
21. M O V I N G  C H A R G E S 
A N D  M A G N E T I S M 

1. INTRODUCTION

In the previous chapters on electrostatics and current electricity, we have studied about the electric force and electric 
field. Another important property associated with moving charges is the magnetic force and the magnetic field. 
The current flowing in a conductor produces a magnetic field and any charge moving in this field will experience a 
magnetic force which will depend on the velocity (both magnitude and direction) as well as on some property of 
the field. We will study the properties and laws governing the magnetic field and magnetic force in detail in this 
chapter.

There are a wide variety of industrial and medical applications of magnetic fields and forces. Common example, is 
the use of electromagnet to lift heavy pieces of metal. Magnets are used in CD and DVD players, computer hard 
drives,loud speakers, headphones, TVs, and telephones. We are surrounded by magnets. Right from our doorbells 
to cars to security alarm systems and in our hospitals, magnets are being used everywhere.

2. LORENTZ FORCE: DEFINITION OF MAGNETIC FIELD B

If electric field and magnetic field occur simultaneously in a region then the force acting on a point charge q in 

the region will depend both on the position of the charge as well as on its velocity. The force F


 will have two 

components, viz. the electric force eF


 and magnetic force mF


. The force eF


 does not depend on the motion of 

the charge, but only on its position, while mF


 depends both on charge’s velocity and position (see Fig. 21.1). The 

magnitude of eF


is qE and direction is along E


 (q is positive).

To know the direction and magnitude of mF


we introduced a vector B


 called magnetic flux density ormagnetic 

induction, which characterizes the magnetic field at a particular 

point. Experiments show that the force mF


isproportional to the 

magnitude of charge q, to the velocity v
  of the charge and the 

magnitude of density B


, this force being always perpendicular 

to vector v
  as well as vector B


. Also, if the charge moves along 

the direction of B


 at a point then the magnetic force on it is zero.

We can summarize all these experimental results with the 
following vector equation:

		  mF qv xB=
 

That is, the force mF


 on the point charge is equal to the 
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Figure 21.1: Magnetic Force on a Moving Charge
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charge q times the cross product of its velocity v
  and the field B


 (all measured in the same reference frame). Using  

formula for the magnitude of cross product, we can write the magnitude of mF


as m vF   q B sin= θ  where θ is the 

angle between the velocity v
  and magnetic field B


.

If angle θ is 90o, then the above relation for magnetic force can be used to define the magnitude of magnetic flux 
density B as,

		  mFB
q v⊥

=

where v⊥  is the velocity component perpendicular to vector B


.

Thus, the total electromagnetic force acting on charge q is given as, e mF F F= +
  

or		  F qE q[v B]= + ×
  

This is called Lorentz force.

The unit of B is Tesla abbreviated as T. If q=1 C, v=1 ms-1, sin θ=1 for θ = 90o, and Fm = 1 N,then B=1 T = 1 
Weber-m-2. Thus 1 Tesla is defined as the unit of magnetic field strength in S.I units which when acting on 1 C of 
charge moving with a velocity of 1 ms-1 at right angles to the magnetic field exerts a force of 1 N in a direction 
perpendicular to that of field and velocity vectors. C.G.S. units of magnetic field strength or magnetic induction is 
1 gauss or 1 oersted. 1 gauss = 1 oersted= 10-4T.

Illustration 1: A 2 MeV proton is moving perpendicular to uniform magnetic field of 2.5 T. What is the magnetic 
force on the proton? (Mass of proton = 1.6 x 10-27 kg)� (JEE MAIN)

Sol: Kinetic energy of proton is 
2

pm v
K.E.

2
= . 1 MeV=1.6 x 10-13J.

K.E = 2 MeV = 2 x 1.6 x 10-13J 	 or 1
2

mv2= 3.2 x 10-13J

∴V= 
132x3.2x10

m

−

	= 
13

27

2x3.2x10
1.6x10

−

−
	 = 2 x 107 m s-1

Now, magnetic force on proton, F= ev B = 1.6 x 10-19 x 2 x 107 x 2.5 = 8.0 x 10-12 N

Illustration 2: A charged particle is projected in a magnetic field 2B (3i 4 j)x10 T−= +


 

The acceleration of the particle is found to be, 2a (xi 2 j) ms−= +


   Find the value of x. � (JEE MAIN)

Sol: Magnetic force on a moving charge is perpendicular to the magnetic field. Therefore the dot product of force 
and magnetic field vector is zero.

As we have read  mF B⊥
 

  i.e., the acceleration a B⊥
 

    or 	 a B 0⋅ =
 

or 2(xi 2 j) (3i 4 j)x10 0−+ ⋅ + =  ; (3x+8)x102=0 	 ∴ 28x ms
3

−= −

3. RELATION BETWEEN ELECTRIC AND MAGNETIC FIELD

Suppose in a particular inertial reference frame K, the electric field is zero and the magnetic field has a non-zero 
finite value. A point charge is moving with some velocity v

  in the frame K and thus experiences a magnetic force, 
and its velocity changes. Now suppose we have a frame K’ translating with respect to frame K withconstantvelocity 
v
 . In the frame K’,the point charge is initially at rest, and so the magnetic force on it will be zero. Butas its velocity 
changes in the K frame, its velocity changes in the K’ frame as well, i.e. it experiences a force in K’ frame as well. 
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This initial force on it is the force eF


due to electric field in the K’ frame.Thus the magnetic field in K frame appears 
as a combination of electric field and magnetic field in K’ frame. The electric and magnetic fields are thus inter-
dependent. We introduce a single physical entity called electromagnetic field. Whether the electromagnetic field 
will appear as electric field or magnetic field depends on the frame of reference. If we confine to a particular 
reference frame, we can treat electric fieldand magnetic field as separate entities. A field which is constant in one 
reference frame in the general case is found to vary in another reference frame.

4. MAGNETIC FIELD LINES

Magnetic field lines are used to represent the magnetic field in a region. The rules to construct the magnetic field 
lines are:-

(a)	 The direction of tangent to a magnetic field line at a point gives the direction of magnetic flux density vector 
B


 at that point.

(b)	 The density of the magnetic field lines at a point isproportional to the magnitude of vector B


at that point. At 
points where the field lines are closer together, the magnetic field is stronger.

•• In case of a bar magnet, the density of magnetic field lines is high at points near the poles, and the 
density at pointsnear the center of the magnet is low.

•• If we place a magnetic compass at any point in the earth’s magnetic field, it will align itself in the 
direction of the magnetic field lines.

Vaibhav Krishnan (JEE 2009 AIR 22)

•• Common misconception about magnetic field lines is that it is the path followed by a magnetic 
north pole in a magnetic field.

•• This is not correct. It is the instantaneous direction of the magnetic force acting on the magnetic 
north pole in the magnetic field.

Vaibhav Gupta (JEE 2009 AIR 54)

5. EARTH’S MAGNETIC FIELD

Magnetic field is present everywhere near the earth’s surface. The line of earth’s magnetic field lies in a vertical plane 
coinciding with the magnetic north-south direction at that place i.e. the plane passing through the geomagnetic 
poles. This plane is called the Magnetic Meridian. This plane is slightly inclined to the plane passing through the 
geographic poles called the geographic meridian.The angle between the magnetic meridian and the geographic 
meridian at a point is called the declination at that point. The earth’s magnetic poles are opposite to the geographic 
poles i.e. at earth’s North Pole, its magnetic south pole is situated and vice versa.

In the magnetic meridian plane, the magnetic field vector of the earth at any point, is generally inclined to the 
horizontalat that pointby an angle called the magneticdip at that point. If magnetic field of the earth at that point 
is B and the dip is θ, 

MASTERJEE CONCEPTS

MASTERJEE CONCEPTS
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Bv = the vertical component of B in the magnetic meridian plane = B sinθ

BH = the horizontal component of B in the magnetic meridian plane = B cosθ.

		  V

H

B
tan

B
= θ

6. MOTION OF CHARGED PARTICLE IN ELECTRIC AND MAGNETIC FIELD

6.1 Trajectory of a Charged Particle Moving in Uniform Electric Field
Let a positively charged particle having charge +q and mass m 
enter at origin O with velocity v along X-direction in the region 
where electric field Eis along the Y-direction (see Fig. 21.2).

Force acting on the charge +q due to electric field E is given by

	 F qE=
 

Acceleration of the charged particle is F qEa or a
m m

= =
 

 

�
...(i)

The charged particle will accelerate in the direction of E


 and get 
deflected from its straight line path.

During its motion in the region of electric field, along x-axis we 
have ux=v and ax= 0 and x = vt

or	 xt
v

= 	 …(ii)

Along y axis we have, uy = 0, y
qEa
m

=
         

(∴ Initially the particle was moving along x-direction)

		  2
y

1y a t
2

=

∴		  21 qEy t
2 m
 

=  
 

Using Eq, (ii), we get 
2

1 qE xy
2 m v
  

=   
  

 or	
2

2
2

qExy Kx
2mv

= = 	 …(iii)

where	
2

qEK
2mv

= is a constant.Thus the charged particle moves along a parabolic trajectory.

6.2 Trajectory of a Charged Particle Movingin Uniform Magnetic Field
(a)	 Magnetic force acting on a charged particle moving with velocity v

 parallel 
(θ=0) or antiparallel (θ=180o) to B


, will be zero. Thus the trajectory of the 

particle is a straight line.

(b)	 If velocity v
 of the particle is perpendicular to B


i.e. θ =90o, then magnetic 

force is F= qvB and the direction of this force is always perpendicular to v. The 
charged particle moves in a circular trajectory (see Fig. 21.3).

