarrow{\mathsf{Z}} & \mathsf{CH}_2 \end{array}$$

The reagent X, Y and Z are:

Q.17 In the reaction sequence

$$X \xrightarrow{H_3O^{\oplus}} Y \xrightarrow{NH_3} Z \xrightarrow{Br_2} CH_3NH_2$$

Q.18 An acid X react with PCI_5 to form a compound (Y). X also react with NaOH to form a compound (Z). Both Y and Z react together and from (E), E react with a reagent (F) to give back compound (Y) what are X, F, Z,E and F?

Q.19 How will you synthesise?

- (i) Acetyl chloride from methyl chloride
- (ii) Acetamide from ethyl alcohol
- (iii) Ethyl acetate from acetic acid

Q.20 Complete the following reaction?

Q.21 Complete the following equations:

Q.22 Identify the compounds:

1, 4-Cyclohexadiene
$$\xrightarrow{\text{t-BuOK}}$$
 (D)
+ CHBr₃ (C₇H₈Br₂)
 \downarrow KMnO₄
(E)
(F) $\xrightarrow{\text{H}_2}$ (C₇H₈Br₂O₄)
(C₇H₁₀O₄)

Q.23 Compound (A) $C_5H_8O_2$ liberated carbon dioxide on reaction with sodium bicarbonate. It exists in two forms neither of which is optically active. It yields compound (B) $C_5H_{10}O_2$ on hydrogenation. Compound (B) can be separated into two enantiomorphs. Write the structural formulae of (A) and (B) giving reason.

Q.24 An acidic compound (A), $C_4H_8O_3$ loses its optical activity on strong heating yielding (B), C_4H_6O which reacts readily with KMnO₄. (B) forms a derivative (C) with SOCl₂, which on reaction with $(CH_3)_2NH$ gives (D). The compound (A) on oxidation with dilute chromic acid gives an unstable compound (E) which decarboxylates readily to give (F), C_3H_6O . The compound (F) gives a hydrocarbon (G) on treatment with amalgamated Zn and HCl. Give structures of (A) to (G) with proper reasoning.

Q.25 A pleasant smelling optically active ester (F) has M.W = 186. It does not react with Br_2 in CCl_4 Hydrolysis of (F) gives two optically active compounds, (G) soluble in NaOH and (H). (H) gives a positive iodoform test and on warming with cone. H_2SO_4 gives (I) (Saytzeff-product) with no geometrical isomers. (H) on treatment with benzene sulfonyl chloride gives (J), which on treatment with NaBr gives optically active (K). When the Ag⁺ salt of (G) is treated with Br₂ racemic (K) is formed. Give structures of (F) to (K) and explain your choices.

Q.26 Compound (A), M.F $C_6H_{12}O_2$ reduces ammoniacal silver nitrate to metallic silver and loses its optical activity on strong heating yielding (B), $C_6H_{10}O$ which readily reacts with dilute KMnO₄. (A) on oxidation with KMnO₄ gives (C) having M.F $C_6H_{10}O_3$ which decarboxylates readily on heating to 3–pentanone. The compound (A) can be synthesized from a carbonyl compound having M.F. C_3H_6O on treatment with dilute NaOH. Oxidation of (B) with ammonical silver nitrate followed by acidification gives (D). (D) forms a derivative (E) with SOCI, which on reaction with H₃CNHCH₂CH₃ yields (F). Identify (A) to (F) giving proper reaction sequences. What is the name of the reaction involved in the conversion of C_3H_6O to (A)? Give the IUPAC nomenclature of compounds (A) to (F).

Q.27 A solid organic compound (A), $C_{a}H_{c}O_{2}$ is insoluble in dilute NaHCO₃. It produces a dibromoderivative (B), $C_9H_6O_2Br_2$ on treatment with Br_2/CS_2 . Prolonged boiling of (A) with concentrated KOH solution followed by acidification gives a compound (C), $C_{a}H_{a}O_{3}$. The compound (C) gives effervescence with aqueous NaHCO₃ Treatment of (C) with equimolar amount of Me₂SO₄/NaOH gives (D), C₁₀H₁₀O₃. The compound (D) is identical with the compound prepared from o-methoxy benzaldehyde by condensation with acetic anhydride in the presence of sodium acetate. Treatment of(C) with alkaline $C_{c}H_{c}SO_{2}CI$ produces (E) which on vigorous oxidation with KMnO₄ gives (F). Hydrolysis of(F) gives a steam volatile compound (G) having M.F. $C_7H_6O_3$. Give the structures of(A) to (G) giving the proper reaction sequences.

Q.28 A neutral compound (A) $C_9H_{16}O_2$ on refluxing with dilute alkali followed by acidification yields (B) $C_5H_8O_2$ and (C) $C_4H_{10}O_2$ (B) liberates CO_2 from bicarbonate solution. (C) on dehydration yields 2-butene as the major product. B on treatment with OsO_4 followed by reactive hydrolysis gives (D) $C_5H_{10}O_4$ (D) when treated with lead tetraacetate furnishes acetone and (E) $C_2H_2O_3$. (E) is acidic and reduces Tollen's reagent. Identify (A), (B), (C), (D) and (E) and write the reactions involved.

Q.29 An organic compound A on treatment with ethyl alcohol gives a carboxylic acid B and compound C. Hydrolysis of C under acidic conditions gives B and D. Oxidation of D with $KMnO_4$ also gives B. The compound B on heating with $Ca(OH)_2$ gives E (molecular formula C_3H_6O). E does not give Tollen's test and does not reduce Fehling's solution but forms a 2,4–dinitrophenyihydrazone. Identify A, B, C, D and E.

Q.30 An aqueous alcoholic solution of acetoacetic ester imparts a blue colour with a solution of FeCl₃. To this solution if bromine solution is added carefully, the initial colour disappears and the brown colour of bromine appears, which fades soon and the solution after remaining colourless for some time regains the blue violet colour. Explain.

Exercise 2

Single Correct Choice Type

Q.1 Find the reagent used to bring about following conversions.

▲CO₂Me

(A)

Product (A) of reaction is ?

