
19. E L E C T R I C 
P O T E N T I A L  A N D 
C A P A C I T A N C E

1. INTRODUCTION

Associating a potential energy with a force allows us to apply the principle of the conservation of mechanical 
energy to closed systems involving the force. The principle allows us to calculate the results of experiments for 
which force calculations alone would be very difficult. In this chapter, we first define this type of potential energy 
and then put it to use. We will also discuss the behavior of conductors which can store the charges in it, in the 
presence of the electric field.

2. ELECTRIC POTENTIAL 

An electric field at any point can be defined in two different ways:

(i) by the field strength E


, and 

(ii) by the electric potential V at the point under consideration.

Both E


 and V are functions of position and there is a fixed relationship between these two. Of these the field 
strength E



 is a vector quantity while the electric potential V is a scalar quantity. The electric potential at any point 
in an electric field is defined as the potential energy per unit charge, and similarly, the field strength is defined as 
the force per unit charge. Thus,

0

UV
q

=    or   0U q V=

The SI unit of potential is volt (V) which is equal to joule per coulomb. So,

1V 1volt 1J / C 1 joule / coulomb= = =

According to the definition of potential energy, the work done by the electrostatic force in displacing a test charge  
q0 from point a to point b in an electric field is defined as the negative of change in potential energy between them, 
or a bU W −∆ = −   b a a bU U W −∴ − = −

Dividing this equation by q ,ο

b a a bU U W
q q q

−

ο ο ο

− = −   or  a b
a b

W
V V

q
−

ο

− =  since UV
qο

=

Thus, the work done per unit charge by the electric force when a charge body moves from point a to point b is equal 
to the potential at point a minus the potential at point b. We sometimes abbreviate this difference as ab a bV V V .= −



19.2  |   Electric Potential and Capacitance

Another way to interpret the potential difference Vab is that it is , equal to the work that must be done by an external 
force to move a unit positive charge from point b to point a against the electric force. Thus,

 
( )b a externalforce

a b

W
V V

q
−

ο

− =

In the equation i

i i

q1V
4 rο

=
πε ∑  or 1 dqV

4 rο

=
πε ∫ , if the whole charge is at equal distance ro from the 

point where V is to be evaluated, then we can write, netq1V .
4 rο ο

=
πε

, where netq  is the algebraic sum of 

all the charges of which the system is made.
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Illustration 1: Consider a non-conducting rod of length   having a uniform  
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Figure 19.1

charge density λ . Find the electric potential at P at a perpendicular distance 
y above the midpoint of the rod  (JEE MAIN)

Sol: The potential due to the small length element dx of the rod at a point p 

at distance r apart is given by
o

dq 1dV
4 r

= ×
πε

 where dq is the charge on dx. 

The electric field due to the rod is given by VE
r

∂
= −

∂
.

Consider a differential element of length dx’ which carries a charge dq dx'= λ
. As shown in Fig.19.1, the source element is located at (x’, 0), while the field 
point P is located on the y-axis at (0,y). 

The distance from dx’ to P is ( )1/2'2 2r x y= + . 

Its contribution to the potential is given by 
( )1/2'2 2

1 dq 1 dx'dV
4 r 4 x yο ο

λ
= =

πε πε +

Taking V to be zero at infinity, the total potential due to the entire rod is 

/2/2 '2 2
/2 '2 2 /2

dx'V ln x' x y
4 4x y−

−ο ο

λ λ  = = + +  πε πε+
∫









  

Figure 19.2
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=  πε  − + + 

 

 

Where we have used the integration formula

' '2 2

'2 2

dx' In x x y
x y

 = + + 
 +

∫

A plot of ( )V y / Vο , where V / 4ο ο= λ πε , as a function of y /   is shown in Fig. 19.2. (Electric potential along the axis 
that passes through the midpoint of a non-conducting rod.)
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In the limit y  , the potential becomes

( ) ( )
( ) ( )

( )
( )

2 2

2 2

/ 2 / 2 1 2y / 1 1 2y /
V ln ln

4 4/ 2 / 2 1 2y / 1 1 2y /ο ο

   
+ + + +   λ λ

= =   πε πε   − + + − + +   

   

   

2

2 2 2

2ln ln ln
4 4 2 y2y / yο ο ο

     λ λ λ
≈ = =        πε πε πε     

 