(c)	 If velocity v
  of the charged particle makes an angle θ with B


, the particle 

moves in a helical path. The component v sin θ  which is perpendicular to B


drives the charged particle along a circular path whereas the component v 
cos θ  , which is parallel or antiparallel to B


, remains unchanged as there is 

no magnetic force along the direction of B


. Thus the charged particle moves 
along a helical path (see Fig. 21.4).
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Figure 21.2: Charged particle moving  
in electric field
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moving in uniform magnetic 
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(d)	 The magnetic force on the component of velocity perpendicular to the magnetic field provides the centripetal 
force to the charged particle to follow a circular trajectory of radius r.

	 qv⊥ 
2mv

qv B
r
⊥

⊥ =

	 or  
mv

r
qB

⊥=

Angular velocity, 
v qB
r m
⊥ω = =

Frequency qBf
2 m

=
π

Time period T= 2 m
qB
π

Time period T is independent of v.

7.DISCOVERY OF ELECTRON

The Fig. 21.5 shows the simplified version of Thomson’s’ experiment. An electric field E


is established in the region 
between the deflecting plates by connecting a battery across their terminals. The magnetic field B


in the region 

between the deflecting plates is directed into the plane of the figure.

To vacuum pump

x x x x x
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Figure 21.5: Thomson’s experimental set up

Charged particles (electrons) are emitted by a hot filament at the rear of the evacuated cathoderay tube and are 
accelerated by an applied potential difference V. After they pass through a slit in screen C, they form a narrow 
beam. They then pass through the region between the deflecting plates, headed towards the center of fluorescent 

screen S, where they produce a spot of light. The crossed-fields E


and B


 in the region between the deflecting 

plates can deflect them from the center of the screen. By controlling the magnitude and directions of the fields, E


and B


 the deflection of the charged particles can be controlled.

When both the fields E


and B


 are turned-off the beam of charged particles reaches the screen un-deflected.

When fieldE


 is turned-on the beam of charged particles is deflected.

Keeping the fieldE


 unchanged, fieldB


 is also turned-on.The magnitude of B


 is adjusted such that the deflection 

v sin �

�

v

B

Figure 21.4: Charged particle moving in  
helical path in uniform magnetic field
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of the charged particles becomes zero. In this situation the electric force on the charged particles is balanced by 
the magnetic force.

		  q E q v B= − ×
 

or		  E v B= − ×
 

The ratio of magnitudes of E


and B


 in this situation gives the speed of the charged particles.

		  Ev
B

=

When only field E


 is turned-on, the displacementof the charged particlesin the y-direction, when they reach the 
end of the plates, as derived in article 6.1 is

		
2

2

q EL
y

2mv
=

where v is the particle’s speed along x-direction, mits mass, qits charge, and L is the length of the plates. The 
direction of deflection of charged particles show that the particles are negatively charged.

Substituting the value of v in terms of E and B we get,

		
2 2q B L

y
2mE

=

or		
2 2B Lm

2yEq
=

Thus in this way the mass to charge ratio of electrons was discovered.

Charged particle motion as a points on wheel

•• 1. Suppose electric and magnetic field are perpendicular to each other and a charged particle is 
projected perpendicular to magnetic field, its motion can be assumed as that of the motion of a 
particle on a wheel

•• 2. The point could be inside, on or outside the wheel depending on the problem

•• 3. Suppose in this field it is projected in any other way (expect along the magnetic field) its horizontal 
motion is still like that of a point on a wheel, while vertical motion will be uniform velocity motion

•• 4. To such problem, just resolve the particle velocity in to along the magnetic field and perpendicular 
to it

•• 5. If electric field is not perpendicular, resolve it also into along and perpendicular to magnetic field 
and solve accordingly.

Nitin Chandrol (JEE 2012 AIR 134)

8. HALL EFFECT
The Hall Effect is the production of a voltage difference (the Hall voltage) across acurrent carrying conductor, lying 
in a magnetic field perpendicular to the current. The hall voltage is produced in the direction transverse to the 
electric current in the conductor. It was discovered by Edwin Hall in 1879.Hall Effect allows us to find out whether the 

MASTERJEE CONCEPTS
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charge carries in a conductor are positively or negatively charged 
and the number of charge carries per unit volume of the conductor.

External magnetic field B


, points into the plane of a copper strip 
of width d, carrying a current I as shown in Fig. 21.6.The magnetic 

force mF


 will act on each drifting electron, towards the right edge 
of the strip. As the electrons accumulate on the right edge, positive 

charges are induced on the left edge and an electric field E


 is 

produced within the strip, directed from left to right.This field 

exerts an electric force eF


 on each electron, towards the left edge 

of the strip.The hall potential difference V across the width of the 

strip,due to the electric field E


 isV=Ed.

When the electric and magnetic forces balance each other, eE=evdB 
or E = vd B

Thedrift speed vd is given as d
J Iv

ne neA
= =

So we obtain	 BI
n

V e
=


 where  (= Cross section Area

Width
− ) is the thickness of the strip.

Illustration 3:Copper has 8.0 x 1028 conduction electrons per metre3. A copper wire of length 1 m and cross-
sectional area 8.0 x 10-6 m2 carrying a current and lying at right angle to magnetic field of strength 5 x 10-3 T 
experiences a force of 8.0 x 10-2N. Calculate the drift velocity of free electrons in the wire.� (JEE ADVANCED)

Sol: If v is the drift speed of electrons then the magnetic force on the wire is

	 oF qvBsin qvBsin90 qvB= θ = =

where q is the total charge of electrons in the wire.

	 n=8.0 x 1028 m-3

l= 1 m; A=8.0 x 10-6m2

Charge on each electron, e=1.6 x 10-19 C

Number of electrons in the copper wire = n x volume of wire = n(A l)

Total charge in the wire, q=n((A l)e or q=8.0 x 1028 x 8.0 x 10-6 x 1 x 1.6 x 10-19=1.024 x 105C

Using 	 F=qvB sin θ, we have,
2

5 3 o

F 8.0x10
qBsin 1.024x10 x5x10 xsin90

−

−
ν = =

θ
= 1.563 x 10-4m s-1

9. MAGNETIC FORCE ON A CURRENT CARRYING WIRE

Suppose in a conductor number of free electrons per unit volume is n, then in an infinitesimal volume dV in the 
conductor, the total charge of free electrons will be

		  dq = ne dV

If the magnetic field at the location of the elementary volume is B


, and the drift velocity of free electrons is dv
  then 

the magnetic force on the elementary volume will be

		  ddF ne[v B]dV= ×
 

Now we know that the current density is given as

i i

d

B
�

vd

�
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�

B
�

E
�

+

+

+

+

+

-

-
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�

FB

�
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�

Figure 21.6: Hall Effect in conductor
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		  dj nev=
 

So		  dF [ j B]dV= ×
 

Introducing the vector d

  in the direction of current we can write, j dV j Sd I d= ∆ =

  
  . Here ΔS is the area of 

cross-section and d the length of the elementary volume dV.

So		  dF I [d B]= ×
 



The total magnetic force on the conductor is F I [d B]= ×∫
 



For a thin straight wire of length L, if the field B


 is constant throughout the length of the wire and perpendicular 
to it, we can write

		  F I L B=

In vector form we can write, F I L B= ×
  

, where L


 is a length vector that has magnitude L and is directed along the 
wire segment in the direction of the (conventional) current.

Few important points regarding the force on current carrying conductor 
in magnetic field are given below:

(a)	 In a uniform magnetic field the force, dF= IBd sin θ , does not 
depend on the position vector r

  of the current element.Thus 
this force is non-central. (Acentral force is a function of position 
vector r

 , F f(r )=
 

)

(b)	 Theforce dF


 is always perpendicular to the plane containing B


 

and d

 .Vectors B


 and d


  may or may not be perpendicular to 

each other.

(c)	 As explained above, the total magnetic force on the conductor is

	 F I [d B]= ×∫
 



	 For uniform magnetic field, B


 can be taken out from the integral.

	 F I d B = × ∫
 



According to the law of vector addition d∫

  is equal to the length 

vector L


from initial to final point of the conductor as shown in 
Fig. 21.7. For a conductor of any arbitrary shape the magnitude 

of vector L


 is different from the actual length L’ of the conductor.

	 ∴	 F IL xB=
  

(d)	 For a current carrying closed loop of any arbitrary shape placed 
in a uniform magnetic field (see Fig. 21.8),

	 F I d B 0 = × = ∫
 

�

Here as we add all the elementary vectors d

  around the closed 

loop, the vector sum is zero because the final point is same as 
the initial point.

	 ∴	 d 0=∫

�

Thus the net magnetic force on a current loop in a uniform 
magnetic field is always zero.

However, different parts of the loop do experience different net forces, although the vector some of all these 

L’

L
-

I

Figure 21.7: Current carrying conductor in 
uniform magnetic fieldr

I

I

F = 0
net

-

Figure 21.8: Current carrying loop in 
uniform magnetic field

I B

�

F = 0net

�net = 0

Uniform

field

-

-

-

Figure 21.9: Area vector of closed loop  
is in direction of uniform magnetic field
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forces comes out to be zero.

So the loop may experience some infinitesimal contraction or 
expansion, thus may be under tension.

Although the resultant of magnetic forces acting on the loop is 
zero, the resultant torque due the magnetic forces may not be zero.

Thus the torque on a loop in a uniform magnetic field is not always 
zero.

(e)	 When a current carrying closed loop is placed in a non-uniform 
magnetic field, in the general case it will experience non-zero net 
force as well as net torque.

Even a conductor of arbitrary shape not forming a loop, will 
experience a torque in a non-uniform field.

If the conductor is free to move, it will execute combined 
translational and rotational motion.

(f)	 When a current carrying conductor or closed loop translates or rotates in a magnetic field, the kinetic energy 
gained by it is, not due to the work done by magnetic forcesbut, at the expense of the energy supplied by the 
electric source which is maintaining current in the conductor/loop.