Identify (S) major product:

Multiple Correct Choice Type

Q.6 Which will elimination CO₂ only on heating

(D) $CH_2 = CH - CH_2 - COOH$

Q.7 Methanoic acid and Ethanoic acid can be differentiated by :

- (A) Fehling test (B) lodoform test
- (C) Schiff's test (D) NaHCO₃ test

Assertion Reasoning Type

Q.8 Statement-I: COOH is optically inactive, it is taken in a glass container and plane polarized light (PPL) is passed through it after heating it for several minutes. The PPL shows significant optical rotation.

Statement-II: Like β -keto acid, gem dicarboxylic acid eliminates CO₂ on heating.

(A) Statement-I is true, Statement-II is true and Statement-II is correct explanation for Statement-I.

(B) Statement-I is true, Statement-II is true and Statement-II is NOT the correct explanation for Statement-I.

(C) Statement-I is true, Statement-II is false.

(D) Statement-I is false, Statement-II is true.

Comprehension Type

Paragraph 1: Ozonolysis of a compound Agathene dicarboxylic acid gives following compounds:

On complete reaction by Na-EtOH Agathene dicarboxylic acid give hydrocarbon $C_{20}H_{38}$ which have 5 chiral carbon in it.

Q.9 The structure of Agathene dicarboxylic acid is:

Q.10 How many chiral carbon are present in Agathene dicarboxylic acid:

(A) 2 (B) 3 (C) 4 (D) 5

Q.11 Total stereoisomers possible for Agathene dicarboxylic acid are :

(A) 16 (B) 18 (C) 32 (D) 64

Q.12 Structure of product formed when Agathene dicarboxylic acid is heated with soda lime is :

Paragraph 2:

Q.14 Mechanism for hydrolysis of A will be:

(A) \textbf{A}_{AC^2} (B) \textbf{A}_{AL^1} (C) \textbf{A}_{AC^1} (D) \textbf{A}_{AL^2}

Q.15 F is

Paragraph 3:

Q.16 Mechanism of formation of A and B is

- (A) A_{AC^2} (B) A_{AC^1}
- (C) A_{AL^1} (D) A_{AL^2}

Q.17 Select true statement:

(A) Both B and C give same name reaction with KOH

(B) Both B and C give iodoform test

(C) Both B and C give chiral product with PhMgCl followed by $\rm NH_4Cl$

(D) Both B and C are redox reaction

Q.18 Best method out of the given to prepare B is

$$(A) H - C - CI \xrightarrow{MeMgBr}$$

$$(B) H - C - CI \xrightarrow{Me_2Cd}$$

$$(C) H - C - OMe \xrightarrow{MeMgCl}$$

$$(D) H - C - OMe \xrightarrow{Me_2Cd}$$

Match the Columns

Q.22 Match reactions given in column I with Names in column II.

Colum	nl	Colum	Column II	
(A)	COOEt COOEt	(p)	Knoevenagel reaction	
(B)	$CH_2(COOEt)_2 + \underbrace{(i) EtOK}_{(ii) H_3O^{\oplus},\Delta}$	(q)	Perkin reaction	
(C)	$ \begin{array}{c} Br \\ O \\ $	(r)	Reformatsky reaction	
(D)	MeO	(s)	Dieckmann's condensation	

Q.23

C	Column I		Column II (Product Differentiate By)	
(A)	$CH_3 - CH = CH_2 \xrightarrow{O_3} (U) + (V)$	(p)	By Haloform test	
(B)	$CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{O_{3}} (W) + (X)$	(q)	By Fehling test	
(C)	0	(r)	By aq. NaHCO ₃	
	$Ph - \overset{\parallel}{C} - O - Ph \xrightarrow{H_3O^{\oplus}} (Y) + (Z)$	(s)	By Tollen Test	

Q.24

Column I (Reactions)		Column II (Types of Reaction)	
(A)	CH_3 - CH = CH_2 + HCI \rightarrow	(p)	Regioselective
(B)	$ + (CN \rightarrow CN$	(q)	Stereoselective
(C)	$ \begin{array}{c} $	(r)	Stereospecific
		(s)	Diastereomers
(D)	H	(t)	Cyclic addition

Q.25

C	olumn I	C	olumn II
(A)	$\begin{array}{c} CH_{3} - C - H & \underbrace{(i) \ Al(OEt)_{3}\Delta}_{(ii) \ H_{3}O^{\oplus}} \end{array} Products$	(p)	One of the organic product formed will decolourise bromine water
(B)	$ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	(q)	One of the organic product formed will give brisk effervescence with $NaHCO_3$
(C)	PhMgCl (i) CO₂ (ii) H [®] (iii) H [®]	(r)	One of the organic product formed will give haloform test.
	(iii) SOCI ₂ (iv) MeMgCl	(s)	One of the organic product formed will give 2, 4 DNP test

Q.26

Column I (Reaction)		Column II (Product obtained by reaction)	
(A)	$ \begin{array}{c} R\text{-}C\text{-}OR' & \xrightarrow{(i) \ LAH} \\ II \\ O \end{array} \\ \end{array} $	(p)	R'–CH ₃
(B)	R'-C-OH (i) LAH II O	(q)	R'-OH
(C)	$R'-CH_2-Br \xrightarrow{LAH}$	(r)	R'–CH ₂ –OH
(D)	R'−C−H <u>SBH/EtOH</u> II O	(s)	R'-H
(E)	R-C-OR' <u>Red P/HI</u> II O	(t)	R–CH ₃

Previous Years' Questions

Q.1 When benzene sulphonic acid and p-nitrophenol are treated with $NaHCO_3$, the gases released respectively, are (2006)

(A) SO ₂ , NO ₂	(B) SO _{2'} NO
(C) SO ₂ , CO ₂	(D) CO ₂ , CO ₂

Q.2 Which of the following reactants on reaction with conc. NaOH followed by acidification gives the following lactone as the only product? **(2006)**

Q.3 In the following reaction sequence, the correct structures of E, F and G are

(* implies ¹³C labelled carbon)

(2008)

G=ČH,I

Q.4 Reaction of RCONH_2 with a mixture of Br_2 and KOH gives $\text{R}-\text{NH}_2$ as the main product. The intermediates involved in this reaction are : (1992)

(A) RCONHBr	(B) RNHBr
(C) R–N=C=O	(D) RCONBr ₂

Comprehension: RCONH₂ is converted into RNH₂ by means of Hofmann bromamide degradation.

