6. COMPLEX NUMBER

1. INTRODUCTION

The number system can be briefly summarized as $N \subset W \subset I \subset Q \subset R \subset C$, where N, W, I, Q, R and C are the standard notations for the various subsets of the numbers belong to it.

N - Natural numbers = $\{1, 2, 3 ..., n\}$

- W Whole numbers = {0, 1, 2, 3 n}
- I Integers = {....2, -1, 0, 1, 2}
- Q Rational numbers = $\left\{\frac{1}{2}, \frac{3}{5}, \dots\right\}$
- IR Irrational numbers = $\left\{\sqrt{2}, \sqrt{3}, \pi\right\}$

C – Complex numbers

A complex number is generally represented by the letter "z". Every complex number z, can be written as, z = x + iy where x, $y \in R$ and $i = \sqrt{-1}$.

x is called the real part of complex number, and

y is the imaginary part of complex number.

Note that the sign + does not indicate addition as normally understood, nor does the symbol "i" denote a number. These are parts of the scheme used to express numbers of a new class and they signify the pair of real numbers (x,y) to form a single complex number.

Figure 6.1: Representation of a complex number on a plane

Swiss-born mathematician Jean Robert Argand, after a systematic study on complex numbers, represented every complex number as a set of ordered pair (x, y) on a plane called complex plane.

All complex numbers lying on the real axis were called purely real and those lying on imaginary axis as purely imaginary.

Hence, the complex number 0+0i is purely real as well as purely imaginary but it is not imaginary.

Note

Figure 6.2: Classification of a complex number

(a) The symbol i combines itself with real number as per the rule of algebra together with

$$\begin{split} &i^2=-1\,;\;i^3=-i\,;\;i^4=1\,;\;i^{2014}=-1\,;\;i^{2015}=-i \text{ and so on.}\\ &\text{In general, }i^{4n}=1\,,\;i^{4n+1}=i\,,\;i^{4n+2}=-1\,,\;i^{4n+3}=-i\,,\;n\in I \text{ and }i^{4n}+i^{4n+1}+i^{4n+2}+i^{4n+3}=0\\ &\text{Hence, }1+i^1+i^2+\ldots\ldots+i^{2014}+i^{2015}=0 \end{split}$$

(b) The imaginary part of every real number can be treated as zero. Hence, there is one-one mapping between the set of complex numbers and the set of points on the complex plane.

MASTERJEE CONCEPTS

Complex number as an ordered pair: A complex number may also be defined as an ordered pair of real numbers and may be denoted by the symbol (a, b). For a complex number to be uniquely specified, we need two real numbers in a particular order.

Vaibhav Gupta (JEE 2009, AIR 54)

2. ALGEBRA OF COMPLEX NUMBERS

- (a) Addition: (a+ib) + (c+id) = (a+c) + i(b+d)
- **(b) Subtraction:** (a+ib) (c+id) = (a-c) + i(b-d)
- (c) Multiplication: (a+ib)(c+id) = (ac-bd) + i(ad+bc)
- (d) Reciprocal: If at least one of a, b is non-zero, then the reciprocal of a + ib is given by

$$\frac{1}{a+ib} = \frac{a-ib}{(a+ib)(a-ib)} = \frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2}$$

(e) Quotient: If at least one of c, d is non-zero, then quotient of a + ib and c + id is given by

$$\frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{(c+id)(c-id)} = \frac{(ac+bd)+i(bc-ad)}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}$$

- (f) Inequality in complex numbers is not discussed/defined. If a + ib > c + id is meaningful only if b = d = 0. However, equalities in complex numbers are meaningful. Two complex numbers z_1 and z_2 are said to be equal if $\text{Re}(z_1) = \text{Re}(z_2)$ and $\text{Im}(z_1) = \text{Im}(z_2)$. (Geometrically, the position of complex number z_1 on complex plane)
- (g) In real number system if $p^2 + q^2 = 0$ implies, p = 0 = q. But if z_1 and z_2 are complex numbers then $z_1^2 + z_2^2 = 0$ does not imply $z_1 = z_2 = 0$. For e.g. $z_1 = i$ and $z_2 = 1$.

However if the product of two complex numbers is zero then at least one of them must be zero, same as in case of real numbers.

(h) In case x is real, then $|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$ but in case of complex number z, |z| means the distance of the

MASTERJEE CONCEPTS

- The additive inverse of a complex number z = a + ib is -z (i.e. -a ib).
- For every non-zero complex number z, the multiplicative inverse of z is $\frac{1}{2}$.
- $|z| \ge |\text{Re}(z)| \ge \text{Re}(z)$ and $|z| \ge |\text{Im}(z)| \ge \text{Im}(z)$.
- $\frac{z}{|\overline{z}|}$ is always a uni-modular complex number if $z \neq 0$.

```
Vaibhav Krishnan (JEE 2009, AIR 22)
```

Illustration 1: Find the square root of 5 + 12i.

Sol: z = 5 + 12i

Let the square root of the given complex number be a + ib. Use algebra to simplify and get the value of a and b. Let its square root = a + ib $\Rightarrow 5 + 12i = a^2 - b^2 + 2abi$

$$\Rightarrow a^2 - b^2 = 5 \qquad \dots (i)$$

$$\Rightarrow 2ab = 12 \qquad \dots (ii)$$

$$\Rightarrow (a^{2} + b^{2})^{2} = (a^{2} - b^{2})^{2} + 4a^{2}b^{2} \qquad \Rightarrow (a^{2} + b^{2})^{2} = 25 + 144 = 169 \Rightarrow a^{2} + b^{2} = 13 \qquad \dots \text{ (iii)}$$

(i) + (iii)
$$\Rightarrow 2a^2 = 18 \Rightarrow a^2 = 9 \Rightarrow a = \pm 3$$

If $a = 3 \Rightarrow b = 2$ If $a = -3 \Rightarrow b = -2$

:. Square root = 3 + 2i, -3 - 2i :. Combined form $\pm(3 + 2i)$

Illustration 2: If
$$z = (x, y) \in C$$
. Find z satisfying $z^2 \times (1 + i) = (-7 + 17i)$. (JEE MAIN)

Sol: Algebra of Complex Numbers.

$$\begin{aligned} (x + iy)^{2} & (1 + i) = -7 + 17i \\ \Rightarrow & (x^{2} - y^{2} + 2xyi) (1 + i) = -7 + 17i ; \\ \Rightarrow & (x^{2} - y^{2} - 2xy) + i (x^{2} - y^{2} + 2xy) = -7 + 17i \\ \Rightarrow & (x^{2} - y^{2} - 2xy) + i (x^{2} - y^{2} + 2xy) = -7 + 17i \\ \Rightarrow & x = 3, y = 2 \\ \Rightarrow & z = -3 + i(-2) = -3 - 2i \end{aligned}$$

Illustration 3: If $x^2 + 2(1+2i)x - (11+2i) = 0$. Solve the equation. (JEE ADVANCED)

Sol: Use the quadratic formula to find the value of x.

$$\therefore x = \frac{-2 (1 + 2i) \pm \sqrt{4 - 16 + 16i + 44 + 8i}}{2}$$
$$\Rightarrow 2x = (-2)(1 + 2i) \pm \sqrt{32 + 24i}$$
$$\Rightarrow x = (-1)(1 + 2i) \pm \sqrt{8 + 6i} = -1 - 2i \pm (3 + i); \qquad x = 2 - i, -4 - 3i$$

(JEE MAIN)

Illustration 4: If $f(x) = x^4 - 4x^3 + 4x^2 + 8x + 44$. Find f(3 + 2i).

Sol: Let x = 3+2i, and square it to form a quadratic equation. Then try to represent f(x) in terms of this quadratic. x = 3+2i

$$\Rightarrow (x-3)^{2} = -4 \qquad \Rightarrow x^{2} - 6x + 13 = 0$$

$$x^{4} - 4x^{3} + 4x^{2} + 8x + 44 = x^{2} (x^{2} - 6x + 13) + 2x^{3} - 9x^{2} + 8x + 44$$

$$\Rightarrow f(x) = x^{2} (x^{2} - 6x + 13) + 2(x^{3} - 6x^{2} + 13x) + 3(x^{2} - 6x + 13) + 5 \qquad \Rightarrow f(x) = 5$$

3. IMPORTANT TERMS ASSOCIATED WITH COMPLEX NUMBER

Three important terms associated with complex number are conjugate, modulus and argument.

(a) **Conjugate:** If z = x + iy then its complex conjugate is obtained by changing the sign of its imaginary part and denoted by \overline{z} i.e. $\overline{z} = x - iy$ (see Fig 6.3).

The conjugate satisfies following basic properties

(i) $z + \overline{z} = 2 \operatorname{Re}(z)$

(ii)
$$z - \overline{z} = 2i \text{ Im } (z)$$

(iii)
$$z\overline{z} = x^2 + y^2$$

- (iv) If z lies in 1st quadrant then \overline{Z} lies in 4th quadrant and $-\overline{Z}$ in the 2nd quadrant.
- (v) If x + iy = f (a + ib) then x iy = f (a ib)
 For e.g. If (2 + 3i)³ = x + i y then (2 3i)³ = x iy

and, $sin(\alpha + i\beta) = x + iy \Rightarrow sin(\alpha - i\beta) = x - iy$

- (vi) $z + \overline{z} = 0 \implies z$ is purely imaginary
- (vii) $z \overline{z} = 0 \implies z$ is purely real

Figure 6.3: Conjugate of a complex number

Imaginary axis

Figure 6.4: Modulus of a

complex number

Real axis

(b) Modulus: If P denotes a complex number z = x + iy then, $OP = |z| = \sqrt{x^2 + y^2}$. Geometrically, it is the distance of a complex number from the origin.

Hence, note that $|z| \ge 0$, |i| = 1 i.e. $|\sqrt{-1}| = 1$.

All complex number satisfying |z| = r lie on the circle having centre at origin and radius equal to 'r'.

(c) **Argument:** If OP makes an angle θ (see Fig 6.4) with real axis in anticlockwise sense, then θ is called the argument of z. General values of argument of z are given by $2n\pi + \theta$, $n \in I$. Hence any two successive arguments differ by 2π .

Note: A complex number is completely defined by specifying both modulus and argument. However for the complex number 0 + 0i the argument is not defined and this is the only complex number which is completely defined by its modulus only.

- (i) Amplitude (Principal value of argument): The unique value of θ such that $-\pi < \theta \le \pi$ is called principal value of argument. Unless otherwise stated, amp z refers to the principal value of argument.
- (ii) Least positive argument: The value of θ such that $0 < \theta \le 2\pi$ is called the least positive argument.

If
$$\phi = \tan^{-1} \left| \frac{y}{x} \right|$$
.

(JEE ADVANCED)

MASTERJEE CONCEPTS

Illustration 5: For what real values of x and y, are $-3 + ix^2y$ and $x^2 + y + 4i$ complex conjugate to each other? (JEE MAIN)

Sol: As $-3 + ix^2y$ and $x^2 + y + 4i$ are complex conjugate of each other. Therefore $-3 + ix^2y = \overline{x^2 + y + 4i}$. $-3 + ix^2y = x^2 + y - 4i$ Equating real and imaginary parts of the above question, we get $-3 = x^2 + y \Rightarrow y = -3 - x^2$... (i) and $x^2y = -4$... (ii) Putting the value of $y = -3 - x^2$ from (i) in (ii), we get $x^2(-3 - x^2) = -4 \qquad \Rightarrow x^4 + 3x^2 - 4 = 0 \Rightarrow x^2 = \frac{-3 \pm \sqrt{9 + 16}}{2} = \frac{-3 \pm 5}{2} = \frac{2}{2}, \frac{-8}{2} = 1, -4$ $\therefore x^2 = 1 \Rightarrow x = \pm 1$ Putting value of $x = \pm 1$ in (i), we get $y = -3 - (1)^2 = -3 - 1 = -4$ Hence, $x = \pm 1$ and y = -4.