F 0
net

�-

�
net

= 0
-

F
net

-

I
1

I
2

I
1

I
2

F 0
net

�-

�
net

� 0
-

Figure 21.11: Closed loop in non-uniform magnetic field

The net work done by magnetic forces acting on a current carrying conductor is zero.

Though it may appear that,

W F.dr [ I (d B)].dr K= = × = ∆∫ ∫ ∫
  



but actually the kinetic energy is supplied by the electric source.

Illustration 4: A wire 12 cm long and carrying a current of 2 A is placed perpendicular to a uniform magnetic field. 
If a force of 0.8 N acts on it, calculate the value of the magnetic induction.� (JEE MAIN)

Sol: This problem can be solved using formula F BI sin= θ  for force on current carrying wire in uniform magnetic 
field.

 = 12 cm = 12 x 10-2 m ; I = 2 A ; F = 0.8 N; θ =90o

Using, F= BIlsin θ , we get
12 o

F 0.8B 3.3T
I sin 2x12x10 xsin90−

= = =
θ

I

F = 0
net

-

�
net

� 0
-

Figure 21.10: Area vector of closed loop 
is perpendicular to uniform magnetic field 

magnetic field
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9.1 Fleming’s Left Hand Rule
If the thumb and the first two fingers of the left hand are stretched mutually perpendicular to each other and if the 
first finger points in the direction of the magnetic field and the second middle finger points in the direction of the 
current in the conductor, then the direction of thumb gives the direction of force on the conductor.

Field

Current

Figure 21.12: Fleming’s Left hand Rule

10. TORQUE ON A CURRENT LOOP

Let us consider a square loop PQRS having side  and area A=l2 

(See Figure). Let us introduce a unit vector n̂  normal to the plane 
of the loop whose direction is related to the direction of current 
in the loop by the right-hand screw rule. Area of the loop can be 
written in vector form as 2 ˆA n=


 .

If current I in the loop is anti-clockwise then the vector n̂  will be 
directed along the perpendicular to the plane of the paper towards 
the reader as shown in the Fig. 21.13. Suppose the loop is placed 
in a uniform magnetic field B


 directed along the perpendicular 

to the plane of the paper towards the reader, i.e. along the vector 
n̂ .In this situation, the magnitude of magnetic force on each of 

the branches of the loop will be IB, i.e. 1 2 3 4F F F F I B= = = =
   

 . 

The direction of force on each branch can be found by Fleming’s 

left hand rule. We can easily see that 1 3F F= −
 

 and 1F


 and 3F


have 

same line of action. Similarly 2 4F F= −
 

and 2F


 and 4F


 have same 
line of action.So, the net force as well as the net torque on the loop PQRS is zero.

Now suppose the loop is rotated through an angle θ  about the 

lineMN as shown in Fig. 21.14).So the anglebetween vector n̂ and 

B


will beθ. In this situation each of the sides Q’R’ and S’P’ makes an 

angle 90o-θ with the magnetic field B


so that 2 4F F I Bcos= = θ
 



and again we have 2 4F F= −
 

and 2F


 and 4F


 have same line of 

action. The side PQ shifts to P’Q’ and RS shifts to R’S’ such that 

PQ || P'Q' and RS || R'S' so that 1 3F F I B= =
 

  and again we have 

1 3F F= −
 

, but the lines of action of 1F


 and 3F


 are displaced from 

each other by a distance of lsinθ. This forms a force couple, and 
the torque due to it will have magnitude 

	 τ = (I  B)  sin θ = I 2 Bsin θ = I A B sin θ

This torque is directed along the line MN.
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Figure 21.13: Zero torque on closed  
loop in uniform magnetic field
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Figure 21.14: 14 Non-zero torque on closed  
loop in uniform magnetic field
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In vector form we can write I A Bτ = ×
 

Defining magnetic dipole moment of the loop as ˆM I A I An= =
 

, we can write torque as M Bτ = ×
 

If the number of turns in the loop is N then we have, ˆM NI A NI An= =
 

Note that although this formula has been derived for a square loop, it comes out to be true for any shape of the 
loop.

Illustration 5: A vertical circular coil of radius 0.1 m has moment of inertia as 1 x 10-1kg m2.It is free to rotate along 
y-axis coinciding with its diameter. Initially axis of the coil and direction of magnetic field of 1 T are along x-axis. 
The coil takes a quarter rotation. Find � (JEE ADVANCED)

(i) Magnetic field strength at the center of the coil. Current of 3.19 A flows through this coil having 200 turns.

(ii) Magnetic moments of the coil.

(iii) Torque at the initial and final positions of the coil.

(iv) Angular speed at the final position.					   

Sol: The torque on coil is M Bτ = − ×
   where M


the magnetic moment of coil is. As torque d dI I I

dt d
ω ω

τ = α = = ω
θ

, 
integrating equation of torque we get the angular velocity.

(i) Using 0NI
B

2R
µ

= , we have
7

6(4 x10 )(200)(3.19)B 4x10 T
2x0.1

−
−π

= =

(ii) Magnetic moment, m = NIA=NI (πR2)= 200 x 3.19 x πx(0.1)2 = 20Am2

(iii) Torqueτ=N1ABsin θ =m sin θ ; initially θ =0 so sin θ =0 and τ=0

Finally,	 θ =90o so sin θ =sin90o=1 i.e., τ=mB; i.e.τ=20x4x10-6x1=8x10-5Nm

(iv) dI and mBsin
dt
ω

Γ = Γ = θ ; d d d d dI mBsin , But x
dt dt d dt d
ω ω ω θ ω
= θ = = ω

θ θ
Then, Iωdω=(mB sin θ )d θ

Integrating, we get 
/2 2

0 0

90II d mB sin d i.e, mBcos | mB
2 0

ω π ω
ω ω = θ θ = − θ =∫ ∫

i.e.			 
1/21/2 52mB 2x8x10

I 0.1

−  
ω = =   

    
=4 x 10-2 rad s-1

Note:

(a)	 Never use Fleming left-hand rule or right hand rule while solving questions. It becomes cumbersome to 
remember them precisely. Instead always find the direction of force by identifying the directions of motion 
and the field and then take the cross-product.

(b)	 Also, torque can be directly calculated by formula M B×
 

, where M is the magnetic dipolemoment as discussed 
below.

11. MAGNETIC DIPOLE MOMENT

Every current carrying loop behave like a magnetic dipole. It has two poles, north 
(N) and south (S) similar to a bar magnet. (see Fig. 21.15) Magnetic field lines are 
closed pathsdirected from the North Pole to the South Pole in the region outside 
the magnetic dipole and from South Pole to North Pole inside the magnetic dipole. 

S N

Figure 21.15: North and South  
Pole of current coil
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Each loop has magnetic dipole moment defined as M NI A=
 

, where N is the number of turns in the loop, I is the 
current in the loop andA is the area of cross-section of the loop.

For the direction of M


 any one of following methods can be used:

(a)	 The direction of M


 is from South Pole to North Poles we traverse inside the magnetic 
dipole. For a current loopthe North and the South Pole can be identified by the sense 
of current. The side fromwhere the current seems to flow clockwise is the South Pole 
and the opposite side from where it seems to flow anticlockwise is theNorth Pole.

(b)	 Vector M


 is along the normal to the plane of the loop. The direction of M


is related 
to the direction of current in the loop by the right hand screw rule. Curl the fingers of 
the right hand around the perimeter of the loop in the direction of current as shown 
in Fig.21.16. Then thumb extendedperpendicular to the plane of the loop, points in 

the direction of M


.

The potential energy U of a magnetic dipole placed in a uniform magnetic field is

	 U MBcos= − θ

or	 U M.B= −
 

For a bar magnet we define the magnetic dipole moment as

	 M m=
 



Here m is the pole strength of the bar magnet and vector 

  is directed from South Pole 

to North Pole.

The unit of magnetic dipole moment is A-m2.

The magnetic field at a large distance x on the magnetic axis of a bar magnet having 
magnetic dipole moment M


 is

	 0
3

2M
B

4 x

 µ
=   π  




The magnetic field at a large distance x on the perpendicular bisector of a bar magnet having magnetic dipole 
moment M


 is 

	
0

3

M
B

4 x

 µ
= −   π  




Illustration 6: A square loop OABCO of side  carries a current I. It is placed as shown in Fig. 21.18. Find magnetic 
moment of the loop.� (JEE MAIN)

Sol: The magnetic moment of the loop is M I A=  for single turn. The direction 

ofM


is related to the direction of current in the loop by the right hand screw rule.

As discussed earlier, magnetic moments of the loop can be written as, 

( )M I BCxCO=
  

Here, BC k=


 		  o o 3ˆCO cos60 i sin60 j i j
2 2

= − − = − −
   

∴ 3M I ( k)x i j
2 2

  
 = − − −     

     or 
2IM ( j 3 i)

2
= −

   

M

Figure 21.17: Direction of 
magnetic moment

B
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z

i

O

60
o

C
x

y

Figure 21.18

M
�

i

Figure 21.16: Right 
hand screw rule
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Illustration 7:Find the magnitude of magnetic moment of the current carrying 
loop ABCDEFA. Each side of the loop is 10 cm long and current in the loop is 
i=20 A.� (JEE ADVANCED)

Sol: The magnetic moment of the loop is M I A=  for single turn. If a loop is 
divided into different parts, the magnetic moment of entire loop is vector sum 
of the magnetic moments of its individual parts.