In this reaction, RCONHBr is formed from which this reaction has derived its name. Electron donating group at phenyl activates the reaction. Hofmann degradation reaction is an intramolecular reaction. (2006)

Q.5 How can the conversion of (i) to (ii) be brought about ?

(A) KBr	(B) KBr + CH ₃ ONa

(C) KBr + KOH (D) Br_2 + KOH

Q.6 Which is the determining step in Hofmann bromamide degradation ?

- (A) Formation of (i) (B) Formation of (ii)
- (C) Formation of (iii) (D) Formation of (iv)

Q.7 What are the constituent amine formed when the mixture of (1) and (2) undergoes Hofmann bromamide degradation ?

Q.8 (±) 2-Phenylpropanoic acid on treatement with (+) 2-butanol gives (A) and (B). Deduce their structures and also establish stereochemical relation between them. (2003)

Q.9 Compound A of molecular formula $C_9H_7O_2CI$ exists in keto from and predominantly in enolic form B. On oxidation with KMnO₄, A gives m-chlorobenzoic acid. Identify A and B. (2003)

Paragraph 1 (Questions 11 to 12)

In the following sequence, products I, J and L are formed. K represents a reagent.

Q.11 The structures of compounds J and K respectively are (2008)

Q.12 The structure of product L is:

(2008)

Q.13 The carboxyl functional group (–COOH) is present in (2012)

(A) Picric acid	(B) Barbituric acid
-----------------	---------------------

(C) Ascorbic acid (D) Aspirin

Q.14 The total number of carboxylic acid groups in the product P is: (2013)

Paragraph 2 (Questions 15 to 16)

P and Q are isomers of dicarboxylic acid $C_4H_4O_4$. Both decolorize Br_2/H_2O . On heating, P forms the cyclic anhydride.

Upon treatment with dilute alkaline $KMnO_4$, P as well as Q could produce one or more than one from S, T and U.

Q.15 Compounds formed from P and Q are, respectively (2013)

- (A) Optically active S and optically active pair (T, U)
- (B) Optically inactive S and optically inactive pair (T, U)
- (C) Optically active pair (T, U) and optically active S
- (D) Optically inactive pair (T, U) and optically inactive S

Q.16 In the following reaction sequences V and W are, respectively (2013)

Q.17 In the reaction shown below, the major product(s) formed is/are (2014)

Q.18 Different possible thermal decomposition pathways for peroxyesters are shown below. Match each pathway from list I with an appropriate structure from list II and select the correct answer using the code given below the lists. *(2014)*

Code:

	(i)	(ii)	(iii)	(iv)
(A)	р	r	S	q
(B)	q	S	r	р
(C)	S	р	q	r
(D)	r	q	р	S

Q.19 The number of hydroxyl group(s) in Q is (2015)

(2009)

Q.20 Among the following, the number of reaction(s) that produce(s) benzaldehyde is (2015)

Q.21 The major product U in the following reactions is (2015)

Q.22 The correct order of acidity for the following compounds is (2013)

Q.23 Reagent(s) which can be used to bring about the

(D) | > ||| > |V > ||

(C) ||| > |V > || > |

(A) LiAlH_4 in $(\text{C}_2\text{H}_5)_2\text{O}$ (B) BH_3 in THF (C) NaBH_4 in $\text{C}_2\text{H}_5\text{OH}$ (D) Raney Ni/H_2 in THF

Q.24 The correct acidity order of the following is

Q.25 Amongst the following, the total number of compounds soluble in aqueous NaOH is : (2010)

Q.26 The compounds P, Q and S

H₃C P OCH₃ OCH₃

were separately subjected to nitration using HNO₃/H₂SO₄ mixture. The major product formed in each case respectively, is

Q.27

 H_3C C NH_2 H_3C H_3C H_2 $H_$

(2010)

(2010)

Q.28 The major product of the following reaction is (2011)

Q.29 Among the following compounds, the most acidic is (2011)

- (A) p-nitrophenol
- (B) p-hydroxybenzoic acid
- (C) o-hydroxybenzoic acid
- (D) p-toluic acid

Q.30 The compound that undergoes decarboxylation most readily under mild condition is (2011)

Q.31 With reference to the scheme given, which of the given statements about T,U,V and W is correct? **(2012)**

(A) T is soluble in hot aq. NaOH

(B) U is optically active

- (C Molecular formula of W is $C_{10}H_{18}O_4$
- (D) V gives effervescence on treatment with aq. NaHCO₃

MASTERJEE Essential Questions

JEE Main/Boards

JEE Advanced/Boards

Exercise	1		Exercise	1	
Q.2	Q.8	Q.17	Q.2	Q.8	Q.18
Q.21	Q.25	Q.29	Q.22	Q.25	Q.30
Exercise	2		Exercise	2	
Q.1	Q.4	Q.7	Q.4	Q.6	Q.9
Q.13			Q.14	Q.18	
Previous	Years' Qu	estions	Previous	Years' Qu	estions
Q.1	Q.10	Q.12	Q.2	Q.8	Q.14
Q.17	Q.21		Q.21	Q.25	Q.31

Answer Key

JEE Main/Boards

Exercise 2					
Q.1 B	Q.2 A	Q.3 D	Q.4 C	Q.5 B	Q.6 A
Q.7 B	Q.8 B	Q.9 D	Q.10 D	Q.11 B	Q.12 A
Q.13 B	Q.14 C	Q.15 C	Q.16 C	Q.17 B	Q.18 B
Q.19 D					
Previous Years	s' Questions				
Previous Years Q.1 D	s' Questions Q.2 C	Q.3 C	Q.4 A	Q.5 D	Q.6 B
Previous Year Q.1 D Q.7 C	6' Questions Q.2 C Q.8 D	Q.3 C Q.9 False	Q.4 A Q.10 False	Q.5 D Q.11 D	Q.6 B Q.12 C
Previous Years Q.1 D Q.7 C Q.13 B	s' Questions Q.2 C Q.8 D Q.14 C	Q.3 C Q.9 False Q.15 C	Q.4 A Q.10 False Q.15 C	Q.5 D Q.11 D Q.16 D	Q.6 B Q.12 C Q.17 D