Illustration 6: Find the modulus of $\frac{1+i}{1-i} - \frac{1-i}{1+i}$. (JEE MAIN)

Sol: As $|z| = \sqrt{x^2 + y^2}$, using algebra of complex number we will get the result.

Here, we have
$$\frac{1+i}{1-i} - \frac{1-i}{1+i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} - \frac{(1-i)(1-i)}{(1+i)(1-i)}$$
$$= \frac{1+i^2+2i}{1+1} - \frac{1+i^2-2i}{1+1} = \frac{1-1+2i}{2} - \frac{1-1-2i}{2} = \frac{2i}{2} - \frac{(-2i)}{2} = i + i = 2i, \quad \therefore \Rightarrow \left| \frac{1+i}{1-i} - \frac{1-i}{1+i} \right| = |2i| = 2.$$

Illustration 7: Find the locus of z if |z - 3| = 3|z + 3|.

Sol: Simply substituting
$$z = x + iy$$
 and by using formula $|z| = \sqrt{x^2 + y^2}$ we will get the result.
Let $z = x + iy$
 $|x + iy - 3| = 3 |x + iy + 3|$ $|(x - 3) + iy| = 3 |(x + 3) + iy|$
 $\sqrt{(x - 3)^2 + y^2} = 3\sqrt{(x + 3)^2 + y^2}$; $(x - 3)^2 + y^2 = 9(x + 3)^2 + 9y^2$.

Illustration 8: If α and β are different complex numbers with $|\beta| = 1$, then find $\left|\frac{\beta - \alpha}{1 - \overline{\alpha}\beta}\right|$. (JEE ADVANCED)

(JEE MAIN)

Sol: By using modulus and conjugate property, we can find out the value of $\left|\frac{\beta - \alpha}{1 - \overline{\alpha}\beta}\right|$.

We have,
$$|\beta| = 1 \Rightarrow |\beta|^2 = 1 \Rightarrow \beta\overline{\beta} = 1$$

Now,
$$\left|\frac{\beta-\alpha}{1-\overline{\alpha}\beta}\right| = \left|\frac{\beta-\alpha}{\beta\overline{\beta}-\overline{\alpha}\beta}\right| = \left|\frac{\beta-\alpha}{\beta(\overline{\beta}-\overline{\alpha})}\right| = \frac{|\beta-\alpha|}{|\beta||\overline{\beta-\alpha}|} = \frac{1}{|\beta|} = 1.$$
 $\left\{as \mid x+iy \mid = |\overline{x+iy}\mid\right\}$

Illustration 9: Find the number of non-zero integral solution of the equation $|1-i|^x = 2^x$. (JEE ADVANCED) Sol: As $|z| = \sqrt{x^2 + y^2}$, therefore by using this formula we can solve it. We have, $|1-i|^x = 2^x$

x = 0.

$$\Rightarrow \left[\sqrt{1^2 + 1^2}\right]^x = 2^x \qquad \Rightarrow \left(\sqrt{2}\right)^x = 2^x \qquad \Rightarrow 2^{\frac{x}{2}} = 2^x \qquad \Rightarrow \frac{x}{2} = 0 \quad \Rightarrow$$

 \therefore The number of non zero integral solution is zero.

Illustration 10: If
$$\frac{a+ib}{c+id} = p + iq$$
. Prove that $\frac{a^2 + b^2}{c^2 + d^2} = p^2 + q^2$. (JEE MAIN)

Sol: Simply by obtaining modulus of both side of $\frac{a+ib}{c+id} = p + iq$.

We have, $\frac{a+ib}{c+id} = p + iq$

$$\left|\frac{a+ib}{c+id}\right| = \sqrt{\frac{a^2+b^2}{c^2+d^2}} \quad \Rightarrow \left|p+iq\right| = \sqrt{p^2+q^2}; \qquad \left|\frac{a+ib}{c+id}\right| = \left|p+iq\right| \qquad \Rightarrow \frac{a^2+b^2}{c^2+d^2} = p^2+q^2.$$

Illustration 11: $If(x+iy)^{1/3} = a + ib$. Prove that $\frac{x}{a} + \frac{y}{b} = 4(a^2 - b^2)$. (JEE ADVANCED) **Sol:** By using algebra of complex number. We have, $(x+iy)^{1/3} = a + ib$ $x + iy = (a+ib)^3 = a^3 + i^3b^3 + 3a^2ib + 3a(ib)^2 = a^3 - b^3i + 3a^2bi - 3ab^2$ $x + iy = (a^3 - 3ab^2) + (3a^2b - b^3)i; \quad x = a^3 - 3ab^2 = a(a^2 - 3b^2); \quad y = 3a^2b - b^3$ $\frac{x}{a} + \frac{y}{b} = 4(a^2 - b^2)$.

4. REPRESENTATION OF COMPLEX NUMBER

4.1 Graphical Representation

Every complex number x + iy can be represented in a plane as a point P (x, y). X-coordinate of point P represents the real part of the complex number and y-coordinate represents the imaginary part of the complex number. Complex number x + 0i (real number) is represented by a point (x, 0) lying on the x-axis. Therefore, x-axis is called the real axis. Similarly, a complex number 0 + iy (imaginary number) is represented by a point on y-axis. Therefore, y-axis is called the imaginary axis.

The plane on which a complex number is represented is called complex number plane or simply complex plane or Argand plane (see Fig 6.6). The figure represented by the complex numbers as points in a plane is known as Argand Diagram.

4.2 Algebraic Form

If
$$z = x + iy$$
; then $|z| = \sqrt{x^2 + y^2}$; $\overline{z} = x - iy$, and $\theta = \tan^{-1}\left(\frac{y}{x}\right)$

Generally this form is useful in solving equations and in problems involving locus.

4.3 Polar Form

Figure 6.7 shows the components of a complex number along the x and y-axes respectively. Then

 $z = x + iy = r(\cos\theta + i\sin\theta) = r \cos\theta$ where |z| = r; amp $z = \theta$.

Aliter: z = x + iy

$$\Rightarrow z = \sqrt{x^2 + y^2} \left(\frac{x}{\sqrt{x^2 + y^2}} + i \frac{y}{\sqrt{x^2 + y^2}} \right)$$

 \Rightarrow z =| z | (cos θ + i sin θ) = r cis θ

Note: (a) $(\operatorname{cis} \alpha) (\operatorname{cis} \beta) = \operatorname{cis} (\alpha + \beta)$

(b) $(\operatorname{cis} \alpha) (\operatorname{cis} (-\beta)) = \operatorname{cis} (\alpha - \beta)$

(c)
$$\frac{1}{(\cos \alpha)} = (\cos \alpha)^{-1} = \cos(-\alpha)$$

 $\operatorname{Re}(z) > 0$

Imaginary axis

 $\operatorname{Re}(z) < 0$

X

0

Λ lm(z)

0

Figure 6.6: Graphical representation

Figure 6.7: Polar form

MASTERJEE CONCEPTS

The unique value of θ such that $-\pi < \theta \le \pi$ for which $x = r \cos \theta \& y = r \sin \theta$ is known as the principal value of the argument.

The general value of argument is $(2n\pi + \theta)$, where n is an integer and θ is the principal value of arg (z). While reducing a complex number to polar form, we always take the principal value.

The complex number $z = r (\cos \theta + i \sin \theta)$ can also be written as $r \operatorname{cis} \theta$.

Figure 6.8

Nitish Jhawar (JEE 2009, AIR 7)

4.4 Exponential Form

Euler's formula, named after the famous mathematician Leonhard Euler, states that for any real number x, $e^{ix} = \cos x + i \sin x$.

Hence, for any complex number $z = r (\cos \theta + i \sin \theta)$, $z = re^{i\theta}$ is the exponential representation.

(a) $\cos x = \frac{e^{ix} + e^{-ix}}{2}$ and $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$ are known as Eulers identities. Note: (b) $\cos ix = \frac{e^x + e^{-x}}{2} = \cos hx$ is always positive real $\forall x \in R$ and is > 1. and, sin ix = i $\frac{e^{x} - e^{-x}}{2}$ = i sin hx is always purely imaginary.

4.5 Vector Representation

The knowledge of vectors can also be used to represent a complex number z = x + iy. The vector OP, joining the origin O of the complex plane to the point P (x, y), is the vector representation of the complex number z=x+iy, (see Fig 6.9). The length of the vector \overline{OP} , that is, |OP| is the modulus of z. The angle between the positive real axis and the vector \overrightarrow{OP} , more exactly, the angle through which the positive real axis must be rotated to cause it to have the same direction as \overrightarrow{OP} (considered positive if the rotation is counter-clockwise and negative otherwise) is the argument of the complex number z.

Figure 6.9 Vector representation

(JEE MAIN)

	$\begin{pmatrix} 1 \end{pmatrix}$) 1
Illustration 12: Find locus represented by Re	x i	< -
	$(\mathbf{x} + \mathbf{i}\mathbf{y})$	/ 2

Sol: Multiplying numerator and denominator by x - iy.

We have,
$$\operatorname{Re}\left(\frac{1}{x+iy}\right) < \frac{1}{2}$$
 $\operatorname{Re}\left(\frac{x-iy}{x^2+y^2}\right) < \frac{1}{2}$
 $\Rightarrow \frac{x}{x^2+y^2} < \frac{1}{2}$ $\Rightarrow x^2+y^2-2x > 0$

Locus is the exterior of the circle with centre (1, 0) and radius = 1.

Illustration 13: If
$$z = 1 + \cos \frac{6\pi}{5} + i \sin \frac{6\pi}{5}$$
. Find r and amp z. (JEE MAIN)

Sol: By using trigonometric formula we can reduce given equation in the form of $z = r(\cos\theta + i \sin\theta)$.

$$z = 2\cos^{2}\frac{3\pi}{5} + 2i\sin\frac{3\pi}{5}\cos\frac{3\pi}{5} = 2\cos\frac{3\pi}{5}\left[\cos\frac{3\pi}{5} + i\sin\frac{3\pi}{5}\right]$$
$$= -2\cos\frac{2\pi}{5}\left[-\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right] = 2\cos\frac{2\pi}{5}\left[\cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}\right]$$
Hence, $|z| = 2\cos\frac{2\pi}{5}$; amp $z = -\frac{2\pi}{5}$

Illustration 14: Show that the locus of the point P(ω)denoting the complex number $z + \frac{1}{z}$ on the complex plane is a standard ellipse where |z| = a, where $a \neq 0, 1$. (JEE ADVANCED)

Sol: Here consider w = x + iy and $z = \alpha + i\beta$ and then solve this by using algebra of complex number.