 

The corresponding electric field can be obtained as 
( )

y 2 2

V / 2E
y 2 y / 2 yο

∂ λ
= − =

∂ πε
+





Illustration 2: Consider a uniformly charged ring of radius R and charge  

Figure 19.3
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density λ . What is the electric potential at a distance z from the central 
axis?   (JEE MAIN)

The Fig. 19.3 shows a non-conducting ring of radius R with uniform 
charge density λ

Sol: The point lies along the axis of the ring hence, the potential at the 

point due to the charge on the ring is given by 
o

dqV dV
4 r

= =
πε∫ ∫  where 

r is the distance of point from ring. As the point lies on the z axis, the 

field due to ring is given by Z
VE
z

∂
= −

∂
.

Consider a small differential element d Rd '= φ  on the ring. The element carries a charge dq d Rd '= λ = λ φ , and its 

contribution to the electric potential at P is 
2 2

1 dq 1 Rd 'dV
4 r 4 R zο ο

λ φ
= =

πε πε +

The electric potential at P due to the entire ring is 
2 2 2 2 2 2

1 R 1 2 R 1 QV dV d '
4 4 4R Z R z R zο ο ο

λ πλ
= = φ = =

πε πε πε+ + +
∫ ∫  

Where we have substituted Q 2 R= π λ  for the total charge on the ring. In the limit z R,

The potential approaches its “point-charge” limit: 1 QV
4 zο

≈
πε

The z-component of the electric field may be obtained as 
( )

2 3/22 2 2 2

V 1 Q 1 QzE
z z 4 4R z R zο ο

 ∂ ∂
 = − = − =
 ∂ ∂ πε πε+  +

 

Illustration 3: Consider a uniformly charged disk of radius R and charge density σ  

Figure 19.4
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lying in the xy-plane. What is the electric potential at a distance z from the 
central axis?  (JEE ADVANCED)

Sol: The disc can be assumed to be composed of many co-centric rings. Thus 

the potential due to small ring is 
o

dqdV
4 r

=
πε

 where r is the distance from the 

surface of ring. As the point lie on the z axis the field due to ring is given by 

Z
VE
z

∂
= −

∂
.
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Consider a small differential circular ring element of radius r’ and width dr’. The charge on the ring is
( )dq' dA' 2 r 'dr '= σ = σ π . The field at point P located along the z-axis a distance z from the plane of the disk is to 

be calculated. From the Fig. 19.4, we also see that the distance from a point on the ring to P is ( )1/2'2 2r r z= + . 

Therefore, the contribution to the electric potential at P is 
( )

'2 2

2 r 'dr '1 dq 1dV
4 r 4 r zο ο

σ π
= =

πε πε +

By summing over all the rings that make up the disk, we have

RR '2 2 2 2

'2 2

2 r 'dr 'V r z R z z
4 2 2r zο

οο ο ο

σ π σ σ   = = + = + −      πε ε ε+
∫  

In the limit z R , 
1/22 2

2 2
2 2

R RR Z z 1 z 1 .... ,
z 2z

   
+ = + = + +      

   

And the potential simplifies to the point-charge limit:

( )22 RR 1 1 QV .
2 4 42 z z zο ο ο

σ πσ
≈ = =

ε πε πε

As expected, at large distance, the potential due to a non-conducting charged disk is the same as that of a point 
charge Q. A comparison of the electric potentials of the disk and a point charge is shown in Fig. 19.5. 
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Figure 19.5

The electric potential is measured in terms of V Q / 4 Rο ο= πε .

Note that the electric potential at the center of the disk (z=0) is finite, and its value is

c 2

R Q R 1 2QV . 2V
2 2 4 RR ο

ο ο ο

σ
= = = =

ε ε πεπ
 

This is the amount of work that needs to be done to bring a unit charge from infinity and place it at the center of 
the disk.

The corresponding electric field at P can be obtained as:

z 2 2

V z zE
Z 2 z R zο

 ∂ σ
 = − = −

∂ ε  + 
 

In the limit R z,  the above equation becomes 2E / 2 ο= σ ε , which is the electric field for an infinitely large non-
conducting sheet.

Illustration 4: Consider a metallic spherical shell of radius ‘a’ and charge Q, as shown in Fig. 19.6. 