JEE Advanced/Boards

Exercise 2

Single Correct Choice Type							
Q.1 D	Q.2 B	Q.3 B	Q.4 C	Q.5 B			
Multiple Correct	Multiple Correct Choice Type						
Q.6 A, C, D	Q.7 A, C						
Assertion Reason	ing Type						
Q.8 D							
Comprehension T	уре						
Q.9 A	Q.10 C	Q.11 C	Q.12 A	Q.13 C	Q.14 A		
Q.15 D	Q.16 A	Q.17 D	Q.18 B				
Match the Columns							
$\textbf{Q.19} \text{ A} \rightarrow \text{s; B} \rightarrow \text{p; C} \rightarrow \text{r; D} \rightarrow \text{s}$			Q.20 A \rightarrow p; B \rightarrow c	q, s; C \rightarrow r			
Q.21 A \rightarrow p; B \rightarrow r, t; C \rightarrow p, s; D \rightarrow p, q, s			Q.22 A \rightarrow q, r; B –	\Rightarrow p, q; C \rightarrow r, s			
Q.23 A \rightarrow q, ; B \rightarrow r; C \rightarrow p; D \rightarrow r; E \rightarrow s, t							

Previous Years' Questions

Q.1 D	Q.2 C	Q.3 C	Q.4 A, C	Q.5 D	Q.6 D
Q.7 B	Q.11 A	Q.12 C	Q.13 D	Q.14 B	Q.15 B
Q.16 A	Q.17 A	Q.18 A	Q.19 D	Q.20 A, B, C, D	Q.21 B
Q.22 A	Q.23 C	Q.24 A	Q.25 5	Q.26 C	Q.27 C
Q.28 A	Q.29 C	Q.30 B	Q.31 A, C, D		

Solutions

JEE Main/Boards

Exercise 1

Sol 1: The uptake of 2H atoms shows the presence of one >C=C< along with C_6H_5- and -COOH, which accounts for the 6° unsaturation.. Furthermore H and I are monosubstituted benzene derivatives.

H is C_6H_5 –C(COOH)=CH₂ giving

H₃CCHC₆H₅COOH with one asymmetric carbon atom.

I is $C_6H_5CH=CHCOOH$, giving

C₆H₅CH₂CH₂COOH with no asymmetric carbon.

Sol 2: (A) =
$$C_{15}H_{31}CH_2OH$$
,
(B) = $C_{15}H_{31}CH_2CI$,
(C) = $C_{15}H_{31}CH_2CH_2CH_2OH$,
(D) = $C_{15}H_{31}CH_2CH_2CH_2COOH$.

Sol 3: (Y) is an ester because it is hydrolysed to acid and alcohol. Since the alcohol is not oxidized by acidified $KMnO_4$ and gives cloudiness at once with Lucas reagent, hence it is a t-alcohol.

Sol 4: This is because C_2H_5OH undergoes dehydration to form C_2H_4 at 170°C in presence of excess of conc. H_2SO_4 .

$$CH_3 - CH_2OH \xrightarrow{H_2SO_4(conc.)} H_2O + CH_2 = CH_2$$

Sol 5: In the presence of strong acids, the H[®] is captured by the carboxylic acid and the following equilibrium is established:

Sol 6: $H_3C - CH_2CH_2C - CH_3$

Sol 7: It is because the carboxylate group (-COO⁻) of the branched acid is more shielded from the solvent molecules, there, it cannot be stabilized effectively by salvation.

Sol 8: It is because carboxylic group does not have true carbonyl group due to resonance.

Due to resonance >C=O bond of –COOH develops partial double bond character and cannot show reactions with hydroxylamine, phenyl hydrazine, etc.

Sol 9: It is because formic acid combines the properties of both an aldehyde an acid.

Hence it has reducing character of aldehydes.

 $HCOOH + 2(Ag(NH_3)_2)^+OH^- \xrightarrow{\Delta} \rightarrow$

 $\text{HCOONH}_4 + 3\text{NH}_3 + \text{H}_2\text{O} + 2\text{Ag}\downarrow$

or HCOOH +
$$Ag_2O \rightarrow CO_2 + H_2O + 2Ag\downarrow$$

Sol 10: Both these unsaturated acids have two ionisable hydrogens. After the release of first hydrogen, second hydrogen of maleiate ions is involved in H-bonding, whereas no H-bonding is possible in fumarate ion.

Due to the formation of H-bond in maleiate ion more energy is required to remove H^{\oplus} from it than from fumarate ion, in which H^{\oplus} release is easy comparatively. Thus, K₂ for fumaric acid is more than maleic acid.

Sol 11:

CH₃-CH₂-MgBr
$$\xrightarrow{H_3C-CH_2}$$

CH₃-CH₂-CH₂CH₂OMgBr $\xrightarrow{H_3O^+}$
(X)
CH₃-CH₂-CH₂CH₂OH $\xrightarrow{KMO_4}$
(Y)
CH₃CH₂-CH₂COOH
(Z) Butanoic acid

Sol 12:

$$HC = CH \xrightarrow{NaNH_2} NaC = CNa \xrightarrow{2CH_2I}$$

Sol 13:

Dimerization of acetic acid occur in benzene via intermolecular H-bonding Hydrogen bond is a special type of dipole-attraction.