Let
$$w = z + \frac{1}{z}$$
 where $z = \alpha + i\beta$, $\alpha^2 + \beta^2 = a^2$ (as $|z| = a$)
 $x + iy = \alpha + i\beta + \frac{1}{\alpha + i\beta} = \alpha + i\beta + \frac{\alpha - i\beta}{\alpha^2 + \beta^2} = \left(\alpha + \frac{\alpha}{a^2}\right) + i\left(\beta - \frac{\beta}{a^2}\right) \therefore x = \alpha\left(1 + \frac{1}{a^2}\right); y = \beta\left(1 - \frac{1}{a^2}\right)$
 $\therefore \frac{x^2}{\left(1 + \frac{1}{a^2}\right)^2} + \frac{y^2}{\left(1 - \frac{1}{a^2}\right)^2} = \alpha^2 + \beta^2 = a^2; \qquad \qquad \therefore \frac{x^2}{\left(a + \frac{1}{a}\right)^2} + \frac{y^2}{\left(a - \frac{1}{a}\right)^2} = 1.$

5. IMPORTANT PROPERTIES OF CONJUGATE, MODULUS AND ARGUMENT

For z, z_1 and $z_2 \in C$,

(a) **Properties of Conjugate:**

- (i) $z + \overline{z} = 2 \operatorname{Re}(z)$
- (ii) $z \overline{z} = 2i \text{ Im } (z)$
- (iii) $(\overline{\overline{z}}) = z$
- (iv) $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$

(v)
$$\overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2$$

(vi)
$$\frac{z_1 \ z_2 = z_1 \cdot z_2}{\left(\frac{z_1}{z_2}\right) = \frac{\overline{z}_1}{\overline{z}_2}; \ z_2 \neq 0}$$

(b) **Properties of Modulus:**

(i)
$$|z| \ge 0; |z| \ge \text{Re}(z); |z| \ge \text{Im}(z); |z| = |\overline{z}| = |-z|$$

(ii)
$$z\overline{z} = |z|^2$$
; if $|z| = 1$, then $z = \frac{1}{\overline{z}}$

(iii)
$$|z_1 z_2| = |z_1| \cdot |z_2|$$

(iv)
$$\left| \frac{z_1}{z_1} \right| = \frac{|z_1|}{|z_2|}, \ z_2 \neq 0$$

(v)
$$|z^n| = |z|^n$$

(vi)
$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2 ||z_1|^2 + |z_2|^2$$

(vii) $||z_1| - |z_2|| \le |z_1 + |z_2| \le |z_1| + |z_2|$

[Triangle Inequality]

(c) Properties of Amplitude:

- $\textbf{(i)} \quad \text{ amp } (\boldsymbol{z}_1 \cdot \boldsymbol{z}_2) = \text{ amp } \boldsymbol{z}_1 + \text{ amp } \boldsymbol{z}_2 + 2k\pi, k \in \boldsymbol{I}$
- (ii) $\operatorname{amp}\left(\frac{z_1}{z_2}\right) = \operatorname{amp} z_1 \operatorname{amp} z_2 + 2k\pi, k \in I$
- (iii) amp $(z^n) = n \operatorname{amp}(z) + 2k\pi$, where the value of k should be such that RHS lies in $(-\pi, \pi]$

Based on the above information, we have the following

- $|\operatorname{Re}(z)| + |\operatorname{Im}(z)| \le \sqrt{2} |z|$
- $||z_1| |z_2|| \le |z_1 z_2| \le |z_1| + |z_2|$. Thus $|z_1| + |z_2|$ is the greatest possible value of $|z_1 + z_2|$ and $||z_1| |z_2||$ is the least possible value of $|z_1 + z_2|$.
- If $\left|z + \frac{1}{z}\right| = a$, the greatest and least values of |z| are respectively $\frac{a + \sqrt{a^2 + 4}}{2}$ and $\frac{-a + \sqrt{a^2 + 4}}{2}$.

•
$$|z_1 + \sqrt{z_1^2 - z_2^2}| + |z_2 - \sqrt{z_1^2 - z_2^2}| = |z_1 + z_2| + |z_1 - z_2|$$

- If $z_1 = z_2 \Leftrightarrow |z_1| = |z_2|$ and $\arg z_1 = \arg z_2$
- $|z_1 + z_2| = |z_1| + |z_2| \Leftrightarrow \arg(z_1) = \arg(z_2)$ i.e. z_1 and z_2 are parallel.
- $|z_1 + z_2| = |z_1| + |z_2| \Leftrightarrow \arg(z_1) \arg(z_2) = 2n\pi$, where n is some integer.
- $|z_1 z_2| = ||z_1| |z_2|| \Leftrightarrow \arg(z_1) \arg(z_2) = 2n\pi$, where n is some integer.
- $|z_1 + z_2| = |z_1 z_2| \Leftrightarrow \arg(z_1) \arg(z_2) = (2n+1)\frac{\pi}{2}$, where n is some integer.
- If $|z_1| \le 1$, $|z_2| \le 1$, then $|z_1 + z_2|^2 \le (|z_1| |z_2|)^2 + (\arg(z_1) \arg(z_2))^2$, and $|z_1 + z_2|^2 \ge (|z_1| + |z_2|)^2 (\arg(z_1) \arg(z_2))^2$.

Illustration 15: If $z_1 = 3 + 5i$ and $z_2 = 2 - 3i$, then verify that $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$ (JEE MAIN)

Sol: Simply by using properties of conjugate.

$$\frac{z_1}{z_2} = \frac{3+5i}{2-3i} = \frac{(3+5i)}{(2-3i)} \times \frac{(2+3i)}{(2+3i)} = \frac{6+9i+10i+15i^2}{4-9i^2} = \frac{6+19i+15(-1)}{4+9} = \frac{6+19i-15}{13} = \frac{-9+19i}{13} = \frac{-9}{13} + \frac{19}{13}i$$

$$L.H.S. = \overline{\left(\frac{z_1}{z_2}\right)} = \overline{\left(-\frac{9}{13} + \frac{19}{13}i\right)} = -\frac{9}{13} - \frac{19}{13}i$$

$$R.H.S. = \frac{\overline{z_1}}{\overline{z_2}} = \frac{\overline{3+5i}}{\overline{2-3i}} = \frac{3-5i}{2+3i} = \frac{(3-5i)}{(2+3i)} \times \frac{(2-3i)}{(2-3i)}$$

$$= \frac{6-9i-10i+15i^2}{4-9i^2} = \frac{6-19i+15(-1)}{4+9} = \frac{6-19i-15}{13} = -\frac{9}{13} - \frac{19}{13}i$$

$$\therefore \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}} = \frac{\overline{z_1}}{\overline{z_2}} = \frac{10}{13} + \frac{19}{13}i$$

Illustration 16: If z be a non-zero complex number, then show that $\overline{(z^{-1})} = (\overline{z})^{-1}$. (JEE MAIN)

Sol: By considering z = a + ib and using properties of conjugate we can prove given equation.

Let z = a + ib Since, $z \neq 0$, we have $x^2 + y^2 > 0$

$$z^{-1} = \frac{1}{z} = \frac{1}{a+ib} = \frac{1}{a+ib} \times \frac{a-ib}{a-ib} = \frac{a}{a^2+b^2} - \frac{ib}{a^2+b^2} \implies \left(\overline{z^{-1}}\right) = \frac{a}{a^2+b^2} + \frac{ib}{a^2+b^2} \qquad \dots (i)$$

and
$$(\overline{z})^{-1} = \frac{1}{\overline{z}} = \frac{1}{a+ib} = \frac{1}{a-ib} = \frac{1}{a-ib} \times \frac{a+ib}{a+ib} = \frac{a}{a^2+b^2} + i\frac{b}{a^2+b^2}$$
 ... (ii)

From (i) and (ii), we get $\overline{(z^{-1})} = (\overline{z})^{-1}$.

Illustration 17: If
$$\frac{(a+i)^2}{2a-i} = p + iq$$
, then show that $p^2 + q^2 = \frac{(a^2+1)^2}{4a^2+1}$. (JEE MAIN)

Sol: Multiply given equation to its conjugate.

We have,
$$p + iq = \frac{(a+i)^2}{2a-i}$$
 ... (i)

Taking conjugate of both sides, we get $\overline{p + iq} = \left(\frac{(a + i)^2}{(2a - i)}\right)$

$$\Rightarrow p - iq = \frac{\overline{(a+i)^2}}{\overline{(2a-i)}} \qquad \left[\because \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}} \right] \qquad \Rightarrow p - iq = \frac{(a-i)^2}{(2a+i)} \dots (ii) \left[\text{using } \overline{(z^2)} = \overline{z \cdot z} = \overline{z} \cdot \overline{z} = (\overline{z})^2 \right]$$

Multiplying (i) and (ii), we get $(p + iq) (p - iq) = \left(\frac{(a+i)^2}{2a-i}\right) \left(\frac{(a-i)^2}{2a+i}\right)$

$$\Rightarrow p^2 - i^2 q^2 = \frac{(a^2 - i^2)^2}{4a^2 - i^2} \qquad \Rightarrow p^2 + q^2 = \frac{(a^2 + 1)^2}{4a^2 + 1} \,.$$

Illustration 18: Let $z_1, z_2, z_3, \dots, z_n$ are the complex numbers such that $|z_1| = |z_2| = \dots = |z_n| = 1$. If $z = \dots = |z_n| = 1$. If $z = \dots = |z_n| = 1$. $\left(\sum_{k=1}^{n} z_{k}\right) \left(\sum_{k=1}^{n} \frac{1}{z_{k}}\right)$ then prove that (ii) $0 < z \le n^2$ (i) z is a real number

Sol: Here $|z_1| = |z_2| = \dots = |z_n| = 1$, therefore $z\overline{z} = 1 \Rightarrow z = \frac{1}{\overline{z}}$. Hence by substituting this to $z = \left(\sum_{k=1}^n z_k\right) \left(\sum_{k=1}^n \frac{1}{z_k}\right)$ we can solve above problem. Now, $z = (z_1 + z_2 + z_3 + \dots + z_n) \left(\frac{1}{z_1} + \frac{1}{z_2} + \dots + \frac{1}{z_n} \right)$

$$= (z_1 + z_2 + z_3 + \dots + z_n) \left(\overline{z_1} + \overline{z_2} + \dots + \overline{z_n} \right) = (z_1 + z_2 + z_3 + \dots + z_n) \left(\overline{z_1 + z_2 + \dots + z_n} \right)$$

= $|z_1 + z_2 + z_3 + \dots + z_n|^2$ which is real

$$\leq \left(\left| \begin{array}{c} z_1 \end{array} \right| + \left| \begin{array}{c} z_2 \end{array} \right| + \left| \begin{array}{c} z_3 \end{array} \right| + \ldots + \left| \begin{array}{c} z_n \end{array} \right| \right)^2 = n^2 \qquad \qquad \therefore \qquad 0 < z \le n^2 \,.$$

(JEE ADVANCED)

Illustration 19: Let x_1, x_2 are the roots of the quadratic equation $x^2 + ax + b = 0$ where a, b are complex numbers and y_1 , y_2 are the roots of the quadratic equation $y^2 + |a|y+|b| = 0$. If $|x_1| = |x_2| = 1$, then prove that $|y_1| = |y_2| = 1$. (JEE ADVANCED)

Sol: Solve by using modulus properties of complex number.

Let $x^2 + ax + b = 0$ where x_1 and x_2 are complex numbers $x_1 + x_2 = -a$... (i) and $x_1 x_2 = b$... (ii) From (ii) $|x_1| |x_2| = |b| \Rightarrow |b| = 1$ Also $|-a| = |x_1 + x_2|$:. $|a| \le |x_1| + |x_2|$ or $|a| \le 2$

Now consider $y^2 + |a|y+|b| = 0$, $\begin{cases} y_1 \\ y_2 \end{cases}$ where y_1 and y_2 are complex numbers

$$y_{1,2} = \frac{-|a| \pm \sqrt{|a|^2 - 4|b|}}{2} = \frac{-|a| \pm \left(\sqrt{4 - |a|^2}\right)i}{2} \qquad \therefore \qquad |y_{1,2}| = \frac{\sqrt{|a|^2 + 4 - |a|^2}}{2} = 1$$

Hence, $|y_1| = |y_2| = 1$.

6. TRIANGLE ON COMPLEX PLANE

In a ΔABC , the vertices A, B and C are represented by the complex numbers z_1 , z_2 and z_3 respectively, then

(a) Centroid: The centroid 'G' is given by
$$\frac{z_1 + z_2 + z_3}{3}$$
. Refer to Fig 6.10.
A(z_1)
G(z_2)
B(z_2)
Figure 6.10: Centroid

(b) Incentre: The incentre 'I' is given by $\frac{az_1 + bz_2 + cz_3}{a+b+c}$. Refer to Fig 6.11.