By assuming two equal and opposite currents in BE, two current carrying loops 
(ABEFA and BCDEB) are formed. Their magnetic moments are equal in magnitude 
but perpendicular to each other. Hence,

		  2 2
netM M M 2M= + =  

Where M=iA-(2.0)(0.1)(0.1)=0.02 A-m2		  2
netM ( 2)(0.02) A m= −  

=0.028 A-m2
A

B

C D

A

E

F

Figure 21.20

12. BIOT-SAVART LAW
Biot-Savart law is gives the strength of the magnetic field at any point due to a 

current element. If infinitesimalcurrent element of length d

  carries a current I, 

the magnetic field or magnetic induction dB


 at any point P is given by Biot-Savart 
law as

	 0
3

Id r
dB

4 r

 µ ×
= ⋅  π 


 

Here r
  is the position vector from the center of the element of length d


  to 

the point of observation P. The direction of d

  is along the direction of current I 

through it. If θ is the angle which r
  makes with the length d


 of the conductor, 

the magnitude of magnetic induction is given by

	 o
3

Id (r sin )
dB

4 r

µ θ
=

π

 

	 0
2

Id (sin )
dB

4 r

µ θ
=

π

 

Here m0 is the permeability of free space and 70 0
4

1 −=
µ

π
Tesla-meter/ampere.

The direction of dB


is perpendicular to the plane containing current element d

 and radius vector r

  which joins 

d

 to P.

The total magnetic induction due to the conductor is given by, B dB= ∫
 

.

�
P

O

dl
�

r
�

i

Figure 21.21 : Magnetic field 
due to current element dℓ
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Figure 21.19
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The magnetic intensity H at any point in the magnetic field is related to the magnetic induction 

as BH or B H= = µ
µ

 where µ  is permeability of the medium. The unit of magnetic intensity H 

is A-m-1

Maxwell’s Cork Screw Rule: If a right handed cork screw is rotated so that its tip moves in the 
direction of flow of current through the conductor, then the direction of rotation of the head of 
the screw gives the direction of magnetic field lines around the conductor.

Right Hand Rule: If we hold the conductor in the right hand such that the thumb is stretched 
in the direction of current, the direction in which the fingers curl gives the direction on the 
magnetic field.

12.1 Application of Biot-Savart Law
Biot-Savart law is used to find the magnetic field due to current carrying conductors.

12.1.1 Magnetic Induction Due to Infinitely Long Straight Current Carrying Conductor

Suppose the current I flows through a long straightcurrent carrying conductor. We intend to find the magnetic field 

at point P at perpendicular distance r from the conductor. As shown in Fig. 21.23. the magnitude of field dB


 at P 
due toan infinitesimal element of length d, is given by Biot-Savart law as:	

0
2

Id sin(90 )
dB dB

4 x

µ + α
= =

π

 

where x is the distance between the current element and point P. The field dB


 is directed into the plane of the 
figure and perpendicular to it.

I

�

d�

dB

Ar

x

d�
�

xd�

Figure 21.23: Magnetic field due to infinitely long straight wire

Now from Fig. 21.23. it is clear that, d cos α = x dα and rx
cos

=
α

, so we can 
write,

		  0I cos d
dB

4 r
µ α α

=
π

� ……(i)

The conductor is infinitely long,so as the angle α varies from 
2
π

− to 
2
π ,  

the infinitesimal element covers the infinite length of the conductor, and for 

allinfinitesimal elements making-up the conductor the field dB


 is directed into 

the plane of the figure. Thus we can add the magnitudes of dB


 due to all the 
infinitesimal elements to get the magnitude of total field as, Figure 21.24: Magnetic field 

due to finite straight wire

P

I

r

�
1

�
2

O

Figure 21.22: 
Right hand  
thumb rule
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/2

o o

/2

I I
B cos d

4 r 2 r

π

−π

µ µ
= α α =

π π∫

12.1.2 A Straight Conductor of Finite Length

If a conductor of finite length subtends an angle α1on one side and α2on the other side ofperpendicular from point 
P as shown in Fig. 21.24 then we can write,

1
1o o o

1 22
2

I I I
B cos d sin [sin sin ]

4 r 4 r 4 r

α
α

−α
−α

µ µ µ
= α α = α = α + α

π π π∫ � ….(ii)

12.1.3 At the End of a Straight Conductor of Infinite Length

In this case, the angle α varies from 0 to 
2
π , and we can write

	 /2
o o

0

I I
B cos d

4 r 4 r

πµ µ
= α α=

π π∫

12.1.4 At The End of a Straight Conductor of Finite Length

In this case, (see Fig. 21.25) the angle α varies from 0 to α, and we can write

	 0 o

0

I I sin
B cos d

4 r 4 r

αµ µ α
= α α =

π π∫

12.1.5 At a Point Along the Length of the Straight Conductor Near Its End

In this case (see Fig. 21.26) 1 2
π

α = and 2 2
π

α = − , and thus equation (ii)gives B=0. Actually 

in this case the value of α does not vary at all i.e. it is constant (at all points of the wire we 

have 
2
π

α = ), thus dα = 0 and thus equation (i) gives dB = 0.

Illustration 8: Calculate the magnetic field at the center of a coil in the form of a square 
of side 4 cm carrying a current of 5A.� (JEE MAIN)

Sol: Square loop can be considered as four wires each of length . Magnetic field due to 

any one wire, at a the center is calculated as 0
1 1 2

1B sin sin
4 x
µ

 = θ + θ π

A square coil carrying current is equivalent to four conductors of finite length.

Step 1

Magnetic field at O due to conductor BC is

0
1 1 2

1B sin sin
4 x
µ

 = θ + θ π

Here	 0
1 2 45θ = θ = ; I=5A,x=2 cm=2x10-2m

∴	
7

o o
1 2

10 x5B sin45 sin45
2x10

−

−
 = +  	= 

7
5

2

10 x5x 2 3.54x10 T
2x10

−
−

−
=

I

�
r P

I

r

P

Figure 21.25: Magnetic 
field at end of straight 

wire of finite length

Figure 21.26: Magnetic 
field along length of 

straight wire

A B

CD

O
45

o

45
o a

Figure 21.27
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By symmetry, magnetic field intensity at O due to each arm will be same.Moreover, the direction of magnetic field 
at O due to each arm of the square is same

Step 2

∴ Net magnetic field at O due to current carrying square,

	 B=4B1	 =4 x 3.54 x 10-5Tor	 B=1.42 x 10-4T

12.1.6 Magnetic Field on the Axis of a Current Carrying Circular Arc

If a current I is flowing in a circular arc of radius R lying in the y-z plane with center at origin O and subtending an 
angle ϕ at O, then the magneticfield dB


at a point Pon x-axiswith coordinates (x, 0, 0) due to a small elementary arc 

of length d Rd= θ

  at a distance r from P is given by Biot-Savart Law as: 

	 0
3

I d r
dB

4 r

µ ×
=

π

   � … (i)

where r
 is a vector from midpoint of d


  to P.

As shown in Fig. 21.28 the coordinates of d

  are (0, R cosθ, R sinθ), where θ is the angle between the radius of the 

arc through d

  and the y-axis.

Y

Rd�

I R �

�

O

(0, Rcos , Rsin )� �
r

Z

B
Z

B
Y

P B
X

(x, 0, 0)

X

Figure 21.28: Magnetic field at a point on the axis of current carrying arc

So we can write ˆ ˆ ˆr x i R cos j R sin k= − θ − θ
 � … (ii)

Magnitude 2 2r x R= + � … (iii)

Let us express d

  in Cartesian coordinates system as shown in Fig. 21.29.

ˆ ˆd Rsin d j Rcos d k= − θ θ + θ θ

 � … (iv)

Put (ii), (iii) and (iv) in (i) to get

	 0

2 2 3

ˆ ˆ ˆ ˆ ˆI ( R sin d j R cos d k) (x i R cos j R sin k)
dB

4 ( x R )

µ − θ θ + θ θ × − θ − θ
=

π +



⇒	 20
2 2 3/2

I ˆ ˆ ˆdB (R d i x Rcos d j xR sin d k)
4 (x R )

µ
= θ + θ θ + θ θ

π +


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Resultant magnetic field at P is

	
φ φ φµ

= θ + θ θ + θ θ
π + ∫ ∫ ∫


20

2 2 3/2
0 0 0

I ˆ ˆ ˆB (R d i xR cos d j xR sin d k)
4 (x R )

⇒	 µ
= φ + φ + − φ

π +


20

2 2 3/2

I ˆ ˆ ˆB [R i xRsin j xR(1 cos )k]
4 (x R )

Thus B


 can be resolved into components parallel to the x, y and the z axes.

	 µ φ
=

π +

2
0

x 2 2 3/2

I R
B

4 (x R )

	
µ φ

=
π +

0
y 2 2 3/2

I R xsin
B

4 (x R )

	 µ − φ
=

π +
0

z 2 2 3/2

I R x(1 cos )
B

4 (x R )

The field at center of the arc: At center x = 0, so

	

µ φ
=

π
0

x

I
B

4 R

	 yB 0=

	 zB 0=

Thus at the center the field is normal to the plane of the arc.

For a semicircular loop, the angle subtended at the center is φ = π, so 0I
B

4r
µ

=

12.1.7 Magnetic Field on the Axis of a Current Carrying Circular Loop

The field B


on the axis of a current carrying circular loop (see Fig. 21.30) can be obtained from the expression of B


 
for a current carrying circular arc derived in the previous article by substituting the value of angle ϕ subtended at 
the center as 2π.

∴	 20
2 2 3/2

I ˆ ˆ ˆB [R (2 ) i xRsin2 j xR(1 cos2 )k]
4 (x R )

µ
= π + π + − π

π +



∴	
2

0
2 2 3/2

IR ˆB i
2(x R )

µ
=

+



Thus field B


 is directed along the axis of the circular loop.