Sol 14: sp hybridized carbon of -C=C- of acid (I) and sp² hybridized carbon of -C=C- of acid (II) attract the bonded electron more than do the sp³ – hybridzed

carbon atoms. Consequently $-C \equiv C-$ and $-C \equiv C-$ are acid strengthening EWG's (Electron withdrawing group, stabilizes anion, thus strengthens acid) This makes CH_3CH_2COOH weaked of all these three acids since $-C \equiv C-$ is more acid strengthens group than $-C \equiv C$ group. This makes acid (I) stronger than acid (II)

Sol 15:

The electron charge in carboxylate ion is more dispersed in comparison to phenoxide ion, since there are two electro negative oxygen carboxylate ion as compared to oxygen atom in phenoxide ion.

Sol 16: CH₃COCI will after least stearic hindrance hence it hydrolysis will be more vigorous.

Sol 17: Amide = CH₃CONH₂ Therefore acid is CH₃COOH

Sol 18: Acid (Y) obtained after decarboxylation must be mono carboxylic acid thus molecular weight = Equiva lent weight

The acid must Be (COOH \rightarrow 45g/mol) Given mass = 60g; \therefore = 60 - 45 = 15g/mol

Which is definitely due to $-CH_3$

Hence Y is CH₂COOH

Carboxylic acid (X) has second COOH replacing H of $\rm CH_3COOH$

SO (X) is malonic $CH_2(COOH)_2$ of molecular mass 60 + 44 = 104

Since it has two group so its equivalent mass = 104/2 = 52b/eq.

Sol 19: Dehydration occur with all the three reagent

$$C_{2}H_{5}CH_{2}CONH_{2} \xrightarrow{P_{2}O_{5}} C_{6}H_{5}CH_{2}CN + H_{2}O$$

$$C_{6}H_{5}CH_{2}CONH_{2} \xrightarrow{SOCl_{2}} C_{6}H_{5}CH_{2}CN + 2HCI + SO_{2}$$

$$C_{6}H_{5}CH_{2}CONH_{2} \xrightarrow{POCl_{3}Or} C_{6}H_{5}CH_{2}CN + H_{2}O$$

Sol 20: As the size of the substituent on α -carbon increases, the tetrahedral bonded intermediate become more crowded. The greater the crowding the slower is the reaction.

Sol 21: (A) (CH₃CO)₂O (Acetic anhydride)
(B) CH₃COOH (Ethanoic acid)
(C) CH₃COOC₂H₅ (Ethyl ethanoate)
(D) C₃H₅OH (Ethanol)
(E) CH₃COCH₃

Sol 22: (A) CH₃CH₂COOC₂H₅ (Ethyl propionate)

Ethyl-(3-keto 2-methylpentanoic acid)

(C) $CH_3 - CH_2 - CO - CH - COOH$ CH_3 3-Keto-2-methylpentanoic acid

Sol 23: (A)
$$CH_3CH_2CH_2CH_2COOCH_2CH_3$$

or $CH_3COOCH_2CH_2CH_2CH_3$
(B) C_2H_5OH
(C) $CH_3CH_2CH_2CH_2OH$
(D) CH_3CHO
(E) $CH_3CH = CHCHO$
(F) CH_3COOH

Sol 26: A = CH₃OH (Methanol)

 $B = CH_3COCH_3$ (Methyl ethanoate)

C = HCHO (Methanal)

D = HCOOH (Methanoic acid)

 $E = HCONH_2$ (Formamide or methanamide)

Sol 27:

Sol 28:

Sol 24: (A)

Sol 25: (A) HCOOH (B) CO (C) (COOH)₂

Sol 29: $H_{3}C \qquad H_{3}C \qquad H_{3}C \qquad Br \qquad H_{3}C \qquad H_{3}$

Sol 30:

Exercise 2

Single Correct Choice Type

Sol 1: (B)

Sol 2: **(A)** MeCOCl > MeCON₃ > MeCOOCOMe. Consider electronegativity of halogen, azide & ester.

Halogen is on top, since it has the highest electronegativity.

Sol 3: (D)

Sol 5: (B) Acid catalyzed alkyl cleavage

$$Me_{3} C \longrightarrow C O^{18} O^{18} O^{18}$$

Sol 6: (A)

$$CH_3CH_2CONH_2 \xrightarrow{PCl_5} CH_3CH_2CN$$
 -Reduction

Sol 7: (B)

Sol 8: (B)

Sol 9: (D) Reduction reactions.

common D-osazone

D-(+)-glucose

D-(+)-mannose

Sol 12: (A) Esterification.

Sol 14: (C)

Sol 15: (C)

Sol 16: (C)

Sol 17: (B) Since it lacks active methylene componenet stable anion formation does not take place and thus it can not undergo self condensation reaction.

Sol 18: (B) Esterification.

Sol 19: (D) Self-explanatory reactions

Previous Years' Questions

Sol 1: (D)
$$CH_3-CH_2-COOH + NaHCO_3 \rightarrow CH_3CH_2COONa + H_2O + CO_2^*$$

 $C_6H_5COOH + SOCl_2 \rightarrow C_6H_5-COCI$

red

Sol 4: (A)

$$CH_{3} - C - OC_{2}H_{5} \xrightarrow{CH_{3}MgBr}_{excess} CH_{3} - CH_{3} - CH_{3}$$

$$\xrightarrow{H_{2}O} CH_{3} - CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$CH_{3} - CH_{3} - CH_{3}$$

Reaction occur at planar sp² carbon giving racemic mixture of product.

Sol 6: (B)
$$C_6H_5 - C - NH_2 \xrightarrow{POCl_3} C_6H_5 - CN$$

Sol 7: (C) Compound with $CH_3 - C - \text{ or } CH_3 - CH(OH) - group gives haloform reaction but this reaction is given only by aldehydes, ketones and alcohols, so acetic acid does not give haloform reaction. However acetic acid has three <math>\alpha$ -H, therefore, statement-I is true but statement-II is false.

Ο

Sol 8: (D) p-hydroxy benzoic acid has higher boiling point than o-hydroxy benzoic acid because former prefers intermolecular H-bonding while the later prefer intramolecular H-bonding.

Sol 10: Propanoic acid has higher boiling point than n-butanol because of more exhaustive H-bonding in former case.