Figure 6.11: Incentre

(c) **Orthocentre:** The orthocentre 'H' is given by $\frac{z_1 \tan A + z_2 \tan B + z_3 \tan C}{z_1 \tan A + z_2 \tan B + z_3 \tan C}$

[If A + B + C = π , then tan A + tan B + tan C = tan A tan B tan C]

(d) Circumcentre:

Let R be the circumradius and the complex number z_0 represent the circumcentre of the triangle as shown in Fig 6.11.

$$\therefore |z_1 - z_0| = |z_2 - z_0| = |z_3 - z_0|$$
Consider, $|z_1 - z_0|^2 = |z_2 - z_0|^2$
 $(z_1 - z_0) (\overline{z}_1 - \overline{z}_0) = (z_2 - z_0) (\overline{z}_2 - \overline{z}_0)$

$$\overline{z}_{1}(z_{1}-z_{0}) - \overline{z}_{2}(z_{2}-z_{0}) = \overline{z}_{0} \left[(z_{1}-z_{0}) - (z_{2}-z_{0}) \right]$$

$$\overline{z}_{1}(z_{1}-z_{0}) - \overline{z}_{2}(z_{2}-z_{0}) = \overline{z}_{0} (z_{1}-z_{2}) \qquad \dots (i)$$

Similarly 1st and 3rd gives

$$\overline{z}_1(z_1 - z_0) - \overline{z}_3(z_3 - z_0) = \overline{z}_0(z_1 - z_3)$$
 ... (ii)

On dividing (i) by (ii), \overline{z}_0 gets eliminated and we obtain z_0 .

Alternatively: From Fig 6.13, we have

MASTERJEE CONCEPTS

- The area of the triangle whose vertices are z, iz and z + iz is $\frac{1}{2} |z|^2$.
- The area of the triangle with vertices z, ωz and $z + \omega z$ is $\frac{\sqrt{3}}{4} |z|^2$.
- If z_1 , z_2 , z_3 be the vertices of an equilateral triangle and z_0 be the circumcentre, then $z_1^2 + z_2^2 + z_3^2 = 3z_0^2$.
- If $z_1, z_2, z_3, \dots, z_n$ be the vertices of a regular polygon of n sides and z_0 be its centroid, then $z_1^2 + z_2^2 + \dots + z_n^2 = nz_0^2$
- If z_1 , z_2 , z_3 be the vertices of a triangle, then the triangle is equilateral if $(z_1 z_2)^2 + (z_2 z_3)^2 + (z_3 z_1)^2 = 0$ or $z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$ or $\frac{1}{z_1 - z_2} + \frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} = 0$.
- If z_1 , z_2 , z_3 are the vertices of an isosceles triangle, right angled at z_2 then $z_1^2 + 2z_2^2 + z_3^2 = 2z_2(z_1 + z_3)$.
- If z_1, z_2, z_3 are the vertices of a right-angled isosceles triangle, then $(z_1 z_2)^2 = 2(z_1 z_3)(z_3 z_2)$.
- If z₁, z₂, z₃ be the affixes of the vertices A, B, C respectively of a triangle ABC, then its orthocentere is $\frac{a(\sec A)z_1 + b(\sec B)z_2 + c(\sec C)z_3}{\csc A + b\cos B}$.

$$a \sec A + b \sec B + c \sec C$$

Shivam Agarwal (JEE 2009, AIR 27)

 $A(z_1)$

Figure 6.14

Illustration 20: If z_1 , z_2 , z_3 are the vertices of an isosceles triangle right angled

at z_2 then prove that $z_1^2 + 2z_2^2 + z_3^2 = 2z_2(z_1 + z_3)$ (JEE MAIN) Sol: Here $(z_1 - z_2) = (z_3 - z_2)e^{\frac{i\pi}{2}}$. Hence by squaring both side we will get the result. $\Rightarrow (z_1 - z_2)^2 = i^2(z_3 - z_2)^2$ $\Rightarrow z_3^2 + z_2^2 - 2z_3z_2 = -z_1^2 - z_2^2 + 2z_1z_2 \Rightarrow z_1^2 + 2z_2^2 + z_3^2 = 2z_2(z_1 + z_3)$.

Illustration 21: A, B, C are the points representing the complex numbers z_1 , z_2 , z_3 respectively and the circumcentre of the triangle ABC lies at the origin. If the altitudes of the triangle through the opposite vertices meets the circumcircle at D, E, F respectively. Find the complex numbers corresponding to the points D, E, F in terms of z_1 , z_2 , z_3 . (JEE MAIN)

Sol: Here the $\angle BOD = \pi - 2B$, hence $\overrightarrow{OD} = \overrightarrow{OB} e^{i(\pi - 2B)}$.

From Fig 6.13, we have $\overrightarrow{OD} = \overrightarrow{OB} e^{i(\pi - 2B)}$;

$$\alpha = z_2 e^{i(\pi - 2B)} = -z_2 e^{-i2}$$

also, $z_1 = z_3 e^{i 2B}$

 $\therefore \alpha z_1 = -z_2 z_3 \qquad \Rightarrow \alpha = \frac{-z_2 z_3}{z_1}$ Similarly, $\beta = \frac{-z_3 z_1}{z_2}$ and $\gamma = \frac{-z_1 z_2}{z_3}$.

Illustration 22: If z_r (r = 1, 2, ...,6) are the vertices of a regular hexagon then prove that $\sum_{r=1}^{6} z_r^2 = 6z_0^2$, where z_0 is the circumcentre of the regular hexagon. (JEE MAIN)

Sol: As we know If $z_1, z_2, z_3, \dots, z_n$ be the vertices of a regular polygon of n sides and z_0 be its centroid, then $z_1^2 + z_2^2 + \dots + z_n^2 = nz_0^2$.

Here by the Fig 6.14, $3z_0^2 = z_1^2 + z_3^2 + z_5^2$ and, $3z_0^2 = z_2^2 + z_4^2 + z_6^2 \implies 6z_0^2 = \sum_{r=1}^6 z_r^2$.

Illustration 23: If z_1, z_2, z_3 are the vertices of an equilateral triangle then prove that $z_1^2 + z_2^2 + z_3^2 = z_1z_2 + z_2z_3 + z_3z_1$ and if z_0 is its circumcentre then $3z_0^2 = z_1^2 + z_2^2 + z_3^2$. (JEE ADVANCED)

Sol: By using triangle on complex plane we can prove

Now if z_0 is the circumcentre of the Δ , then we need to prove $3z_0^2 = z_1^2 + z_2^2 + z_3^2$. Since in an equilateral triangle, the circumcentre coincides with the centroid, we have $z_0 = \frac{z_1 + z_2 + z_3}{2}$ $\Rightarrow (z_1 + z_2 + z_2)^2 = (3z_0)^2$ $\Rightarrow \sum z_1^2 + 2\sum z_1 z_2 = 9z_0^2 \quad \therefore 3\sum z_1^2 = 9z_0^2$ **Illustration 24:** Prove that the triangle whose vertices are the points z_1 , z_2 , z_3 on the Argand plane is an equilateral triangle if and only if $\frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} + \frac{1}{z_1 - z_2} = 0.$ (JEE ADVANCED) **Sol:** Consider ABC is the equilateral triangle with vertices z_1 , z_2 and z_3 respectively. $A(z_1)$ Therefore $|z_2 - z_3| = |z_3 - z_1| = |z_1 - z_2|$. 60 Let ABC be a triangle such that the vertices A, B and C are z₁, z₂ and z₃ respectively. Further, let $\alpha = z_2 - z_3$, $\beta = z_3 - z_1$ and $\gamma = z_1 - z_2$. Then $\alpha + \beta + \gamma = 0$ As shown in Fig 6.16, let $\triangle ABC$ be an equilateral triangle. Then, BC = CA = AB $\Rightarrow |z_2 - z_3| = |z_3 - z_1| = |z_1 - z_2| \Rightarrow |\alpha| = |\beta| = |\gamma|$ ′60° 60 $C(z_3)$ $B(z_{2})$ $\Rightarrow |\alpha|^2 = |\beta|^2 = |\gamma|^2 = \lambda$ (say) Figure 6.18 $\Rightarrow \alpha \overline{\alpha} = \beta \overline{\beta} = \gamma \overline{\gamma} = \lambda$ $\Rightarrow \overline{\alpha} = \frac{\lambda}{\alpha}, \overline{\beta} = \frac{\lambda}{\beta}, \overline{\gamma} = \frac{\lambda}{\gamma}$... (ii) Now, $\alpha + \beta + \gamma = 0$ [from (i)] $\Rightarrow \overline{\alpha} + \overline{\beta} + \overline{\gamma} = 0 \qquad \Rightarrow \frac{\lambda}{\alpha} + \frac{\lambda}{\beta} + \frac{\lambda}{\gamma} = 0 \qquad \text{[Using (ii)]}$ $\Rightarrow \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 0 \Rightarrow \frac{1}{z_2 - z_2} + \frac{1}{z_2 - z_1} + \frac{1}{z_1 - z_2} = 0$ which is the required condition. Conversely, let ABC be a triangle such that $\Rightarrow \frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} + \frac{1}{z_1 - z_2} = 0 \qquad \text{i.e.} \Rightarrow \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 0$ Thus, we have to prove that the triangle is equilateral. We have, $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = 0$ $\Rightarrow \frac{1}{\alpha} = -\left(\frac{1}{\beta} + \frac{1}{\gamma}\right) \qquad \Rightarrow \frac{1}{\alpha} = -\left(\frac{\beta + \gamma}{\beta\gamma}\right) \qquad \Rightarrow \frac{1}{\alpha} = \frac{\alpha}{\beta\gamma} \qquad \Rightarrow \alpha^2 = \beta\gamma \qquad \Rightarrow |\alpha|^2 = |\beta\gamma|$ $\Rightarrow |\alpha|^2 = |\beta| |\gamma| \Rightarrow |\alpha|^3 = |\alpha| |\beta| |\gamma|$ Similarly, $\Rightarrow |\beta|^3 = |\alpha||\beta||\gamma|$ and $|\gamma|^3 = |\alpha||\beta||\gamma|$ \therefore $|\alpha| = |\beta| = |\gamma|$ $\Rightarrow |z_2 - z_3| = |z_3 - z_1| = |z_1 - z_2| \Rightarrow BC = CA = AB$

Hence, the given triangle is an equilateral triangle.

Illustration 25: Prove that the roots of the equation $\frac{1}{z-z_1} + \frac{1}{z-z_2} + \frac{1}{z-z_3} = 0$ (where z_1, z_2, z_3 are pair wise distinct complex numbers) correspond to points on a complex plane, which lie inside a triangle with vertices z_1, z_2, z_3 excluding its boundaries. (JEE ADVANCED)

Sol: By using modulus and conjugate properties we can reduce given expression as $\frac{\overline{z} - \overline{z}_{1}}{|z - z_{1}|^{2}} + \frac{\overline{z} - \overline{z}_{2}}{|z - z_{2}|^{2}} + \frac{\overline{z} - \overline{z}_{3}}{|z - z_{3}|^{2}}$ = 0. Therefore by putting $|z - z_{i}|^{2} = \frac{1}{t_{i}}$, where i = 1, 2 and 3, we will get the result. $t_{1}(\overline{z} - \overline{z}_{1}) + t_{2}(\overline{z} - \overline{z}_{2}) + t_{3}(\overline{z} - \overline{z}_{3}) = 0$ where $|z - z_{1}|^{2} = \frac{1}{t_{1}}$ etc and $t_{1}, t_{2}, t_{3} \in \mathbb{R}^{+}$ $t_{1}(z - z_{1}) + t_{2}(z - z_{2}) + t_{3}(z - z_{3}) = 0$ $(t_{1} + t_{2} + t_{3}) z = t_{1}z_{1} + t_{2}z_{2} + t_{3}z_{3} \implies z = \frac{t_{1}z_{1} + t_{2}z_{2} + t_{3}z_{3}}{t_{1} + t_{2} + t_{3}} \implies z = \frac{t_{1}z_{1} + t_{2}z_{2} + t_{3}z_{3}}{t_{1} + t_{2} + t_{3}}$ $\Rightarrow z = \frac{t_{1}z_{1} + t_{2}z_{2}}{t_{1} + t_{2} + t_{3}} + \frac{t_{3}z_{3}}{t_{1} + t_{2} + t_{3}} = \frac{t_{1} + t_{2}}{t_{1} + t_{2} + t_{3}} z' + \frac{t_{3}z_{3}}{t_{1} + t_{2} + t_{3}}$ $\Rightarrow z = \frac{(t_{1} + t_{2})z' + t_{3}z_{3}}{t_{1} + t_{2} + t_{3}} \implies z$ lies inside the $\Delta z_{1}z_{2}z_{3}$ If $t_{1} = t_{2} = t_{3}$ $\Rightarrow z$ is the centroid of the triangle.