For a coil havingN circular turns,	
2

0
2 2 3/2

NIR
B

2(R x )

µ
=

+

The field at center of the coil:

At center x = 0, so
2

0
0 3

NIR
B

2R

µ
=

∴	 0
0

NI
B

2R
µ

=

Y

I

R

d�

�

�
�

O

d�
d� =Rd�
-

-

Figure 21.29: Vector is in  
the YZ plane

X

Y

Z

(x, 0, 0) BX

P

Figure 21.30: Magnetic field at a point  
on the axis of circular loop
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The direction of B at the center of circular current carrying arc or closed circular loop can be found as follows:

If we curl the fingers of the right hand in the direction of the current in the arc/loop, then the stretched thumb 
points in the direction of the field at the center.

If the point P is at a very large distance from the coil,then x2>>R2,	
2

0
3

NIR
B

2x

µ
=

If A is area of one turn of the coil, A=πR2	 0
3

NI A
B

2 x

µ
=

π

Illustration 9: A straight wire carrying a current of 12 A is bent into a semi-circular are of radius 2.0 cm as shown in 
Fig. 21.31.(i) What is the direction and magnitude of magnetic field (B) at the center of the arc?� (JEE ADVANCED)

(ii) Would the answer change if wire is bent in the opposite way?

Sol: For given arrangement of wire, the magnetic field at the 
center due to the straight sections will be zero. The magnetic 
field at center will be due to the semicircular wire. Direction 
of field depends on direction of current and determined by 
right hand thumb rule.

(i) The wire is divided into three sections: (a) the straight 
section to be left (b) the straight section to the right and  
(c) circular arc.

Step 1. Magnetic field due to a current carrying element at a point is given by 0
2

Idl sin
dB

4 r

µ θ
=

π

In the given case, angle between dl


and r for the straight section is 0oor π .So sin 0 =sin π=0

Hence magnetic field at the center (O) of the arc due to straight sections is ZERO

Step 2. Magnetic field at the center due to current carrying semi-circular section is

0 01 2 I IB x
2 4 r 4 r

µ µπ π
= =

π π
= 

7

12

10 x3.142x12
2x10

−

−
=1.89x 10-4 T

The magnetic field is directed into the plane of the paper. 

(ii) Direction of the field will be opposite to the found out in (i).

Illustration 10: A current path shaped as shown in Fig. 21.32 produces a magnetic field at P, the center of the arc. 
If the arc subtends an angle of 30o and the radius of the arc is 0.6m, what are the magnitude and direction of the 
field produced at P if the current is 3.0 A	�  (JEE ADVANCED)

Sol: Magnetic field at the center P of arc CD is 0I
B

4 R
µ φ

=
π

, and due to straight 
wires AC and DE is zero.

The magnetic field at P due to the straight segment AC and DE is zero, 

because d

  is parallel to r

  along these paths, this means that d

 x r

 =0. 

Each length element d

  along path CD is at the same distance from P, 

hence B at P is due to segment CD which is given by

0 0 0I I I
B

4 r 4 r 6 24r
µ µ µπ

= φ = × =
π π

2.0

cm

O

Figure 21.31

A

E
D

P

C

30
o

Figure 21.32
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Y

X

Z

d

B �

I
2

I
1

dF

d�
-

-

Figure 21.33: Force between parallel currents

13. FORCE BETWEEN PARALLEL CURRENTS
Consider two long wires kept parallel to each other such that the 
separation d between them is quite small as compared to their 
lengths. Suppose currents I1 and I2 flow through the wires in the 
same direction (see Fig. 21.33). Consider a small element d of 
the wire carrying current I2.The magnetic field at d due to the 
wire carrying current 

I1 is 0 1I ˆB ( k)
2 d
µ

= −
π


� ...(i)

(B


 is normal to and directed into the plane of the figure)

The magnetic force on this element is 2 2
ˆ ˆdF I d B I d ( j) B( k)= × = × −

 
 

or,	 0 1 2
2

I Iˆ ˆdF I d B( i) d ( i)
2 d
µ

= − = −
π


  	 (directed towards the wire carrying current I1)

Thus the wire carrying current I2 is attracted towards the wire carrying current I1. By Newton’s third law the force 
acting on wire carrying current I1 will also be attractive.Thus the two wires are attracted towards each other.

The force per unit length on each of the wires due to the other wire will be,

		  0 1 2I IdF
d 2 d

µ
=

π

Parallel currents attract each other, and antiparallel currents repel each other.

Note: Memorizing various formula of magnetic field due to ring and wire carrying current would easily help in 
calculating magnetic field due to complicated wire systems. Also, be careful about the direction of field in every 
problem you solve.

Illustration 11: A current of 10A flows through each two parallel long wires. The wires are 5 cm apart. Calculate the 
force acting per unit length of each wire. Use the standard values of constants required.	� (JEE MAIN)

Sol: Field of one wire exerts force on other wire and the force per unit length of wire is 0 1 22I IF
4 d
µ

=
π

.

Force acting per unit length of long conductor due to another long conductor parallel to it and carrying same 
current.

0 1 22I IdF
d 4 d

µ
=

π
;I1=I2=10A, r=5 cm =5x10-2m, 0

4
µ

π
=10-7TmA-1; 

7

2

dF 10 x2x10x10
d 5x10

−

−
=


=4 x 10-4 N m-1

Illustration 12:The wires which connect the battery of an automobile to its starting motor carry a current of 30A 
(for a short time).What is the force per unit length between the wires, if they are 70 cm long and 1.5 cm apart? Is 
the force attractive or repulsive?� (JEE ADVANCED)

Sol: Field of one wire exerts force on other wire and the force per unit length of 

wire is 0 1 22I IF
4 d
µ

=
π

. 

Force depends on direction of current. Parallel currents attract while anti-parallel 
currents repel.

0 1 22I IdF
d 4 d

 µ
=   π  

; I1=I2=300A; r=1.5cm=1.5x 10-2m

F1 F2

M

70 cm

1.5 cm

Figure 21.34
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∴	
7

1
2

10 x 2 x 300 x dF 1.2Nm
d 1.5x1

300
0

−
−

−
= =


	

Since current in both the wires flows in opposite direction, so the force is repulsive.

14. AMPERE’S LAW
This law is also called the ‘Theorem on Circulation of Vector B’.

According to this law the line integral or circulation of magnetic field vector B


 around a closed path is equal to 0µ  
times the algebraic sum of the currents enclosed by the closed path.

	 0 encB d I⋅ = µ∫
 

�

The closed path is also called Amperian loop.

Ienc is the algebraic sum of all the currents passing through 
the area enclosed by the closed path. Current is assumed 
positive if it is along the direction associated with the 
direction of the circumvention of the closed path through 
the right-hand screw rule.If we curl the fingers of the 
right hand around the closed path, in the direction of 
circumvention, the stretched thumb gives the positive 
direction of current. The current in the opposite direction 
is negative.

For example in the Fig. 21.35 shown, the current directed out of the plane of the figure is positive, so we have Ienc 

= I1 - I2; ( )0 1 2B d I I⋅ = µ −∫
 

�

14.1 Limitations of Ampere’s Circuital Law
Ampere’s law is an important tool in calculating the magnetic field due to a current distribution. However this 
usefulness is limited to only a few cases where the magnetic field is having a symmetrical distribution in space. The 
Amperian loop is chosen in such a way that the magnetic field has a constant value along the loopand is directed 
tangentially at all points of the loop.If such a choice of a loop is not possible, then Ampere’s law cannot be used to 
find out the magnetic field. For example this law can’t be used to find the magnetic field at the center of a current 
carrying loop.

Note: Ampere’s circuital law holds good for a closed path of any size and shape around a current carrying conductor.

14.2 Applications of Ampere’s Law

14.2.1 Magnetic field due to current carrying circular wire of infinite length

Let R be the radius of the infinite circular wire carrying current I. The magnetic field lines are concentric circles with 
their centers on the axis of the wire.

(a) Magnetic field intensity at a point outside the wire

We intend to find magnetic field at a distance r> R from the axis of the wire. We choose a circular path of radius r 
and center at the axis of the wire as the Amperian loop. B


will be constant and tangential at all points of this loop.

Using Ampere’s law,

I
2�

I
3

I
1

d�
B�

B.d =Bd cos�� �

Direction of

contour

circumvention

Amperian

Loop

-

-

--

Figure 21.35: Current enclosed by amperian loop
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	 0B.d I= µ∫
 

� 		  or 			   0
0Bd cos0 I= µ∫ �

or 	 0B d B(2 r) I= π = µ∫ �

∴	 0I
B

2 r
µ

=
π

		�   …(i)

Thus, the magnetic field intensity at a point outside the wire varies inversely as the distance of the point from the 
axis of the wire.

r>R

I � r R

r

Amperian

Loop

r<R�

Figure 21.36: Circular cross-section of infinitely long straight wire

That is,		  1B
r

∝

At the surface of the wire, r = R, so 		  0I
B

2 R
µ

=
π

	�  …(ii)

(b) Magnetic field intensity at a point inside the wire

We intend to find magnetic field at a distance r< R from the axis of the wire. We choose a circular path of radius r 

and center at the axis of the wire as the Amperian loop. B


 will be constant and tangential at all points of this loop.
Using Ampere’s law,

	 0 encB.d I= µ∫
 

� 		  or 			   0
0 encBd cos0 I= µ∫ �

or 	 0 encB d B(2 r) I= π = µ∫ 

If the current is uniformly distributed throughout the cross – section of the wire, then we have

	
2

2
enc 2 2

IrII ( r )
R R

= π =
π

∴	
2

0 2

Ir
B(2 r)

R
π = µ

∴	 0
2

Ir
B

2 R

µ
=

π

Thus,	 B r∝

The variation of B with distance r from the axis of the wire is shown in Fig.21.37.