Sol 11: (D) Esterification reaction is involved

$$CH_{3}COOH(\ell) + C_{2}H_{5}OH(\ell) \xrightarrow{H^{+}} CH_{3}COOC_{2}H_{5}(\ell) + H_{2}O(\ell)$$

Sol 12: (C)

$$C_2H_5O$$
 Na+ CH_3 - C- Cl \rightarrow CH_3 - C- O- C_2H_5 Ethyl ethanoate

Sol 13: (B) Electron releasing groups (Alkyl groups) de stabilizes conjugate base.

The +I effect of C_3H_7 is less than - I effect of CI

$$K_a$$
 of $HC_3CH_2CH_2$ CH – COOH is 139×10^{-5}
Cl

Sol 14: (C) Phenol gives violet colored complex compound with neutral FeCl₃, benzoic acid gives pale dull yellow ppt. with neutral FeCl₃

Sol 15: (C) By reaction with one mole of $CH_3 - C - CI$ with one -NH₂ group the molecular mass increases with 42 unit. Since the mass increases by (390-180) = 210 hence the number of -NH₂ groups is 5.

$$R - NH_2 + CH_3 - C - CI \xrightarrow[(-HCI)]{} R - NH - C - CH_3$$

Sol 16: (D)

Sol 18: (A)

Sol 19: (C)

Sol 20: (D)

Sol 21: (C) Hofmann bromamide degradation reaction

O \parallel $R - C - NH_2 + Br_2 + 4NaOH \longrightarrow$ $R - NH_2 + Na_2CO_3 + 2NaBr + 2H_2O$

1 mole bromine and 4 moles of NaOH are used for per mole of amine produced.

JEE Advanced/Boards

Exercise 1

(F)

Sol 1: (i) The isomers have 1° of unsaturation that must be due to -COOH, since CO_2 is evolved on adding NaHCO₃. The remaining oxygen may be present as -OH or -OR.

(G)

(iii) The ether (G) differs from (E) and (F) in that it is inert to oxidation by $KMnO_4$ or CrO_3 . (E) gives a positive iodoform test.

Sol 2:

Sol 3:

Sol 4:

$$\begin{array}{c} O \\ \parallel \\ CH_3CH_2-C-OCH_2CH_2CH_3 \xrightarrow{H_2O} \\ H^+ \end{array}$$

$$CH_{3}CH_{2}COOH + CH_{3}CH_{2}CH_{2}OH$$
(A)
(B)
$$CH_{3}CH_{2}CH_{2}OHCH_{3} \xrightarrow{Chromic acid}_{(O)} \rightarrow$$

$$CH_{2}CHO \xrightarrow{(O)} CH_{3}CH_{2}COOH$$
(A)

Sol 5:
$$RCO_2H \xrightarrow{SOCl_2} RCOCI \xrightarrow{NaN_3} RCON_3 \xrightarrow{D} RNCO \xrightarrow{Hydrolysis} RNH_2$$

Sol 6: C=O bond is very stable due to large ΔH_{f} of CO;

so the decomposition reaction $H-C-C \longrightarrow C \equiv O+HCI$ is favoured. Formyl chloride is not stable above $-60^{\circ}C$.

Sol 7: An extremely mild but selective oxidizing agent for aldhydes is silver oxide suspended in aqueous base. An unsaturated acid is obtained with this reagent because the >C=C<remains untouched by this reagent.

Sol 8:

$$C_{5}H_{6}O_{4} \xrightarrow{\Delta} C_{4}H_{6}O_{2} \xrightarrow{H_{2}O} C_{4}H_{6}O_{2} \xrightarrow{H_{2}O} C_{4}H_{6}O_{2} \xrightarrow{H_{2}O} C_{4}H_{6}O_{2} \xrightarrow{H_{2}O} C_{6}OOH$$

$$CH_{3}CH_{2}CH_{2}COOH$$

$$H_{2}C=CHHC \xrightarrow{COOH} \xrightarrow{\Delta} C_{6}OOH$$

$$CH_{2}=CH-HC_{2}COOH \xrightarrow{H_{2}/Ni} CH_{2}CH_{2}COOH$$

$$CH_{2}=CH-HC_{2}COOH \xrightarrow{H_{2}/Ni} CH_{3}CH_{2}CH_{2}COOH$$

Sol 9:

(A) (CH ₃ CO) ₂ O	(B) CH ₃ COOH
(C) $CH_3COOC_2H_5$	(D) C ₂ H ₅ OH
(E) CH ₂ COCH ₂	

Sol 10: (A) (C₂H₅COOC₂H5) (B) C₂H₅CO–CH(CH₃)COOC₂H₅ (C) C₂H₅COCH(CH₃)COOH

Sol 11: An alkali salt of palmitic acid is known as soap. The general formula of palmitic acid $C_{15}H_{31}COOH$. Which on hydrolysis in presence of alkali give soap($C_{15}H_{31}COONa$) and glycerol as by product.

Sol 12: Acid do not reacts with NaHSO₃though they have >C=O group because of resonance stabilization. The resonance take place as follows.

Sol 14: $CH_3CH_2COOH \xrightarrow{[0]}{SeO_2} CH_3CO COOH + H_2O$ Propionic acid Pyruvic acid

Sol 15: Acid are directly reduced to the corresponding primary alcohol with powerful reactant like LiAlH₄. It attack only on the carbonyl group of a fatty acid.

$$R - C - OH + 4H \xrightarrow{\text{LiAlH}_4} RCH_2OH + H_2O$$

Alkanol

Sol 16:

$$\begin{array}{c} \mathsf{CH} & & & \mathsf{CH}_{3} & & \mathsf{CH}_{3} \\ \parallel & & \mathsf{Hg}^{2+}, \mathsf{H}_{2}\mathsf{SO}_{4} & \mathsf{H}_{3} & & \\ \mathsf{CH} & & \mathsf{CHO} \\ \end{array}$$

$$\begin{array}{c} \mathsf{CH}_{3}\mathsf{COOH} & & \mathsf{NaOH}_{4} \\ \end{array}$$