Also, it implies $|z - z_1| = |z - z_2| = |z - z_3| \implies z$ is the circumcentre.

Illustration 26: Let z_1 and z_2 be roots of the equation $z^2 + pz + q = 0$, where the coefficients p and q may be complex numbers. Let A and B represent z_1 and z_2 in the complex plane. If $\angle AOB = \alpha \neq 0$ and OA = OB, where O

is the origin, prove that $p^2 = 4q\cos^2\frac{\alpha}{2}$.

Sol: Here $\overline{OB} = \overline{OAe}^{i\alpha}$. Therefore by using formula of sum and product of roots of quadratic equation we can prove this problem.

Since z_1 and z_2 are roots of the equation $z^2 + pz + q = 0$ $z_1 + z_2 = -p$ and $z_1 z_2 = q$ (1)

Since OA = OB. So \overrightarrow{OB} is obtained by rotating \overrightarrow{OA} in anticlockwise direction through angle α .

$$\therefore \ \overrightarrow{OB} = \overrightarrow{OA}e^{i\alpha} \qquad \Rightarrow z_2 = z_1e^{i\alpha} \qquad \Rightarrow \frac{z_2}{z_1} = e^{i\alpha} \Rightarrow \frac{z_2}{z_1} = \cos\alpha + i\sin\alpha$$

$$\Rightarrow \frac{z_2}{z_1} + 1 = 1 + \cos\alpha + i\sin\alpha \Rightarrow \frac{z_2 + z_1}{z_1} = 2\cos\frac{\alpha}{2}\left(\cos\frac{\alpha}{2} + i\sin\frac{\alpha}{2}\right) = 2\cos\frac{\alpha}{2}e^{\frac{i\alpha}{2}}$$

$$\Rightarrow \frac{z_2 + z_1}{z_1} = 2\cos\frac{\alpha}{2}e^{\frac{i\alpha}{2}} \Rightarrow \left(\frac{z_2 + z_1}{z_1}\right)^2 = 4\cos^2\frac{\alpha}{2}e^{i\alpha}$$

$$\Rightarrow \left(\frac{z_2 + z_1}{z_1}\right)^2 = 4\cos^2\frac{\alpha}{2}\frac{z_2}{z_1} \qquad \Rightarrow \left(z_2 + z_1\right)^2 = 4z_1z_2\cos^2\frac{\alpha}{2}$$

$$\Rightarrow (-p)^2 = 4q\cos^2\frac{\alpha}{2} \qquad \Rightarrow p^2 = 4q\cos^2\frac{\alpha}{2}.$$

Figure 6.20

Illustration 27: On the Argand plane z_1 , z_2 and z_3 are respectively the vertices of an isosceles triangle ABC with AC = BC and equal angles are θ . If z_4 is the incentre of the triangle then prove that $(z_2 - z_1)(z_3 - z_1) = (1 + \sec \theta)$ $(z_4 - z_1)^2$ (JEE ADVANCED)

Sol: Here by using angle rotation formula we can solve this problem. From Fig 6.21, we have

$$\frac{z_2 - z_1}{|z_2 - z_1|} = \frac{z_4 - z_1}{|z_4 - z_1|} e^{i\theta/2} \qquad \dots (i) \text{ (clockwise)}$$

and
$$\frac{z_3 - z_1}{|z_3 - z_1|} = \frac{z_4 - z_1}{|z_4 - z_1|} e^{i\theta/2} \qquad \dots (ii) \text{ (anticlockwise)}$$

Multiplying (i) and (ii)

$$\frac{(z_2 - z_1)(z_3 - z_1)}{(z_4 - z_1)^2} = \frac{|(z_2 - z_1)||(z_3 - z_1)|}{|z_4 - z_1|^2} = \frac{AB|AC|}{(AI)^2} = \frac{2(AD)(AC)}{(AI)^2} = \frac{2(AD)^2}{(AI)^2} \cdot \frac{AC}{AD}$$

Figure 6.21

 $= 2\cos^2\frac{\theta}{2}\sec\theta = (1+\cos\theta)\sec\theta.$

7. REPRESENTATION OF DIFFERENT LOCI ON COMPLEX PLANE

(a) |z - (1 + 2i)| = 3 denotes a circle with centre (1, 2) and radius 3 (see Fig 6.22).

Figure 6.22: Circle on a complex plane

(b) |z-1| = |z-i| denotes the equation of the perpendicular bisector of join of (1, 0) and (0, 1) on the Argand plane (see Fig 6.24).

Figure 6.23: Perpendicular bisector complex plane

(c) |z - 4i| + |z + 4i| = 10 denotes an ellipse with foci at (0, 4) and (0, -4); major axis 10; minor axis 6 with $e = \frac{4}{5}$ (see Fig 6.24).

Figure 6.24: Ellipse on a complex plane

$$e^{2} = 1 - \frac{36}{100} = \frac{64}{100} \Rightarrow e = \frac{4}{5} \left[\frac{x^{2}}{9} + \frac{y^{2}}{25} = 1 \right]$$

- (d) |z-1| + |z+1| = 1 denotes no locus. (Triangle inequality).
- (e) |z-1| < 1 denotes area inside a circle with centre (1, 0) and radius 1.
- (f) $2 \le |z-1| < 5$ denotes the region between the concentric circles of radii 5 and 2. Centred at (1, 0) including the inner boundary (see Fig 6.25).

Figure 6.25: Circle disc on a complex plane

(g) $0 \le \arg z \le \frac{\pi}{4}$ ($z \ne 0$) where z is defined by positive real axis and the part of the line x = y in the first quadrant. It includes the boundary but not the origin. Refer to Fig 6.26.

Figure 6.26

(h) Re $(z^2) > 0$ denotes the area between the lines x = y and x = -y which includes the x-axis.

 $\label{eq:Hint: (x^2-y^2)+2xyi=0 \quad \Rightarrow \ x^2-y^2>0 \qquad \quad \Rightarrow \ (x-y) \ (x+y)>0.$

Illustration 28: Solve for z, if $z^2 + |z| = 0$.

Sol: Consider z = x + iy and solve this using algebra of complex number.

Let $z = x + iy \implies (x + iy)^2 + \sqrt{x^2 + y^2} = 0 \implies (x^2 - y^2 + \sqrt{x^2 + y^2}) + (2ixy) = 0$ \Rightarrow Either x = 0 or y = 0; $x = 0 \Rightarrow -y^2 + |y| = 0 \implies y = 0, 1, -1 \therefore z = 0, i, -i$ and, $y = 0 \Rightarrow x^2 + |x| = 0 \implies x = 0 \therefore z = 0$ Therefore, z = 0, z = i, z = -i.

Illustration 29: If the complex number z is to satisfy |z| = 3, $|z - \{a(1+i) - i\}| \le 3$ and |z + 2a - (a + 1)i| > 3 simultaneously for at least one z then find all $a \in \mathbb{R}$. **(JEE ADVANCED)**

Sol: Consider z = x + iy and solve these inequalities to get the result.

(JEE MAIN)

All z at a time lie on a circle |z| = 3 but inside and outside the circles $|z - \{a (1 + i) - i\}| = 3$ and |z + 2a - (a + 1) i| = 3, respectively.

Let z = x + iy then equation of circles are $x^2 + y^2 = 9$... (i)

$$(x-a)^2 + (y-a+1)^2 = 9$$
 ... (ii)
and $(x+2a)^2 + (y-a-1)^2 = 9$... (iii)

Circles (i) and (ii) should cut or touch then distance between their centres \leq sum of their radii.

$$\Rightarrow \sqrt{(a-0)^{2} + (a-1-0)^{2}} \le 3+3 \Rightarrow a^{2} + (a-1)^{2} \le 36$$

$$\Rightarrow 2a^{2} - 2a - 35 \le 0 \Rightarrow a^{2} - a - \frac{35}{2} \le 0$$

$$\Rightarrow \left(a - \frac{1}{2}\right)^{2} \le \frac{71}{4} \qquad \therefore \frac{1 - \sqrt{71}}{2} \le a \le \frac{1 + \sqrt{71}}{2} \qquad \dots \text{ (iv)}$$
Figure 6.27

Again circles (i) and (iii) should not cut or touch then distance between their centres > sum of the radii

$$\Rightarrow \sqrt{(-2a-0)^{2} + (a+1-0)^{2}} > 3+3 \Rightarrow \sqrt{5a^{2} + 2a+1} > 6 \qquad \Rightarrow 5a^{2} + 2a+1 > 36$$

$$\Rightarrow 5a^{2} + 2a-35 > 0 \qquad \Rightarrow a^{2} + \frac{2a}{5} - 7 > 0$$
Then $\left(a - \frac{-1 - 4\sqrt{11}}{5}\right) \left(a - \frac{-1 + 4\sqrt{11}}{5}\right) > 0$

$$\therefore \qquad a \in \left(-\infty, \frac{-1 - 4\sqrt{11}}{5}\right) \cup \left(\frac{-1 + 4\sqrt{11}}{5}, \infty\right) \dots (v)$$
Figure 6.28

The common values of a satisfying (iv) and v are

$$a \in \left(\frac{1 - \sqrt{71}}{2}, \frac{-1 - 4\sqrt{11}}{5}\right) \cup \left(\frac{-1 + 4\sqrt{11}}{5}, \frac{1 + \sqrt{71}}{2}\right)$$

8. DEMOIVRE'S THEOREM

Statement: ($\cos n\theta + i \sin n\theta$) is the value or one of the values of $(\cos \theta + i \sin \theta)^n$, $\forall n \in Q$. Value if n is an integer. One of the values if n is rational which is not integer, the theorem is very useful in determining the roots of any complex quantity.

Note: We use the theory of equations to find the continued product of the roots of a complex number.

MASTERJEE CONCEPTS

The theorem is not directly applicable to $(\sin\theta + i\cos\theta)^n$, rather

$$(\sin\theta + i\cos\theta)^{n} = \left[\cos\left(\frac{\pi}{2} - \theta\right) + i\sin\left(\frac{\pi}{2} - \theta\right)\right]^{n} = \cos \left(\frac{\pi}{2} - \theta\right) + i\sin \left(\frac{\pi}{2} - \theta\right)$$

8.1 Application

Cube root of unity

- (a) The cube roots of unity are 1, $\frac{-1 + i\sqrt{3}}{2}$, $\frac{-1 i\sqrt{3}}{2}$ [Note that $1 - i\sqrt{3} = -2$ and $1 + i\sqrt{3} = -2\omega^2$]
- (b) If ω is one of the imaginary cube roots of unity then $1 + \omega + \omega^2 = 0$. In general $1 + \omega^r + \omega^{2r} = 0$; where r = 1, and not a multiple of 3.
- (c) In polar form the cube roots of unity are: $\cos 0 + i\sin 0$; $\cos \frac{2\pi}{3} + i\sin \frac{2\pi}{3}$; $\cos \frac{4\pi}{3} + i\sin \frac{4\pi}{3}$
- (d) The three cube roots of unity when plotted on the argand plane constitute the vertices of an equilateral triangle.