(a) Find the electric potential everywhere.

(b) Calculate the potential energy of the system. (JEE MAIN)
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Sol: The sphere is symmetrical body. Thus the potential at the surface is constant while  
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Figure 19.6

the potential changes outside of the sphere at a distance a r< < ∞ . 

2

Q r̂, r a
E 4 r

0, r a
ο


>

= πε
 <



The electric potential may be calculated by B
B A A

V V E.ds− = −∫
 

For r>a, we have ( ) ( ) r
e'2

Q 1 Q QV r V dr ' k
4 r r4 r∞

οο

− ∞ = − = =
πεπε∫  

We have chosen ( )V 0∞ =  as our reference point. On the other hand, for r<a,  

Figure 19.7

V

K Qe

rK Qe

a

a
r

the potential becomes

( ) ( ) ( )a r

a
V r V drE r a drE(r a)

∞
− ∞ = − > − <∫ ∫

a
e2

Q 1 Q Qdr k
4 a a4 r∞

οο

= − = =
πεπε∫    

A plot of the electric potential is shown in Fig. 19.7. Note that potential V is 
constant inside a conductor. 

Illustration 5: An insulated solid sphere of radius a has a uniform charge densityρ . Compute the electric potential 
everywhere.  (JEE MAIN) 

Sol: 

2

3

Q r̂, r a
4 r

E
Qr r̂, r a

4 r

ο

ο


>

πε= 
 <
 πε



    

Figure 19.8
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For r > a, 

( ) ( ) r
1 e'2

Q 1 Q QV r V dr ' k
4 r r4 r∞

οο

− ∞ = − = =
πεπε∫  

On the other hand, the electric potential at 2P  inside the sphere is given by

( ) ( ) ( ) ( )a r a r
2 2 3a a

Q QrV r V drE r a E r a dr dr ' r '
4 r 4 a∞ ∞

ο ο

− ∞ = − > − < = − −
πε πε∫ ∫ ∫ ∫

 

Figure 19.9

V

3k Qe

2a

k Qe

a

a r

( )
2

2 2
3 2

1 Q 1 Q 1 1 Q rr a 3
4 a 4 2 8 aa aο ο ο

 
= − − = −  πε πε πε  

 

2

e 2

Q rk 3
2a a

 
= −  

 

A plot of electric potential as a function of r is given in Fig. 19.9. 
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2.1 Deriving Electric Field from the Electric Potential 
In previous equations, we established the relation between E



 and V. If we consider two points which are separated 
by a small distance ds



, the following differential form is obtained:

dV E.ds= −
 

 

In Cartesian coordinates, x y 2
ˆ ˆ ˆE E i E j E k= + +



 and ˆ ˆ ˆds dxi dyj dzk= + +


, we have 

( ) ( )x y 2 x y z
ˆ ˆ ˆ ˆ ˆ ˆdV E i E j E k . dxi dyj dzk E dx E dy E dz= + + + + = + +  

Which implies

x y z
V V VE ,E ,E
x y z

∂ ∂ ∂
= − = − = −

∂ ∂ ∂
 

By introducing a differential quantity called the “del (gradient) operator”

ˆ ˆ ˆi j k
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

 

The electric field can be written as

x y 2
V V Vˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆE E i E j E k i j k i j k V V
x y z x y z

   ∂ ∂ ∂ ∂ ∂ ∂
= + + = − + + = − + + = −∇   ∂ ∂ ∂ ∂ ∂ ∂   



E V= −∇


 

3. EQUIPOTENTIAL SURFACES

The equipotential surfaces in an electric field have the same basic idea as topographic maps used by civil engineers 
or mountain climbers. On a topographic map, contour lines are drawn passing through the points having the 
same elevation. The potential energy of a mass m does not change along a contour line as the elevation is same 
everywhere.

By analogy to contour lines on a topographic map, an equipotential surface is a three dimensional surface on which 
the electric potential V is the same at every point on it. An equipotential surface has the following characteristics.

(a) Potential difference between any two points in an equipotential surface is zero.

(b) If a test charge q0 is moved from one point to the other on such a surface, the electric potential energy q0V  
remains constant.

(c) No work is done by the electric force when the test charge is moved along this surface.

(d) Two equipotential surfaces can never intersect each other because otherwise the point of intersection will 
have two potentials which is of course not acceptable.