Sol 17:
$$CH_3CN \xrightarrow{H_3O^+} CH_3COOH \xrightarrow{NH_3}$$

Ethane nitrile Ethanoic acid
(X) (Y)
 $CH_3COONH_4 \xrightarrow{\Delta} CH_3CONH_2$
Ammonium ethanoate Ethanamide
 $\xrightarrow{Br_2/KOH} CH_3NH_2$
Amino methane

Sol 18:
$$CH_3COONa \xleftarrow{NaOH} CH_3COOH$$

(Z) (X)
 $\xrightarrow{PCI_3} CH_3COCI$
(Y)
 $CH_3COCI + CH_3COONa \rightarrow$
(Y) (Z)
 $CH_3 - \overset{\square}{C} - O - \overset{\square}{C} - CH_32CH_3 - \overset{\square}{C} - CI$
(E) (Y)

Sol 19: (i) $CH_3CI \rightarrow CH_3COCI$ Methyl chloride Acetyl chloride $CH_3CI \xrightarrow{Mg} CH_3MgCI \xrightarrow{CO_2}_{H_2O/H^+}$ Methyl chloride $CH_3COOH \xrightarrow{SOCI_2} CH_3COCI$ Acetyl chloride

(ii)
$$C_2H_5OH \longrightarrow CH_3CONH_2$$

Ethyl alcohol Acetamide
 $CH_3OH \xrightarrow{[0]}{K_2Cr_2O_7/H^+}CH_3CHO \xrightarrow{[0]}{}$
Methyl alcohol
 $CH_3COOH \xrightarrow{SOCl_2}CH_3COCI$
 $\xrightarrow{NH_2}CH_3CONH_2$ Acetamide
(iii) $CH_3COOH \longrightarrow CH_3COOC_2H_5$
Acetic acid Ethyl acetate
 $CH_3COOH \xrightarrow{LiAIH}CH_3CH_2OH$
Acetic acid
 $\xrightarrow{CH_3COOH/H^+}CH_3COOC_2H_5$
Ethyl acetate

Sol 20: (i)

$$O = C + NH + H - CH_3CH_2 - O + CH_2$$

$$CH_2$$

$$CH_2$$

$$CH_2$$

$$CH_2$$

$$CH_2$$

$$CH_2$$

$$CH_2 + 2C_2H_3OH$$

$$C + CH_2 + 2C_2H_3OH$$

$$CH_2 = O + O = C + 2C_2H_3OH$$

$$CH_2 = O + O = C + CH_2 + 2C_2H_3OH$$

$$CH_2 = O + O = C + CH_2 + 2C_2H_3OH$$

$$CH_2 = O + O = C + CH_2 + 2C_2H_3OH$$

$$CH_2 = O + O = C + CH_2 + 2C_2H_3OH$$

$$CH_2 = O + O = C + CH_2 + 2C_2H_3OH$$

$$CH_2 = O + O = C + CH_2 + 2C_2H_3OH$$

$$CH_2 = O + O = C + CH_2 + 2C_2H_3OH$$

$$CH_2 = O + O = C + CH_2 + 2C_2H_3OH$$

$$CH_2 = O + O = C + CH_2 + CH_2$$

CH₂(OH)NHCONH(OH)CH₂ Dimethylol urea urea-formaldehyde Sol 21: (i)

 $\begin{array}{c} CH_{3}CH_{2}CH_{2}CH_{2}Br \xrightarrow{CN^{-}} \\ CH_{3}CH_{2}CH_{2}CH_{2}CN \xrightarrow{-Br^{-}/2HOH/H^{+}} \\ CH_{3}CH_{2}CH_{2}CH_{2}COOH \\ n-Pentanoic acid \end{array}$

Sol 22:

Sol 24: (A) $CH_3CHOHCH_2COOH$ (B) $CH_3CH=CHCOOH$ (C) $CH_3CH=CHCOCI$ (D) $CH_3-CH=HCON(CH_3)_2$ (E) CH_3COCH_2COOH (F) CH_3COCH_3 (G) $CH_3CH_2CH_3$

Sol 25: Is a saturated monoester with

Sol 23:

Sol 26:

CH₃

$$F = \bigcup_{OSO_2C_6H}^{CO_2H}$$

G = OH

Sol 28:

$$H_{3}C = H_{1}C - CH - CO_{2}H + H_{3}C = H_{1}OH OH OH$$

$$M.F C_{5}H_{10}O_{4}$$

(E)
$$O=CH-CO_2H$$

M.F $C_2H_2O_3$

Sol 29: The given reaction are as follows.

$$A \xrightarrow{C_2H_5OH} B + C \xrightarrow{H^+} B + D$$
(Carboxylic
Acid)
$$Acid) \xrightarrow{KMnO_4} B \xrightarrow{Ca(OH)_2} C_3H_6$$
(E)

The compound E must be ketonic compound as it does not give Tollens test and does not reduce Fehling's solution but forms a 2, 4-dinitrophenyl-hydrazone. Therefore, its structure would be CH₃COCH₃(acetone).

Since E is obtained by heating B with $Ca(OH)_{2'}$ the compound B must be CH₃COOH (acetic acid).

Since B is obtained by oxidation of D with $KMnO_4$, the compound D must an alcohol with molecular formula CH_3CH_2OH (ethanol).

Since B and D are obtained by acid hydrolysis of C, the compound C must be an ester $CH_3COOC_2H_5$ (ethyl acetate).

Since the compounds B (acetic acid) and C (ethyl acetate) are obtained by treating A with ethanol, the compound A must be an anhydride $(CH_3CO)_2O$ (acetic anhydride).

The given reaction are

Sol 30: Acetoacetic ester shows tautomerism and the two forms are called as keto and enol forms.

with $FeCl_3$ solution. When Br_2 is added, it reacts at once with = of the enol form.

As soon as enol form is consumed, its colouration with $FeCl_3$ disappears and excess of bromine gives brown colour. As keto and enol forms are in equilibrium, when enol form is used, the equilibrium shifts to right hand side to give more enol form which discharges the colour of excess of Br_2 and gives blue violet colour with excess of $FeCl_3$ present in the reaction mixture.