[Note that the 3 cube roots of i lies on the vertices of an isosceles triangle]

- (e) The following factorization should be remembered.
- For a, b, $c \in R$ and ω being the cube root of unity,

(i)
$$a^3 - b^3 = (a - b) (a - \omega b)(a - \omega^2 b)$$

- (ii) $x^2 + x + 1 = (x \omega) (x \omega^2)$
- (iii) $a^3 + b^3 = (a+b)(a+\omega b)(a+\omega^2 b)$
- (iv) $a^3 + b^3 + c^3 3abc = (a + b + c) (a + \omega b + \omega^2 c) (a + \omega^2 b + \omega c)$

nth roots of unity: If 1, α_1 , α_2 , α_3 ,, α_{n-1} are the n, nth roots of unity then

- (i) They are in G.P. with common ratio $e^{i\left(\frac{2\pi}{n}\right)} = \cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}$
- (ii) $1^p + \alpha_1^p + \alpha_2^p + \dots + \alpha_{n-1}^p = 0$ if p is not an integral multiple of n

 $\mathbf{1}^p + (\alpha_1)^p + (\alpha_2)^p + \dots + (\alpha_{n-1})^p = n \text{ if } p \text{ is an integral multiple of } n.$

(iii) $(1 - \alpha_1) (1 - \alpha_2) \dots (1 - \alpha_{n-1}) = n$.

Steps to determine nth roots of a complex number

- (i) Represent the complex number whose roots are to be determined in polar form.
- (ii) Add $2m\pi$ to the argument.
- (iii) Apply De Moivre's TheoremT
- (iv) Put m = 0, 1, 2, 3, ..., (n 1) to get all the nth roots.

Explanation: Let $z = 1^{\frac{1}{n}} = (\cos 0 + i\sin 0)^{\frac{1}{n}} = (\cos 2m\pi + i\sin 2m\pi)^{\frac{1}{n}} = \left(\cos \frac{2m\pi}{n} + i\sin \frac{2m\pi}{n}\right)^{\frac{1}{n}}$

Put $m = 0, 1, 2, 3, \dots, (n - 1)$, we get

1,
$$\underbrace{\cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}}_{\alpha}$$
, $\cos\frac{4\pi}{n} + i\sin\frac{4\pi}{n}$,, $\cos\frac{2(n-1)\pi}{n} + i\sin\frac{2(n-1)\pi}{n}$ (n, nth roots in G.P.)

Now, $S = 1^p + \alpha^p + \alpha^{2p} + \alpha^{3p} + \dots + \alpha^{(n-1)p} = \frac{1 - (\alpha^p)^n}{1 - \alpha^p} = \frac{1 - (\alpha^n)^p}{1 - \alpha^p}$ = $\frac{1 - (\alpha^n)^p}{1 - \alpha^p} = \begin{bmatrix} \frac{0}{\text{non zero}} = 0, & \text{if p is not an integral multiple of n} \\ \frac{0}{0} = \text{indeterminant}, & \text{if p is an integral multiple of n} \end{bmatrix}$

Again, if x is one of the nth root of unity then $x^n - 1 = (x - 1) (x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_{n-1})$ $1 + x + x^2 + \dots + x^{n-1} = \frac{x^n - 1}{x - 1} \equiv (x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_{n-1})$ Put x = 1, to get $(1 - \alpha_1)(1 - \alpha_2) \dots (1 - \alpha_{n-1}) = n$

Similarly put x = -1, is to get other result.

MASTERJEE CONCEPTS

Square roots of z = a + ib are $\pm \left[\sqrt{\frac{|z|+a}{2}} + i\sqrt{\frac{|z|-a}{2}} \right]$ for b > 0. If $1, \alpha_1, \alpha_2, \alpha_3, \dots, \alpha_{n-1}$ are the n, nth roots of unity then $(1 + \alpha_1) (1 + \alpha_2) \dots (1 + \alpha_{n-1}) = 0$ if n is even and 1 if n is odd. $1 \cdot \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \dots \cdot \alpha_{n-1} = 1$ or -1 according as n is odd or even. $(\omega - \alpha_1) (\omega - \alpha_2) \dots (\omega - \alpha_{n-1}) = \begin{bmatrix} 0, & \text{if } n = 3k \\ 1, & \text{if } n = 3k + 1 \\ 1 + \omega, & \text{if } n = 3k + 2 \end{bmatrix}$

Illustration 30: If x = a + b, $y = a\omega + b\omega^2$ and $z = a\omega^2 + b\omega$, then prove that $x^3 + y^3 + z^3 = 3(a^3 + b^3)$ (JEE MAIN)

Ravi Vooda (JEE 2009, AIR 71)

Sol: Here x + y + z = 0. Take cube on both side. $x + y + z = 0 \implies x^3 + y^3 + z^3 = 3xyz \therefore$ LHS = 3xyz $= 3(a+b)(a\omega + b\omega^2)(a\omega^2 + b\omega) = 3(a+b)(a\omega + b\omega^2)(a\omega^2 + b\omega.\omega^3) = 3\omega^3(a+b)(a+b\omega)(a+b\omega^2) = 3(a^3 + b^3)$

Illustration 31: The value of expression $1(2-\omega)(2-\omega^2) + 2(3-\omega)(3-\omega^2) + ... + (n-1)(n-\omega)(n-\omega^2)$. (JEE ADVANCED)

Sol: The given expression represent as $x^3 - 1 = (x - 1) (x - \omega) (x - \omega^2)$. Therefore by putting $x = 2, 3, 4 \dots$ n, we will get the result.

$$\begin{aligned} x^{3} - 1 &= (x - 1) (x - \omega) (x - \omega^{2}) \\ \text{Put } x &= 2 \quad 2^{3} - 1 = 1 \cdot (2 - \omega) (2 - \omega)^{2} \\ \text{Put } x &= 3 \quad 3^{3} - 1 = 2 \cdot (3 - \omega) (3 - \omega^{2}) \\ \text{Put } x &= n \quad n^{3} - 1 = (n - 1) (n - \omega) (n - \omega^{2}) \\ \therefore \text{LHS} &= (2^{3} + 3^{3} + \dots + n^{3}) - (n - 1) \\ &= (1^{3} + 2^{3} + 3^{3} + \dots + n^{3}) - n \quad = \left(\frac{n (n + 1)}{2}\right)^{2} - n \end{aligned}$$

9. SUMMATION OF SERIES USING COMPLEX NUMBER

(a)
$$\cos\theta + \cos 2\theta + \cos 3\theta + \dots + \cos n\theta = \frac{\sin\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}\cos\left(\frac{n+1}{2}\right)\theta$$

(b) $\sin\theta + \sin 2\theta + \sin 3\theta + \dots + \sin n\theta = \frac{\sin\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}\sin\left(\frac{n+1}{2}\right)\theta$

Note: If $\theta = \frac{2\pi}{n}$, then the sum of the above series vanishes.

9.1 Complex Number and Binomial Coefficients

Try the following questions using the binomial expansion of $(1 + x)^n$ and substituting the value of x according to the binomial coefficients in the respective question.

Find the value of the following

(i) $C_0 + C_4 + C_8 + \dots$ (ii) $C_1 + C_5 + C_9 + \dots$ (iii) $C_2 + C_6 + C_{10} + \dots$ (iv) $C_3 + C_7 + C_{11} + \dots$ (v) $C_0 + C_3 + C_6 + C_9 + \dots$

Hint (v): In the expansion of $(1 + x)^n$, put $x = 1, \omega$, and ω^2 and add the three equations.

Illustration 32: If $1, \omega, \omega^2, \ldots, \omega^{n-1}$ are nth roots of unity, then the value of $(5 - \omega) (5 - \omega^2) \ldots (5 - \omega^{n-1})$ is equal to (JEE MAIN)

Sol: Here consider $x = (1)^{\frac{1}{n}}$, therefore $x^n - 1 = 0$ (has n roots i.e. 1, $\omega, \omega^2, \dots, \omega^{n-1}$). $\Rightarrow x^n - 1 = (x - 1)(x - \omega) (x - \omega^2) \dots (x - \omega^{n-1}) \qquad \Rightarrow \frac{x^n - 1}{x - 1} = (x - \omega) (x - \omega^2) \dots (x - \omega^{n-1})$ $\Rightarrow \text{Putting } x = 5 \text{ in both sides, we get} \qquad \therefore (5 - \omega) (5 - \omega^2) \dots (5 - \omega^{n-1}) = \frac{5^n - 1}{4}.$

10. APPLICATION IN GEOMETRY

10.1 Distance Formula

Distance between $A(z_1)$ and $B(z_2)$ is given by $AB = |z_2 - z_1|$. Refer Fig 6.29.

Figure 6.29

10.2 Section Formula

The point P(z) which divides the join of $A(z_1)$ and $B(z_2)$ in the ratio m: n is

given by
$$z = \frac{mz_2 + nz_1}{m+n}$$
. Refer Fig 6.30.

10.3 Midpoint Formula

Mid-point M(z) of the segment AB is given by $z = \frac{1}{2}(z_1 + z_2)$.

Figure 6.31 Mid point formula

10.4 Condition For Four Non-Collinear Points

Condition(s) for four non-collinear $A(z_1)$, $B(z_2)$, $C(z_3)$ and $D(z_4)$ to represent vertices of a

(a) Parallelogram: The diagonals AC and BD must bisect each other

$$\Leftrightarrow \qquad \frac{1}{2}(z_1 + z_3) = \frac{1}{2}(z_2 + z_4)$$
$$\Leftrightarrow \qquad z_1 + z_3 = z_2 + z_4$$

(b) Rhombus:

(i) The diagonals AC and BD bisect each other

$$\Rightarrow$$
 $z_1 + z_3 = z_2 + z_4$, and

(ii) A pair of two adjacent sides are equal, for instance AD = AB

 $\Leftrightarrow \qquad |z_4 - z_1| = |z_2 - z_1|$

(c) Square:

(i) The diagonals AC and BD bisect each other

 \Leftrightarrow $z_1 + z_3 = z_2 + z_4$

(ii) A pair of adjacent sides are equal; for instance, AD = AB

$$\Leftrightarrow |z_4 - z_1| = |z_2 - z_1|$$

(iii) The two diagonals are equal, that is AC = BD

$$\Leftrightarrow |z_3 - z_1| = |z_4 - z_2|$$

(d) Rectangle:

(i) The diagonals AC and BD bisect each other

$$\Leftrightarrow \qquad \mathbf{z}_1 + \mathbf{z}_3 = \mathbf{z}_2 + \mathbf{z}_4$$

(ii) The diagonals AC and BD are equal

$$\Leftrightarrow |z_3 - z_1| = |z_4 - z_2|$$

Figure 6.35

10.5 Triangle

 ΔABC . It is given by the formula

 $z = \frac{az_1 + bz_2 + cz_3}{a + b + c}$

Ζ

In a triangle ABC, let the vertices A, B and C be represented by the complex numbers z_1 , z_2 , and z_3 respectively. Then

(a) Centroid: The centroid (G), is the point of intersection of medians of $\triangle ABC$. It is given by the formula

$$= \frac{1}{3}(z_1 + z_2 + z_3)$$

 $B(z_2)$

Figure 6.36 (a)

(b) Incentre: The incentre (I) of $\triangle ABC$ is the point of intersection of internal angular bisectors of angles of

Figure 6.36 (b)

(c) **Circumcentre:** The circumcentre (S) of $\triangle ABC$ is the point of intersection of perpendicular bisectors of sides of $\triangle ABC$. It is given by the formula

(d) **Euler's Line:** The orthocenter H, the centroid G and the circumcentre S of a triangle which is not equilateral lies on a straight line. In case of an equilateral triangle these points coincide.