(e) As the work done by electric force is zero when a test charge is moved along the equipotential surface, it 
follows that E



 must be perpendicular to the surface at every point so that the electric force q Eο


 will always 
be perpendicular to the displacement of a charge moving on the surface, causing the work done to be 0. 
Thus, field lines and equipotential surfaces are always mutually perpendicular. Some equipotential surfaces 
are shown in Fig. 19.10.

The equipotential surfaces are a family of concentric spheres for a point charge or a sphere of charge and are a 
family of concentric cylinders for a line of charge or cylinder of charge. For a special case of a uniform field, where 
the field lines are straight, parallel and equally spaced the equipotential are parallel planes perpendicular to the 
field lines.
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Figure 19.10

While drawing the equipotential surfaces we should keep in mind the two main points.

•  These are perpendicular to field lines at all places.

•  Field lines always flow from higher potential to lower potential.

Anurag Saraf (JEE 2011 AIR 226)

Illustration 6: Suppose the electric potential due to a certain charge distribution can be written in Cartesian 
Coordinates as ( ) 2 2V x, y,z Ax y Bxyz= +  where A,B and C are constants. What is the associated electric field?  
 (JEE MAIN)

Sol: The field is given by r
VE
r

∂
= −

∂
 where r is the respective Cartesian co-ordinate.

2
x

VE 2Axy Byz
x

∂
= − = − −

∂
 ; 2

y
VE 2Ax y Bxz
y
∂

= − = − −
∂

 ; z
VE Bxy
z

∂
= − = −

∂

Therefore, the electric field is ( ) ( )2 2ˆ ˆ ˆE 2Axy Byz i 2Ax y Bxz j Bxyk= − − − + −


4. ELECTRIC POTENTIAL ENERGY

The electric force between two charges is directed along the line of the charges and is proportional to the inverse 
square of their separation, the same as the gravitational force between two masses. Like the gravitational force, the 
electric force is conservative, so there is a potential energy function U associated with it.

When a charged particle moves in an electric field, the field exerts a force that can do work on the particle. This 
work can always be expressed in terms of electric potential energy. Just as gravitational potential energy depends 
on the height of a mass above the earth’s surface, electric potential energy depends on the position of the charged 
particle in the electric field. When a force F



acts on a particle that moves from point a to point b, the work a bW →  

done by the force is given by, b b
a b a a

W F.ds F cos ds→ = = θ∫ ∫
 

Here a bW →  is the work done in displacing the particle from a to b by the conservative force (here electrostatic) 
not by us. Moreover we can see from Eq. (i) that if a bW →  is positive, the change in potential energy U∆ is negative 
and the potential energy decreases. So, whenever the work done by a conservative force is positive, the potential 
energy of the system decreases and vice-versa. That’s what happens when a particle is thrown upwards, the work 
done by gravity is negative, and the potential energy increases. 

MASTERJEE CONCEPTS
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4.1 Potential Energy in a System of Charges
If a system of charges is assembled by an external agent, then extU W W .∆ = − = +  

q2

P

r12

q1

Figure 19.11

That is, the change in potential energy of the system is the work that must be put 
in by an external agent to assemble the configuration. A simple example is lifting a 
mass m through a height h. The work done by an external agent you, is +mgh (The 
gravitational field does work -mgh). The charges are brought in from infinity without 
acceleration i.e. they are at rest at the end of the process. Let’s start with just two 
charges q1 and q2. Let the potential due to q1 at a point P be V1 (See Fig. 19.11).

The work W2 done by an agent in bringing the second charge q2 from infinity to P 
is then 2 2 1W q V= . (No work is required to set up the first charge and W1 = 0). Since 

1 1 0 12V q / 4 r= πε , where q1 and r12 is the distance measured from q1 to P, we have 

1 2
12 2

0 12

q q1U W
4 r

= =
πε

 

If q1 and q2 have the same sign, positive work must be done to overcome  

Figure 19.12

q2

q1

r13

r12

r23

q2

P

the electrostatic repulsion and the potential energy of the system is 
positive, U12 > 0. On the other hand, if the signs are opposite, then 
U12 < 0 due to the attractive force between the charges. To add a 
third charge 3q  to the system, the work required is 

( ) 3 1 2
3 3 1 2

13 23

q q q
W q V V

4 r rο

 
= + = +  πε  

    

The potential energy of this configuration is then

1 3 2 31 2
2 3 12 13 23

12 13 23

q q q qq q1U W W U U U
4 r r rο

 
= + = + + = + +  πε  

 

The equation shows that the total potential energy is simply the sum of the contributions from distinct pairs. 