Illustration 13: Figure 21.38 shows the cross section of a long conducting cylinder with inner radius a=2.0 cm and 
outer radius b=4.0 cm.The cylinder carries a current out of the page, and the magnitude of the current density in 

the cross section is given by j = cr2, with c=3.0 x 106 A/m4and r in meters. What is the magnetic field B


at appoint 
that is 3.0 cm from the central axis of the cylindrical?� (JEE ADVANCED)

B

B
r� B� 1

r

r=R

Figure 21.37: Variation of field  
with radial distance r
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Sol: The magnetic field in this case is symmetric. The field lines are concentric 
circles. We choose a circular amperian loop coaxial with the cylinder. First find 

the current enclosed for region a<x<r where r = 3 cm. Then use 0 encB ds i⋅ = µ∫
 

�  

to find B


.

We write the integral as 
r 2

enc a
i JdA cr (2 rdr)= = π∫ ∫

r4r 3
a

a

r2 c r dr 2 c
4

 
= π = π  

  
∫

4 4c(r a )
2

π −
=

The direction of integration indicated in Fig. 21.38 is (arbitrarily) clockwise. 
Applying the right-hand rule for Ampere’s law to that loop, we find that we 
should take ienc as negative because the current is directed out of the page but 
our thumb is directed into the page.

We next evaluate the left side of Ampere’s law exactly as we did in figure. 

Then Ampere’s law, 0 encB ds i ,⋅ = µ∫
 

�

Gives us 	 4 40 c
B(2 r) (r a )

2
µ π

π = − −

Solving for B and substituting known data yield 4 40 c
B (r a )

4 r
µ π

= − −
π

( )( ) ( ) ( )
7

4 4 5
6 4

x 0.030 
4 x10 T m / A 3.0

m
x10 A

–  0
/ m

4(0.030m
.020m   2.0 x 

)
10 T−

−π ⋅  = −  π 
−


=

.

Thus, the magnetic field B


at a point 3.0 cm from the central axis has magnitude B=2.0 x 10-5 T and forms magnetic 
field lines that are directed opposite our direction of integration, hence counterclockwise in figure.

14.2.2 Magnetic Field Inside a Solenoid

A solenoid is an insulated wire wound closely into multiple turnsto form a helix. The length of the solenoid is 
assumed to be much larger than its diameter. At points very close to a turn, the magnetic field lines are almost 
concentric circles.The fields due to adjacent turns at points near the axis add-up while fields at points away from 
the axis cancel each other. If the solenoid is very tightly wound and its length is quite large, then the field inside it 
is uniform and parallel to its axis, while field outside it will be zero.

x x x x x

Figure 21.39: Magnetic field lines inside solenoid

a
b

Figure 21.38
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We can apply Ampere’s law to find the magnetic field inside the solenoid. We choose a rectangular Amperian 
loop abcd partly inside the solenoid and partly outside it as shown in Fig. 21.40, its length lbeing parallel to the 
solenoid’s axis.

B�
a b

cd

� � � � � � � � � � � �

Amperian

Loop

�

Figure 21.40: Rectangular amperian loop

There are four sides of the rectangle. We write B.d∫
 

�  as the sum of four integrals, one for each side:

		
b c d a

a b c d
B.d B.d B.d B.d B.d= + + +∫ ∫ ∫ ∫ ∫
        

    �

The sides bc and da do not contribute to the line integral as the magnetic field is perpendicular to these sides at 
points inside the solenoid and at points outside the solenoid the magnetic field is zero. The side cd is completely 
outside the solenoid and hence the magnetic field is zero at all its points. So the only side that contributes to the 
line integral is ab.

Thus, we get	 0B.d B n I= = µ∫
 

  �

Here I is the current through each turn of the solenoid and n is the number of turns per unit length of the solenoid. 
The net current enclosed by the rectangle is n  I.

∴		  0B n I= µ

(a) 	 Magnetic field inside a solenoid and coil

	 (i) 	 Magnetic field is considered uniform throughout the solenoid, while it is not true for coil

	 (ii) 	 This is because, solenoid is long, while coil is thin.

(iii)	 Thus, magnetic field lines look very symmetric inside a solenoid, and of nearly equal length, 
while in a coil, the path are very different, and by Ampere’s law, their magnitude is different

(b) 	 Magnetic field on the axis at the end of a long solenoid

(i)	 Think of an infinite solenoid, if you could take the midpoint at the axis of this solenoid then 

the magnetic field strength at that point from each side would be 0nI
B

2
µ

= the situation you 

describe is like taking half of this infinite solenoid (as L>>d) and so 0nI
B

2
µ

=

		  ( 0µ =permeability of free space, n= number of coils in the solenoid, l= current)

Anurag Saraf (JEE 2011 AIR 226)

MASTERJEE CONCEPTS
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Illustration 14:A closely wound solenoid 80 cm long has 5 layers of winding of 400 turns each. The diameter of the 
solenoid is 1.8 cm. if the current carries is 8.0 A, find the magnitude of B inside the solenoid near its center.�  
� (JEE MAIN)

Sol: For solenoid of length  the field at a point inside it is 0NI
B

µ
=


 where N is the number of turns in solenoid.

Magnetic field induction at a point inside the solenoid is

7
0

2

NI 4 10 x(400x5)x8B
(80x10 )

−

−

µ π
= =


	  = 8 π x10-3T ≈ 2.5 x10-2 T

Illustration 15: A solenoid is 2 m long and 3 cm in diameter. Ithas 5 layers of winding of 1000 turns each and 
carries a current of 5A. What is the magnetic field at its center?� (JEE MAIN)

Sol: For solenoid of length  the field at a point inside it is 0NI
B

µ
=


 where N is the number of turns in solenoid.

Magnetic field at the center of a solenoid is given by,

0NI
B

l
µ

= =(4 π x10-7) 5x1000
2

 
 
 

x5= 1.57 x 10-2 T

14.2.3 Magnetic field Inside a Toroid

Toroid is a circular solenoid. An insulated conducting wire is tightly wound on a ring (or torus) made ofnon-
conducting material to form a toroid. The magnetic field inside a toroid can be obtained by using Ampere’s law. 
We choose a circularAmperian loop of radius rinside the toroid concentric with it.

	 0 encB d Bd B d B(2 r) I⋅ = = = π = µ∫ ∫ ∫
 

  � � �

�� �
�

�

�
����

�
�
�

�

r

I

B�

B�

Figure 21.41: Magnetic field inside Toroid

If each turn of the toroid carries current I and the total number of turns in the toroid is N, then current enclosed by 
the Amperian loop is NI.

So	 02 r B N Iπ = µ  or, 0NI
B

2 r
µ

=
π
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Illustration 16: A toroid of 4000 turns has outer radius of 26 cm and inner radius of 25 cm. If the current in the wire 
is 10A, calculate the magnetic field of the toroid also in the inner air space of the toroid.� (JEE ADVANCED)

Sol: For toroid the field at a pointinside it at radial distance r from its 

center is 0NI
B

2 r
µ

=
π

 where N is the number of turns in toroid.

Radius of toroid r = 225 26 25.5cm 25.510 m
2

−+
= =

Length of toroid l=2 π r=2 π x (25.5 x 10-2= 51 x 10-2 π  m

∴  Number of turns /unit length, n=
2

4000
51x10− π

Field in a toroid is given by 

B= 0nIµ = 2
2

40004 x10 x10
51x10

−
−

 
π   π 

 ;= 3.14 x 102T

Field in the air space bounded by the toroid is zero because the field exists inside 
the envelope of the winding of the toroid.

15. MOVING COIL GALVANOMETER
Moving Coil Galvanometer is a device used to detect/measure small electric current flowing in an electric circuit.

Principle: When a current carrying loop or coil is placed in the uniform magnetic field, it experiences a torque and 
thus starts rotating.

Construction: A moving coil galvanometer is shown in Fig. 21.43. It consists of a coil made of insulated copper 
wire wound on a soft-iron cylinder. The coil is suspended by a spiral spring between two cylindrical shaped poles 
of a permanent magnet.

The spring exerts a very small restoring torque on the coil.

Theory

Let	 B 	= Magnetic field

	 I 	= Current flowing through the coil

	  	= Length of coil

	 b 	= Breadth of the coil

	 (xb) = A= Area of the coil

	 N	= Number of turns in the coil

When current flows through the coil, it experiences a torque, which is given by

	 τ=NIAB sinθ

where, θ is the angle between the normal to the plane of the coil and the direction of the magnetic field. 
Initially, θ = 90o, so τ=NIAB� …(i)

This torque is called deflecting torque.As the coil gets deflected, the spring is twisted and a restoring torque is 
developed in it which is proportional to the angle of deflection φ

	 τres=kφ	�  …(ii)

Soft iron core

N S

Coil

Figure 21.43: Moving coil 
galvanometer

25

cm

2
6

cm

Figure 21.42
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Here k is a constant for a particular spring.

For equilibrium of the coil,

Deflecting torque= Restoring torque

i.e.		  NIAB=kφ	�  …(iii)

or 		  kI
NAB
φ

= 	�  …(iv)

or		  I = Gφ			�    …(v)

where kG
NAB

=  is Galvanometer constant

∴		  I ∝ φ	� …(vi)

Thus, the current flowing through the coil is directly proportional to the deflection of the coil. Hence we can 
determine the current in the coil by measuring its deflection.

Use of a radial magnetic field in the moving coil galvanometer

A radial magnetic field, produced by cylindrical poles of permanent magnet is always parallel to the plane of the 
coil of the galvanometer. Thus the angle between the normal to the coil and the magnetic field is always 90o. Thus 
torque on the coil is τ = NIAB = kφ or I ∝φ. Thus, when radial magnetic field is used, the current in the coil is always 
proportional to the deflection. Hence, a linear scale can be used to determine the currentin the coil.