G divides the join of H and S in the ratio 2 : 1 (see Fig 6.37).

Thus,
$$z_{G} = \frac{1}{3}(z_{H} + 2z_{S})$$

10.6 Area of a Triangle

Area of ΔABC with vertices A(z1), B(z2) and C(z3) is given by

$$\Delta = \left| \frac{1}{4i} \begin{vmatrix} z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \\ z_3 & \overline{z}_3 & 1 \end{vmatrix} \right| = \left| \frac{1}{2} \operatorname{Im}(\overline{z}_1 z_2 + \overline{z}_2 z_3 + \overline{z}_3 z_1) \right|$$

10.7 Conditions for Triangle to be Equilateral

The triangle ABC with vertices $A(z_1)$, $B(z_2)$ and $C(z_3)$ is equilateral

$$\begin{aligned} & \text{iff } \frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} + \frac{1}{z_1 - z_2} = 0 \\ \Leftrightarrow z_1^2 + z_2^2 + z_3^2 = z_2 z_3 + z_3 z_1 + z_1 z_2 \quad \Leftrightarrow z_1 \overline{z}_2 = z_2 \overline{z}_3 = z_3 \overline{z}_1 \Leftrightarrow z_1^2 = z_2 z_3 \text{ and } z_2^2 = z_1 z_3 \\ \Leftrightarrow \begin{vmatrix} 1 & z_2 & z_3 \\ 1 & z_3 & z_1 \\ 1 & z_1 & z_2 \end{vmatrix} = 0 \quad \Leftrightarrow \frac{z_2 - z_1}{z_3 - z_2} = \frac{z_3 - z_2}{z_1 - z_2} \\ \Leftrightarrow \frac{1}{z - z_1} + \frac{1}{z - z_2} + \frac{1}{z - z_3} = 0 \text{ where } z = \frac{1}{3} (z_1 + z_2 + z_3). \end{aligned}$$

10.8 Equation of a Straight line

(a) Non-parametric form: An equation of a straight line joining the two points $A(z_1)$ and $B(z_2)$ is

- (b) **Parametric form:** An equation of the line segment between the points $A(z_1)$ and $B(z_2)$ is $z = tz_1 + (1-t)z_2$, t(0,1) where t is a real parameter.
- (c) General equation of a straight line: The general equation of a straight line is $\overline{a}z + a\overline{z} + b = 0$ where, a is non-zero complex number and b is a real number.

10.9 Complex Slope of a Line

If A(z₁) and B(z₂) are two points in the complex plane, then complex slope of AB is defined to be $\mu = \frac{z_1 - z_2}{\overline{z_1} - \overline{z_2}}$

Two lines with complex slopes $\,\mu_1$ and $\mu_2\,$ are

(i) Parallel, if $\mu_1 = \mu_2$ (ii) Perpendicular, if $\mu_1 + \mu_2 = 0$

The complex slope of the line $\overline{a}z + a\overline{z} + b = 0$ is given by $\left(\frac{-a}{\overline{a}}\right)$.

10.10 Length of Perpendicular from a Point to a Line

Length of perpendicular of point A(ω) from the line $\overline{a}z + a\overline{z} + b = 0$.

Where $a \in C - \{0\}$, and $b \in R$ is given by $p = \frac{|\overline{a}\omega + a\overline{\omega} + b|}{2|a|}$

10.11 Equation of Circle

- (a) An equation of the circle with centre z_0 and radius r is $|z z_0| = r$ or $z = z_0 + re^{i\theta}, 0 \le \theta < 2\pi$ (parametric form) or $z\overline{z} - z_0\overline{z} - \overline{z}_0z + z_0\overline{z}_0 - r^2 = 0$
- **(b)** General equation of a circle is $z\overline{z} + a\overline{z} + \overline{a}z + b = 0$... (i)

Where a is a complex number and b is a real number such that $a\overline{a} - b \ge 0$. Centre of (i) is – a and its radius is $\sqrt{a\overline{a} - b}$

- (c) Diameter form of a circle: An equation of the circle one of whose diameter is the segment joining $A(z_1)$ and $B(z_2)$ is $(z z_1)(\overline{z} \overline{z}_2) + (\overline{z} \overline{z}_1)(z z_2) = 0$
- (d) An equation of the circle passing through two points $A(z_1)$ and $B(z_2)$

is
$$(z - z_1)(\overline{z} - \overline{z}_2) + (\overline{z} - \overline{z}_1)(z - z_2) + ik \begin{vmatrix} z & \overline{z} & 1 \\ z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \end{vmatrix} = 0$$
 where k is a real parameter.

(e) Equation of a circle passing through three non-collinear points. Let three non-collinear points be $A(z_1)$, $B(z_2)$ and $C(z_3)$ and P(z) be any point on the circle through A, B and C. Then either $\angle ACB = \angle APB$ [when angles are in the same segment] or, $\angle ACB + \angle APB = \pi$ [when angles are in the opposite segment] (see Fig 6.44).

$$\Rightarrow \arg\left(\frac{z_3 - z_2}{z_3 - z_1}\right) - \arg\left(\frac{z - z_2}{z - z_1}\right) = 0 \text{ or, } \arg\left(\frac{z_3 - z_2}{z_3 - z_1}\right) + \arg\left(\frac{z - z_1}{z - z_2}\right) = \pi$$
$$\Rightarrow \arg\left[\left(\frac{z_3 - z_2}{z_3 - z_1}\right)\left(\frac{z - z_1}{z - z_2}\right)\right] = 0$$
or,
$$\arg\left[\left(\frac{z_3 - z_2}{z_3 - z_1}\right)\left(\frac{z - z_1}{z - z_2}\right)\right] = \pi$$

In any case, we get $\frac{(z-z_1)(z_3-z_2)}{(z-z_2)(z_3-z_1)}$ is purely real.

$$\Leftrightarrow \frac{(z-z_1)(z_3-z_2)}{(z-z_2)(z_3-z_1)} = \frac{(\overline{z}-\overline{z}_1)(\overline{z}_3-\overline{z}_2)}{(\overline{z}-\overline{z}_2)(\overline{z}_3-\overline{z}_1)}$$

Four points z_1, z_2, z_3 and z_4 will lie on the same circle if and only if $\frac{(z_4 - z_1)(z_3 - z_2)}{(z_4 - z_2)(z_3 - z_1)}$ is purely real. $\Leftrightarrow \frac{(z_4 - z_1)(z_3 - z_2)}{(z_4 - z_2)(z_3 - z_1)} = \frac{(\overline{z}_4 - \overline{z}_1)(\overline{z}_3 - \overline{z}_2)}{(\overline{z}_4 - \overline{z}_2)(\overline{z}_3 - \overline{z}_1)}$

Figure 6.43

Figure 6.44

MASTERJEE CONCEPTS

Three points z_1 , z_2 and z_3 are collinear if $\begin{vmatrix} z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \\ z_3 & \overline{z}_3 & 1 \end{vmatrix} = 0.$

If three points $A(z_1)$, $B(z_2)$ and $C(z_3)$ are collinear then slope of AB = slope of BC = slope of AC

$$\Rightarrow \frac{z_1 - z_2}{\overline{z}_1 - \overline{z}_2} = \frac{z_2 - z_3}{\overline{z}_2 - \overline{z}_3} = \frac{z_1 - z_3}{\overline{z}_1 - \overline{z}_3}$$

Akshat Kharaya (JEE 2009, AIR 235)

Illustration 33: If the imaginary part of $\frac{2z+1}{iz+1}$ is – 4, then the locus of the point representing z in the complex plane is

(a) A straight line (b) A parabola (c) A circle (d) An ellipse

Sol: Put z = x + iy and then equate its imaginary part to -4.

Let
$$z = x + iy$$
, then $\frac{2z+1}{iz+1} = \frac{2(x+iy)+1}{i(x+iy)+1} = \frac{(2x+1)+2iy}{(1-y)+ix} = \frac{[(2x+1)+2iy][(1-y)-ix]}{(1-y)^2+x^2}$
As $Im\left(\frac{2z+1}{iz+1}\right) = -4$, we get $\frac{2y(1-y)-x(2x+1)}{x^2+(1-y)^2} = -4$
 $\Rightarrow 2x^2 + 2y^2 + x - 2y = 4x^2 + 4(y^2 - 2y + 1) \Rightarrow 2x^2 + 2y^2 - x - 6y + 4 = 0$. It represents a circle.

Illustration 34: The roots of $z^5 = (z-1)^5$ are represented in the argand plane by the points that are

(a) Collinear (b) Concyclic

(c) Vertices of a parallelogram (d) None of these

Sol: Apply modulus on both the side of given expression.

Let z be a complex number satisfying $z^5 = (z-1)^5$.

$$\Rightarrow \mid z^{5} \mid = \mid (z-1)^{5} \mid \qquad \Rightarrow \mid z \mid^{5} = \mid z-1 \mid^{5} \qquad \Rightarrow \mid z \mid = \mid z-1 \mid$$

Thus, z lies on the perpendicular bisector of the segment joining the origin and (1 + i0) i.e. z lies on Re(z) = $\frac{1}{2}$.

Illustration 35: Let z_1 and z_2 be two non-zero complex numbers such that $\frac{z_1}{z_2} + \frac{z_2}{z_1} = 1$, then the origin and points represented by z_1 and z_2

- (a) Lie on straight line (b) Form a right triangle
- (c) Form an equilateral triangle (d) None of these

(JEE ADVANCED)

(JEE MAIN)

(JEE MAIN)

Sol: Here consider $z = \frac{z_1}{z_2}$ and z_1 and z_2 are represented by A and B respectively and O be the origin. Let $z = \frac{z_1}{z_2}$, then $z + \frac{1}{z} = 1$ $\Rightarrow z^2 - z + 1 = 0$ $\Rightarrow z = \frac{1 \pm \sqrt{3}i}{2}$ $\Rightarrow \frac{z_1}{z_2} = \frac{1 \pm \sqrt{3}i}{2}$ If z_1 and z_2 are represented by A and B respectively and O be the origin, then

$$\frac{OA}{OB} = \frac{|z_1|}{|z_2|} = \left|\frac{1\pm\sqrt{3}i}{2}\right| = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1 \implies OA = OB$$

$$Also, \frac{AB}{OB} = \frac{|z_2 - z_1|}{|z_2|} = \left|1 - \frac{z_1}{z_2}\right| = \left|1 - \left(\frac{1}{2} \pm \frac{\sqrt{3}}{2}i\right)\right| = \left|\frac{1}{2} \pm \frac{\sqrt{3}}{2}i\right| = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$$

$$\Rightarrow AB = OB \qquad \text{Thus, OA = OB = AB :} \qquad \Delta OAB \text{ is an equilateral triangle.}$$

Illustration 36: If z_1, z_2, z_3 are the vertices of an isosceles triangle, right angled at the vertex z_2 , then the value of $(z_1 - z_2)^2 + (z_2 - z_3)^2$ is (a) -1 (b) 0 (c) $(z_1 - z_2)^2$ (d) None of these (JEE ADVANCED)

Sol: Here use distance and argument formula of complex number to solve this problem. As ABC is an isosceles right angled triangle with right angle at B,

 $BA = BC \text{ and } \angle ABC = 90^{\circ} \Rightarrow |z_1 - z_2| = |z_3 - z_2| \text{ and } \arg\left(\frac{z_3 - z_2}{z_1 - z_2}\right) = \frac{\pi}{2}$ $\Rightarrow \frac{z_3 - z_2}{z_1 - z_2} = \frac{|z_3 - z_2|}{|z_1 - z_2|} \left[\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right] = i$ $\Rightarrow (z_3 - z_2)^2 = -(z_1 - z_2)^2 \qquad \Rightarrow (z_1 - z_2)^2 + (z_2 - z_3)^2 = 0.$

11. CONCEPTS OF ROTATION OF COMPLEX NUMBER

Let z be a non-zero complex number. We can write z in the polar form as follows: $z = r (\cos \theta + i \sin \theta) = re^{i\theta}$ where r = |z| and arg $(z) = \theta$ (see Fig 6.46). Consider a complex number $ze^{i\alpha}$. $ze^{i\alpha} = (re^{i\theta})e^{i\alpha} = re^{i(\theta+\alpha)}$

Thus, $ze^{i\alpha}$ represents the complex number whose modulus is r and argument is $\theta + \alpha$. Geometrically, $ze^{i\alpha}$ can be obtained by rotating the line segment joining O and P(z) through an angle α in the anticlockwise direction.