Exercise 2

Single Correct Choice Type

Sol 1: (D)

Sol 3: (B)

 $HOOC - CH_2 - CH_2 - CH = CH_2 \xrightarrow{SOCl_2} OCH_2 - CH_2 -$

Sol 4: (C)

Multiple Correct Choice Type

Sol 6: (A, C, D) Self-explanatory, Rearrangement reactions

Sol 7: (A, C) Self-explanatory

Assertion Reasoning Type

Sol 8: (D) The given compound is optically active.

Comprehension Type

Paragraph 1 (Questions 9 to 12)

Sol 9: (A) Abstraction of α -H takes place to given a carbanion, from the lower side to give C₂OH₃₈

Sol 10: (C) Agathene Dicarboxylic Acid:

∴ 4 Chiral Carbons (shown by *)

Sol 11: (C) No. of Chiral carbons = 4.

 \therefore No. of Optical isomers = $2^4 = 16$

 \therefore Stereoisomers = No. of optical isomers + No. of geometrical isomers = 32.

Sol 13: (C); Sol 14: (A); Sol 15: (D)

Paragraph 3 (Qeustions 16 to 18)

Sol 16: (A) Mechanism of formation of A and B is A_{AC}^{2}

Sol 17: (D) Both B and C are redox reaction as B involves reduction and C reaction involves oxidation step.

Sol 18: (B)
$$H-C-CI \xrightarrow{Me_2Cd} H-C-H$$

Match the Columns

Sol 19: $A \rightarrow s$; $B \rightarrow p$; $C \rightarrow r$; $D \rightarrow s$

(A) It is an example of Dieckmann reaction which involves condensation of two ester.

(B) Condensation between an active methylene compound and an keto compound is known as Knoevenagel reaction.

(C) It is an example of reformatsky reaction

(D) It is also an example of Dieckmann reaction which involves condensation of two ester to form a ring structure.

Q.20 A \rightarrow p; B \rightarrow q, s; C \rightarrow r.

(A) $CH_3 - CH = CH_2 \xrightarrow{O_3}_{Zn} (U) + (V) - Haloform rection$

(B) Product are ketone and aldehyde which can be differentiated by Fehling's and Tollens reagent.

(C) Product are acid and alcohol. Acid gives effervescence with aq. NaHCO₃

Q.21 A
$$\rightarrow$$
 p; B \rightarrow r, t; C \rightarrow p, s; D \rightarrow p, q, s

(A) Markonikov's rule-Regioselective

(B) Example of Diels Alder reaction-Cyclic addition, stereospecific

(C)Addition reaction- Regioselective

And will form diastereomers.

(D) Regio as well as stereoselective addition and will form diastereomers.

Q.22 A \rightarrow q, r; B \rightarrow p, q; C \rightarrow r, s

(A) Acid will give brisk effervescence with NaHCO₃. Other organic product formed will give haloform test

(B) Presence of unsaturation will cause decolourisation of Br₂ water. And Acid functional group will give effervescence with NaHCO₃.

(C) One of the organic product formed will give haloform test. One of the organic product formed will give 2, 4 DNP

Q.23 A
$$\rightarrow$$
 q ; B \rightarrow r; C \rightarrow p; D \rightarrow r; E \rightarrow s, t

(A)
$$R - C - OR' \xrightarrow{(i) LAH}_{(ii) H_2O} R - CH_2OH + R'OH$$

O
(B) $R' - C - OH \xrightarrow{(i) LAH}_{(ii) H_2O} R'CH_2OH$
O
(C) $R' - CH_2 - Br \xrightarrow{LAH} R'CH_3$
(D) $R' - C - H \xrightarrow{SBH/EtOH} R'CH_2OH$

∬ O

(E)
$$R - C - OR' \xrightarrow{Red P/HI} RCH_3 + R'H$$

O

Previous Years' Questions

Sol 3: (C)

$$Ph \xrightarrow{O} O \xrightarrow{heat} Ph \xrightarrow{O} C-CH_{3} \xrightarrow{I_{2}} OH$$

$$Ph-COONa + CHI_3$$

F G

Sol 4; (A, C)

Sol 5: (D)

Sol 6: (D)

Sol 7: (B) The rate determining step of Hofmann bromide reaction is unimolecular rearrangement of bromamide anion (iii) and no cross-products are formed when mixture of amides are taken.

Sol 8: The two stereoisomers of 2-phenyl propanoic acid in the racemic mixture are :

Here A and B are diastereomers.

Sol 9: Compound A of molecular formula $C_9H_7O_2CI$ exist in keto and predominantly in enolic from B. Hence, A must be a carbonyl compound which contain α -H. Enolic forms of B predominates because of presence of intramolecular H-bonding.

Sol 10:

Sol 11: (A); Sol 12: (C)

$$CH_3 - CH_2 - C \equiv C - CH_2 - CH_2Br \xrightarrow{1.Mg/Lther}{2.CO_2}$$

$$J \xrightarrow{K} CH_2 - CH_2 - C \equiv C - CH_2 - COCI_2$$

$$J = CH_3 - CH_2 - C \equiv C - CH_2 - COOH$$

$$K = SOCl_2$$

Sol 13: (D)

Sol 14: (B)

Sol 15: (B)

Sol 17: (A) Only amines undergo acetylation and not acid amides.

Sol 18: (A) (i) - p; (ii) - r; (iii) - s; (iv) - q

– Chemistry | 24.71

Sol 20: (A, B, C, D)

Sol 21: (B)

Sol 23: (C) NaBH₄ is a mild reducing agent. It selectively reduces aldehydic group.

Sol 24: (A)

Decreasing order of acidic strength: III > IV > II > I

Sol 25: (5)

are soluble in aqueous NaOH.

Sol 26: (C)

Sol 29: (C) Due to ortho effect o-hydroxy benzoic acid is strongest acid and correct order of decreasing K_a is

0

Sol 30: (B) In decarboxylation, β -carbon acquire δ^- charge. Whenever δ^- charge is stabilized decarboxylation becomes simple. In (B) it is stabilized by-m and-o of C=O, which is best amongst the options offered.

Ô

Sol 31: (A, C, D)