Use of Galvanometer 

(a)	 It is used to detect electric current in a circuit e.g., Wheatstone Bridge.

(b)	 It is convertedinto an ammeter by putting a small resistance parallel toit.

(c)	 It is converted into a voltmeter by putting a high resistance in series with it.

(d)	 It is used as an ohmmeter.

Sensitivity of a Galvanometer

A galvanometer is said to be sensitive if a small current flowing through its coil produces a large deflection in it.

(a) 	 Current Sensitivity

	� The current sensitivity of a galvanometer is the deflection produced in the galvanometer per unit current 
flowing through it.

	 i.e. Current sensitivity = NAB
I k
φ
=

	 Current sensitivity of galvanometer can be increased either by

(i)	 Increasing the magnetic field B by using a strong permanent horse-shoe shaped magnet.

(ii)	 Increasing the number of turns N.

(iii)	 Increasing the area of the coil A. (but this will make the galvanometer bulky and ultimately less sensitive)

(iv)	 Using a spring having small value of restoring torque constant k.

(b) 	 Voltage Sensitivity

	 Voltagesensitivity is the deflection produced in the galvanometer per unit voltage applied to it.

	 Voltage sensitivity = 
V
φ =

IR
φ i.e., voltage sensitivity = NBA

kR
(R= resistance of the coil)
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	 Voltage sensitivity can be increased by

(i)	 Increasing N 

(ii)	 Increasing B 

(iii)	 Increasing A 

(iv)	 Decreasing k and 

(v)	 Decreasing R.

Advantage of a moving coil galvanometer

(a)	 A minutely small current in the electric circuit can be detected using an extremely sensitively galvanometer.

(b)	 A linear scale can be used to read the current, since deflection of the coil is directly proportional to the current.

(c)	 The external magnetic fields (e.g. horizontal component of earth’s magnetic field) cannot effect the deflection 
of the coil of the galvanometer,because the magnetic field of the permanent magnet is very strong. Thus the 
galvanometer can be placed in any location.

(d)	 A dead beat type galvanometer is used.(The coil of a dead beat type galvanometer comes to rest quickly after 
deflecting to its equilibrium position, i.e it does not oscillate)

16. CYCLOTRON
Cyclotron is a device used to accelerate positively 
charged particles (like protons,α particles, deuteron, 
ions etc.) to acquire enough energy to carry out 
nuclear disintegrations.

Principle: It works on the following principle: A 
positively charged particle is made to accelerate 
through an electric field and using a strong magnetic 
field it is circled back to the region of the electric 
field, to accelerate it again and again to acquire 
sufficiently large amount of energy.

Construction and Working: It consists of two 
hollow D-shaped metallic chambers D1 and D2 called 
dees. These dees are separated by a small gap where 
a source of positively charged particles is placed. 
Dees are connected to high frequency oscillator, 
which provides high frequency electric field across 
the gap of the dees which accelerates the particles.
The magnetic field inside the dees is perpendicular to the plane of motion of particles and drives theminto a 
circular path. Suppose the particles start from rest and are accelerated towards chamber D2. After completing a 
semicircle, when the particles reach the gap of the dees again, thereversal of the polarity of electric field ensures 
that the particlesareagain accelerated towards the other chamber D1 by the electric field. Radius of the circular path 
increases with increase in speed, thusthe particles follow a spiral path (see Fig. 21.44)

Theory: The magnetic force on the positively charged particle provides the centripetal force to move in a circle of 
radius r.

∴	
2mv mvqvB or r

r qB
= = 	�  … (i)

High

frequency

oscillator

Source of

positively

charged

particle

Deflecting

plate

S

N

Target

W

D1

D2

B
�

�

Figure 21.44: Cyclotron
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Time taken by the particle to complete the semi-circle inside the dee,

	 distance r mvt or t
speed v v qB

π π
= = = × 	 or	 mt

qB
π

= � … (ii)

This shows that time taken by the positively charged particle to complete any semi-circle (irrespective of its radius)
is same

(a)	 Time Period: Let T be the period of the high frequency electric field, then the polarities of dees will change 

after time T
2

.

	 The particle will be accelerated if time taken by it to describe the semi-circle is equal to T
2

.

	 i.e. 		  T mt
2 qB

π
= = or 	 2 mT

qB
π

= 	�  … (iii)

(b)	 Cyclotron frequency: c
1 qBf
T 2 m

= =
π

	�  … (iv)

	 ∴  Cyclotron angular frequency	 c
qB2 f
m

ω = π = 	�  … (v)

(c)	 Energy gained: Energy gained by the positively charged particle in the cyclotron is given by 21E mv
2

=

	 From eqn.(i), we have v= qBr
m

, then E= 1
2

m x 
2

qBr
m

 
 
 

or	
2 2 2q B rE
2m

= � … (vi)

Maximum energy gained by the positively charged particle will depend on the maximum value of radius of 
its path, i.e the radius of the dees.

		
2 2

2
max max

q BE r
2m

 
=   
 

� … (vii)

(d)	 Limitations of Cyclotron: Cyclotron cannot accelerate uncharged particles like neutron.

(e)	 Cyclotron cannot accelerate electrons because they have very small mass. Electrons start moving at a very 
high speed when they gain small energy in the cyclotron. The frequency of oscillating electric field required 
to keep them in phase with the electric field is very high, which is not feasible.

(f)	 The positively charged particle having large mass (i.e. ions) cannotbe accelerated after a certain speed in the 
cyclotron. When the speed of ion becomes comparable to the speed of light,the mass of ion increases as per 
the relation

	 0

2

2

m
m ,

v1
c

=

−

where m= mass of ion at velocity v, m0=mass of ion at rest,cis speed of light (3 x 108 ms-1)

Time taken by the ion to describe semi-circular path increases as mass increases.So as the mass increases, the 
ion does not reach the gap between the two dees exactly at the instant the polarity is reversed and,it is not 
be accelerated further.

Uses of a Cyclotron

(a)	 It is used to produce radioactive material for medical purposes.

(b)	 It is used to synthesize fresh substances.

(c)	 It is used to improve the quality of solids by adding ions.

(d)	 It is used to bombard the atomic nuclei with highly accelerated particles to study the nuclear reactions.
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Note: Sections after this are not in the syllabus of JEE ADVANCED but they are important for understanding the 
concepts completely. 

Illustration 17:A cyclotron’s oscillator frequency is 10 MHz. What should be the operating magnetic field for 
accelerating protons? If the radius of its dees is 60 cm. What is the kinetic energy (in MeV) of the proton beam 
produced by the acceleration?		�  (JEE MAIN)

( )19 27 13
0e  1.60 x 10 C,m 1.67 x 10 ,  1MeV  1.6 x 10k Jg− − −= = =

Sol: The frequency of cyclotron is Bq
f

2 m
=

π
 where q is the charge and m is the mass of the charged particle to be 

accelerated inside the cyclotron. The kinetic energy of the particle is 
2mv

in eV
2e

 
  
 

.

Cyclotron’s oscillator frequency should be same as the proton’s revolution frequency (in circular path)

∴ 	  ƒ= Bq
2 mπ

or

B= 2 mf
q
π

Substituting the values in SI units, we have 
27 6

19

(2)(22 / 7)(1.67x10 )(10x10 )
B

1.6x10

−

−
= =0.67 T

The emerging beam of proton moves with the velocity

v = ω r = 2πƒ r = 7 7 12 10 0.60 3.77 10 ms−× π× × = ×

Thus the kinetic energy (in MeV) is 
( )227 72

19

1.67 10 3.77 10mv
eV 7.42 MeV

2e 2 1.6 10

−

−

× × × 
= =   × × 

17. MAGNETIC POLES AND BAR MAGNET
Two isolated charges of opposite signs are placed near each other, to form an electric dipole characterized by 
an electric dipole moment p

 .On the other hand in magnetism an isolated ‘magnetic charge’ does not exist. The 
simplest magnetic structure is the magnetic dipole, characterized by a magnetic dipole moment M


.A current loop, 

a bar magnet and a solenoid of finite length are examples of magnetic dipoles.

When a magnetic dipole is placed in an external magnetic fieldB


, a torque act on it, given by	 MxBτ =
  

The magnetic field B


 due to a magnetic dipole at a point along its magnetic axis at (large) distance r from its center, 

is 0
3

2MB
4 r

µ
=

π




A bar magnet has two poles (North and South) separated by a small distance. 
However, we cannot separate these poles apart. If a magnet is broken, the 
fragments prove to be dipoles and not isolated poles. If we break up a magnet 
into the electrons and nuclei that make up its atom, it will be found that even 
these elementary particle a re magnetic dipoles.

The poles of the bar magnet are modeled as follows:

(a)	 There are two types of magnetic charges; positive magnetic charge or North Pole and negative magnetic 
charge or South Pole. Every Pole has a strength m. The unit of Pole strength is A-m.

N S

N S N S N S

Figure 21.45: Poles of bar magnet
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(b)	 A magnetic charge placed in a magnetic field experiences a force, F mB=
 

. The force on positive magnetic 
charge is along the field and force on a negative magnetic charge is opposite to the field.

(c)	 A magnetic dipole is formed when a negative magnetic charge –m and a positive magnetic charge +m are 
placed at a small separation d. The magnetic dipole moment is, M=md. The direction of M


 is from –m to +m.

Geometrical Length and magnetic Length

In bar magnet, the poles are located at points which are slightly inside the two ends. The distance between the 
locations of the poles is called the magnetic length of the magnet. The distance between the ends is called the 
geometrical length of the magnet.