Corollary: If $A(z_1)$ and $B(z_2)$ are two complex number such that

 $\angle AOB = \theta, \text{ then } z_2 = \frac{|z_2|}{|z_1|} z_1 e^{i\theta} \text{ (see Fig 6.47).}$ Let $z_1 = r_1 e^{i\alpha}$ and $z_2 = r_2 e^{i\beta}$ where $|z_1| = r_1, |z_2| = r_2.$ Then $\frac{z_2}{z_1} = \frac{r_2 e^{i\beta}}{r_1 e^{i\alpha}} = \frac{r_2}{r_1} e^{i(\beta - \alpha)}$ Thus, $\frac{z_2}{z_1} = \frac{r_2}{r_1} e^{i\theta} (\because \beta - \alpha = \theta) \implies z_2 = \frac{|z_2|}{|z_1|} z_1 e^{i\theta}$

MASTERJEE CONCEPTS

Multiplication of a complex number, z with i.

Let
$$z = r (\cos \theta + i \sin \theta)$$
 and $i = \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right)$, then $iz = r \left[\cos \left(\frac{\pi}{2} + \theta \right) + i \sin \left(\frac{\pi}{2} + \theta \right) \right]$.

Hence, iz can be obtained by rotating the vector z by right angle in the positive sense. And so on, to multiply a vector by -1 is to turn it through two right angles.

Thus, multiplying a vector by $(\cos \theta + i \sin \theta)$ is to turn it through the angle θ in the positive sense.

Anvit Tawar (JEE 2009, AIR 9)

Illustration 37: Suppose A(z_1), B(z_2) and C(z_3) are the vertices of an equilateral triangle inscribed in the circle |z| = 2. If $z_1 = 1 + \sqrt{3}i$, then z_2 and z_3 are respectively.

(a) $-2, 1-\sqrt{3}i$ (b) $-1+\sqrt{3}i, -2$ (c) $-2, -1+\sqrt{3}i$ (d) $-2, 2+\sqrt{3}i$

Sol: As we know $x + iy = re^{i\theta}$. Hence by using this formula we can obtain z_2 and z_3 .

$$z_{1} = 1 + \sqrt{3}i = 2e^{\frac{\pi}{3}}$$

Since, $\angle AOC = \frac{2\pi}{3}$ and $\angle BOC = \frac{2\pi}{3}$, $z_{2} = z_{1}e^{\frac{2\pi i}{3}}$ and $z_{3} = z_{2}e^{\frac{2\pi i}{3}}$
 $\Rightarrow z_{3} = 2e^{\pi i} = 2(\cos \pi + i\sin \pi) = -2$ and $z_{3} = 2e^{\frac{5\pi i}{3}}$
 $= 2\left[\cos\left(2\pi - \frac{\pi}{3}\right) + i\sin\left(2\pi - \frac{\pi}{3}\right)\right]$
 $= 2\left[\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right] = 2\left[\frac{1}{2} - \frac{\sqrt{3}}{2}i\right] = 1 - \sqrt{3}i.$

(JEE ADVANCED)

Figure 6.48

PROBLEM-SOLVING TACTICS

- (a) On a complex plane, a complex number represents a point.
- (b) In case of division and modulus of a complex number, the conjugates are very useful.
- (c) For questions related to locus and for equations, use the algebraic form of the complex number.
- (d) Polar form of a complex number is particularly useful in multiplication and division of complex numbers. It directly gives the modulus and the argument of the complex number.
- (e) Translate unfamiliar statements by changing z into x+iy.
- (f) Multiplying by $\cos\theta$ corresponds to rotation by angle θ about O in the positive sense.

- (g) To put the complex number $\frac{a+ib}{c+id}$ in the form A + iB we should multiply the numerator and the denominator by the conjugate of the denominator.
- (h) Care should be taken while calculating the argument of a complex number. If z = a + ib, then arg(z) is not always equal to $\tan^{-1}\left(\frac{b}{a}\right)$. To find the argument of a complex number, first determine the quadrant in which it lies, and then proceed to find the angle it makes with the positive x-axis. For example, if z = -1 - i, the formula $\tan^{-1}\left(\frac{b}{a}\right)$ gives the argument as $\frac{\pi}{4}$, while the actual argument is $\frac{-3\pi}{4}$.

FORMULAE SHEET

- (a) Complex number z = x + iy, where $x, y \in R$ and $i = \sqrt{-1}$.
- **(b)** If z = x + iy then its conjugate $\overline{z} = x iy$.

(c) Modulus of z, i.e.
$$|z| = \sqrt{x^2 + y^2}$$

(e) If y=0, then argument of z, i.e.
$$\theta = \begin{cases} 0, & \text{if } x > 0 \\ \pi, & \text{if } x < 0 \end{cases}$$

(f) If x=0, then argument of z, i.e. $\theta = \begin{cases} \frac{\pi}{2}, & \text{if } y > 0 \\ \frac{3\pi}{2}, & \text{if } y < 0 \end{cases}$

- (g) In polar form $x = r\cos\theta$ and $y = r\sin\theta$, therefore $z = r(\cos\theta + i\sin\theta)$
- (h) In exponential form complex number $z = re^{i\theta}$, where $e^{i\theta} = cos\theta + isin\theta$.

(i)
$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
 and $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$

(j) Important properties of conjugate

(i)
$$z + \overline{z} = 2 \operatorname{Re}(z)$$
 and $z - \overline{z} = 2 \operatorname{Im}(z)$

- (ii) $z = \overline{z} \Leftrightarrow z$ is purely real
- (iii) $z + \overline{z} = 0 \iff z$ is purely imaginary
- (iv) $z\overline{z} = [Re(z)]^2 + [Im(z)]^2$

$$(\mathbf{v}) \qquad \mathbf{z}_1 + \mathbf{z}_2 = \overline{\mathbf{z}}_1 + \overline{\mathbf{z}}_2$$

(vi)
$$\overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2$$

(vii)
$$\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$$

(viii) $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$ if $z_2 \neq 0$

(k) Important properties of modulus

If z is a complex number, then

(i)
$$|z| = 0 \Leftrightarrow z = 0$$

- (ii) $|z| = |\overline{z}| = |-z| = |-\overline{z}|$
- **(iii)** $-|z| \le \text{Re}(z) \le |z|$
- (iv) $|z| \leq Im(z) \leq |z|$

$$(\mathbf{v}) \quad \mathbf{z}\overline{\mathbf{z}} = |\mathbf{z}|^2$$

If z_1, z_2 are two complex numbers, then

(i)
$$|z_1 z_2| = |z_1| |z_2$$

(ii)
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
, if $z_2 \neq 0$
(iii) $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + \overline{z_1}z_2 + z_1\overline{z_2} = |z_1|^2 + |z_2|^2 + 2\text{Re}(z_1\overline{z_2})$

(iv)
$$|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - \overline{z_1}z_2 - z_1\overline{z_2} = |z_1|^2 + |z_2|^2 - 2\operatorname{Re}(z_1\overline{z_2})$$

(I) Important properties of argument

(i)
$$arg(\overline{z}) = -arg(z)$$

$$\begin{array}{ll} \mbox{(ii)} & \arg(z_1z_2) = \arg(z_1) + \arg(z_2) \\ \mbox{In fact } \arg(z_1z_2) = \arg(z_1) + \arg(z_2) + 2k\pi \\ & \mbox{where,} k = \begin{cases} 0, & \mbox{if} - \pi < \arg(z_1) + \arg(z_2) \leq \pi \\ 1, & \mbox{if} - 2\pi < \arg(z_1) + \arg(z_2) \leq -\pi \\ -1, & \mbox{if} \pi < \arg(z_1) + \arg(z_2) \leq 2\pi \end{cases} \\ \mbox{(iii)} & \mbox{arg}(z_1\overline{z}_2) = \arg(z_1) - \arg(z_2) \\ \mbox{(iv)} & \mbox{arg}\bigg(\frac{z_1}{z_2}\bigg) = \arg(z_1) - \arg(z_2) \end{array}$$

(v) $|z_1 + z_2| = |z_1 - z_2|$ $\Leftrightarrow \arg(z_1) - \arg(z_2) = \frac{\pi}{2}$ (vi) $|z_1 + z_2| = |z_1| + |z_2|$ $\Leftrightarrow \arg(z_1) = \arg(z_2)$ If $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$, then (vii) $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2|z_1||z_2|\cos(\theta_1 - \theta_2) = r_1^2 + r_2^2 + 2r_1r_2\cos(\theta_1 - \theta_2)$ (viii) $|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - 2|z_1||z_2|\cos(\theta_1 - \theta_2) = r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_1 - \theta_2)$

(m) Triangle on complex plane

(i) Centroid (G), $z_{G} = \frac{z_{1} + z_{2} + z_{3}}{3}$ (ii) Incentre (I), $z_{I} = \frac{az_{1} + bz_{2} + cz_{3}}{a + b + c}$

(iii) Orthocentre (H),
$$z_{H} \frac{z_{1} \tan A + z_{2} \tan B + z_{3} \tan C}{\sum \tan A}$$

(iv) Circumcentre (S),
$$z_s \frac{z_1(\sin 2A) + z_2(\sin 2B) + z_3(\sin 2C)}{\sin 2A + \sin 2B + \sin 2C}$$

(n) $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$

(o)
$$\sqrt{z} = \sqrt{x + i y} = \pm \left[\sqrt{\frac{|z| + x}{2}} + i \sqrt{\frac{|z| - x}{2}} \right]$$
 for $y > 0$

- (p) Distance between $A(z_1)$ and $B(z_2)$ is given by $|z_2 z_1|$
- (q) Section formula: The point P(z) which divides the join of the segment AB in the ratio m: n

is given by
$$z = \frac{mz_2 + nz_1}{m+n}$$
.

(r) Midpoint formula: $z = \frac{1}{2}(z_1 + z_2)$.

(s) Equation of a straight line

- (i) Non-parametric form: $z(\overline{z}_1 \overline{z}_2) \overline{z}(z_1 z_2) + z_1\overline{z}_2 z_2\overline{z}_1 = 0$
- (ii) Parametric form: $z = tz_1 + (1 t)z_2$
- (iii) General equation of straight line: $\overline{a}z + a\overline{z} + b = 0$
- (t) Complex slope of a line, $\mu = \frac{z_1 z_2}{\overline{z_1} \overline{z_2}}$. Two lines with complex slopes μ_1 and μ_2 are
 - (i) Parallel, if $\mu_1 = \mu_2$
 - (ii) Perpendicular, if $\mu_1 + \mu_2 = 0$
- (u) Equation of a circle: $|z z_0| = r$