Magnetic length

N S

Geometric length

Figure 21.46: Geometric and Magnetic length of a bar magnet

Illustration18: Calculate the magnetic induction at a point 1
o
A  away from a proton, measured along its axis of 

spin. The magnetic moment of the proton is 1.4 x 10-26 A-m2.	�  (JEE MAIN)

Sol: On the axis of a magnetic dipole, magnetic induction is given by. 0
3

2MB
4 r

µ
= ⋅

π

Substituting the values, we get 
( )( )( )

( )

7 26

310

10 2 1.4x10
B

10

− −

−
= = 2.8 x 10-3T= 2.8 mT

18. MAGNETIC SUSCEPTIBILITY
For paramagnetic and diamagnetic materialsthe intensity of magnetization is directly proportional to the magnetic 
field intensity.

		  mI H= χ
 

The proportionality constant mχ  is called the magnetic susceptibility of the material. I and H have the dimensions 
of A-m-1 and the susceptibility mχ  is a dimensionless constant. For vacuum mχ =0. For paramagnetic materials  

mχ > 0, and for diamagnetic materials mχ < 0 are diamagnetic.

19. CURIES’S LAW
When the temperature increase, due to thermal agitation the magnetization I decreases for a given magnetic 
intensity H,which means mχ decreases as T increases. According to Curie’s law, the susceptibility of a paramagnetic 

substance is inversely proportional to the absolute temperature: mχ = c
T

 where c is a constant called the curie 
constant.
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The magnetization of ferromagnetic material also decreases with increase in temperature, and on reaching a certain 
temperature,the ferromagnetic properties of the material disappear. This temperature is called Curie point (Tc). At 
temperatures above Tcferromagnetic turns into a paramagnetic and its susceptibility varies with temperature as,

	 m
c

C'
T T

χ =
−

where C’ is a constant.

20. PROPERTIES OF PARA-, DIA- AND FERRO-MAGNETISM

(a)	 Paramagnetic Substances: Example of such substances are platinum, aluminium, chromium, manganese, 
CuSO4 solution, etc. They have the following properties:

(i)	 The substances, when placed in magnetic field, acquire 
a feeble magnetisation in the same sense as the applied 
field. Thus, the magnetic inductance inside the substance is 
slightly greater than outside to it.

(ii)	 In a uniform magnetic field, these substances rotate until 
their longest axes are parallel to the field.

(iii)	 These substances are attracted towards regions of stronger 
magnetic field when placed in a non-uniform magnetic field.

(iv)	 Figure 21.47 shows a strong electromagnet in which one of the pole pieces is sharply pointed, while the 
other is flat. Magnetic field is much stronger near the pointed pole than near flat pole. If a small piece 
of paramagnetic material is suspended in this region, a force can be observed in the direction of arrow.

(v)	 If a paramagnetic liquid is filled in a narrow U-tube and one limb is placed in between the pole pieces of 
an electromagnet such that the level of the liquid is in line with the field, then the liquid will rise in the 
limb as the field is switched on.

(vi)	 For paramagnetic substances, the relative permeability rµ is slightly greater than one.

(vii)	At a given temperature the magnetic susceptibility mχ  does not change with the magnetizing field. 
However it varies inversely as the absolute temperature. As temperature increases mχ  decreases. At 
some higher temperature mχ becomes negative and the substance become diamagnetic.

(b)	 Diamagnetic Substances: Examples of such substances are bismuth, antimony, gold, quartz, water, alcohol, 
etc. They have the following properties:

(i)	 These substances, when placed in a magnetic field, acquire feeble 
magnetization in a direction opposite to that of the applied field. 
Thus, the lines of induction inside the substance are smaller than 
those outside to it.

(ii)	 In a uniform field, these substances rotate until their longest axes 
are normal to the field.

(iii)	 In a non-uniform field, these substances move from stronger to 
weaker parts of the field.

(iv)	 If a diamagnetic liquid is filled in a narrow U-tube, and one limb is 
placed in between the pole of an electromagnet, the level depresses 
when the field is switched on.

(v)	 The relative permeability rµ is slightly less than 1.

(vi)	 The susceptibility mχ  of such substances is always negative. It is 
constant and does not vary with field or the temperature.

N S

Figure 21.47: Paramagnetic material  
in strong magnetic field

N S

Figure 21.48: Liquid column of 
paramagnetic substance in strong 

magnetic field
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(c)	 Ferromagnetic Substances: Examples of such substances are iron, nickel, steel, cobalt and their alloys. These 
substances resemble to a higher degree the paramagnetic substances with regards to their behaviour. They 
have the following additional properties:

(i)	 These substances are strongly magnetized by even a weak magnetic field.

(ii)	 The relative permeability is very large and is of the 
order of hundreds and thousands.

(iii)	 The susceptibility is positive and very large.

(iv)	 Susceptibility remains constant for very small 
values of H


, increases for larger values of H


 and 

then decreases for very large values of H


.

(v)	 Susceptibility decreases steadily with the rise of the 
temperature. Above a certain temperature, known 
as Curie temperature, the ferromagnetic substances 
become paramagnetic. For iron, it is 1000oC, 770oC 
for steel, 360oC for nickel, and 1150oC for cobalt.

21. HYSTERESIS
Hysteresis is the dependence of the magnetic flux density B in a 
ferromagnetic material not only on its current magnetizing field H, 
but also on its history of magnetization or residual magnetization.

When a ferromagnetic material is magnetized in one direction, and 
then the applied magnetizing field is removed, then its magnetization 
will not be reduced to zero. It must be driven back to zero by a field 
in the opposite direction. If an alternating magnetic field intensity is 
applied to the material, its magnetization will trace out a loop called 
a hysteresis loop.

The phenomena in which magnetic flux density (B) lags behind the 
magnetizing field (H) in a ferromagnetic material during cycles of 
magnetization is called as hysteresis.

PROBLEM-SOLVING TACTICS

(a)	 General advice for this section involves learning of formulae and avoiding silly mistakes. Also it would be 
better to go by the usual algorithm of noting down known and unknown quantities and linking them.

(b)	 Much of manipulation and mathematical complexity is involved here which can’t be avoided. 

N S

Figure 21.49: Diamagnetic substance  
in magnetic field
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Figure 21.50: Hysteresis loop of I vs H
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FORMULAE SHEET

(a)	 Magnetic Force on a charge moving with velocity v
  in magnetic field B


is mF qv B= ×
  . Magnitude is 

mF qvB sin= θ .

(b)	 Charged particle moving in uniform magnetic field

(i) Angular velocity	
q B

2 f
m

ω = π =

(ii) Time period		 2 mT
q B
π

=

(iii) Radius mv m 2qV 1 2mVr
qB qB m B q

= = =

(c)	 Helical Paths: Radius 
mv

r
qB

⊥=  Pitch: 
2 mp v T v
| q | B⊥ ⊥
π

= =

(d)	 The cyclotron oscq B 2 mf= π

(e)	 Crossed Fields: Lorentz Force F q(E v B)= + ×
  

(f)	 Trajectory of a charged particle in electric field 
2

2

q Ex
y

2mv
=

(g)	 Magnetic force on current element dF Id B= ×
 



(h)	 Magnetic force on a conductor in uniform fieldF IL B= ×
  

(i)	 Magnetic dipole moment of a current coil having N turns m ˆp NI An=


( j)	 Torque on a current coil mp Bτ = ×


(k)	 Potential energy of current coil mU p .B= −


(l)	 Biot-Savart Law 0
3

Id r
dB

4 r

µ ×
=

π

   , 0
2

Id sin
dB

4 r

µ θ
=

π


(m)	 Magnetic field at center of an arc subtending angle θ, 0 IB
4 R

 µ θ
=   π 

(n)	 Magnetic field at a point on the axis of a N turn coil	
( )

2
0

3 22 2

NIR
B

2 z R

µ
=

+

(o)	 Magnetic field at center of N turn coil 0 NI
B

2 R
µ

=

(p)	 Concentric coils with equal turns

(i) Similar currents flowing in the same direction

Net magnetic field, 		  0 0

1 2

NI NIB
2 R 2 R
µ µ

= + 0

1 2

1 1NI
2 R R

 µ
= +  

 

R1

R2

i i

Figure 21.51 
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(ii) Similar currents flowing in the opposite direction

Net magnetic field,		   0 0

1 2

NI NIB
2 R 2 R
µ µ

= −

				               
0

1 2

1 1NI
2 R R

 µ
= −  

 

 (q)	 Mutually perpendicular coils

Net Magnetic field, 		  0 2 IB 2
4 R

 µ π
=   π 

(r)	 Dispatched coils

Net Magnetic Field, 		
2

0
2 3 3/2

IR
B 2

2 (R x )

µ
=

+

				  
2

0
2 2 3/2

IR

2(x R )

µ
=

+

(s)	 Infinite straight wire 0I
B

2 R
µ

=
π

(t)	 Semi-infinite straight wire 0I
B

4 R

µ
=

π

(u)	 Force per unit length between two parallel currents separated by 

distance d, 0 1 2I IdF
d 2 d

µ
=

π

(v)	 Ampere’s law 0 encB.d I= µ∫
 

�

(w)	 Field inside infinite straight wire of circular cross-section 0
2

I
B r

2 R

µ
=

π

(x)	 Magnetic Field inside long solenoid having n turns per unit length 0B nI= µ

(y)	 Magnetic Field inside toroid having N turns 0 NI
B

2 r
µ

=
π

(z)	 Magnetic field due to bar magnet at end-on position 0
3

2M
B

4 d

µ
=

π

(aa)	 Magnetic field due to bar magnet at broadside-on position 
0

3

MB
4 d

µ
=

π

(ab)	Moving Coil Galvanometer kI
NAB
φ

=

(ac)	 Magnetic field Intensity H, in vacuum is, 
0

BH =
µ

(ad)	Magnetic field Intensity H, in a medium is,
 r 0

BH =
µ µ
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