Generalizing to a system of N charges, we have 
N N

i j

i 1 j 1 ij
j i

q q1U
4 r= =ο

>

=
πε ∑∑  

Where the constraint j>i is placed to avoid double counting each pair. Alternatively, one may count each pair twice 
and divide the result by 2. This leads to 

( )
N N N N N

i j j
i i i

i 1 j 1 i 1 j 1 i 1ij ij
j i j i

q q q1 1 1 1U q q V r
8 r 2 4 r 2= = = = =ο ο

≠ ≠

 
 

= = = 
πε πε  

 

∑∑ ∑ ∑ ∑  

Where ( )iV r , the quantity in the parenthesis is the potential at ir


 (location of qi) due to all the other charges.

4.2 Continuous Charge Distribution
If the charge distribution is continuous, the potential at a point P can be found by summing  

Figure 19.13

r

P

E
��

�
q

r

>

over the contributions from individual differential elements of charge dq.

Consider the charge distribution shown in Fig. 19.13. Taking infinity as our reference point with 

zero potential, the electric potential at P due to dq is 1 dqdV
4 rο

=
πε

 

Summing over contributions from all differential elements, we have 1 dqV
4 rο

=
πε ∫
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Illustration 7: Find the potential due to a uniformly charged sphere of radius R and charge  

Figure 19.14

R

�per unit volume ρ  at different points in space.  (JEE MAIN)

Sol: The field due to uniformly charged solid sphere is 
3

2 2
o o

q RE
4 r 3 r

ρ
= =

πε ε
. The potential 

inside the sphere is always constant while outside sphere at a distance R r< < ∞  is given 

by 
rr

1 R R
V Edl  =  ∫

For a point outside the sphere, we can integrate the electric field outside to obtain an expression for the electric 
field outside.

3 3r r

2

R RV E.dl dx
3 r3 x∞ ∞

οο

ρ ρ
= − = − =

εε∫ ∫ ∫
 

The dots represent a spherically symmetric distribution of charge of radius R, whose  

Figure 19.15

v

-R R

3kQ

2R

r

volume charge density ρ  is a constant.

For finding the potential at an inside point, we integrate as before. Keep in mind 
that the lower limit in this integration cannot be infinity, as infinity does not lie 
inside the sphere. But lower limit can be assumed to be R where potential is not 
zero but a known value.

( )2 2
V r rin
V R RR

R rxdV E.dl dx
3 6ο ο

ρ −ρ
= − = − =

ε ε∫ ∫ ∫
 

 ;
( )2 22

R r

3R rRV V
3 6ο ο

ρ −ρ
= ⇒ =

ε ε
.

This potential is plotted in Fig. 19.15. 

Illustration 8: A non-conducting disc of radius a and uniform positive surface charge density σ  is placed on the 
ground with its axis vertical. A particle of mass m and positive charge q is dropped, along the axis of the disc from 
a height H with zero initial velocity. The particle has q / m 4 g /ο= ε σ

(a) Find the value of H if the particle just reaches the disc.

(b) Sketch the potential energy of the particle as a function of its height and find its equilibrium position.  
 (JEE ADVANCED)

Sol: It is known that, for non conducting disc the potential at a point situated at height H above  

Figure 19.16

H

a O

P qm

the disc is given by 2 2
pV a H H

2 ο

σ  = + −  ε
 where a is the radius of the disc. When the charge of 

the particle of mass m falls along the axis of the disc, the change in the gravitational portential 
energy is equal to gain in its electric potential energy. As we required minimum H, the kinetic 
energy, will be zero.

As we have derived in the theory, 2 2
pV a H H

2 ο

σ  = + −  ε

Potential at centre, (O) will be aV
2ο

ο

σ
=

ε
 (H=0) 

(a) Particle is released from P and it just reaches point O. Therefore, from observation of mechanical energy

Decrease in gravitational potential energy = increase in electrostatic potential energy ( KE 0∆ =  because i fK K 0= = )

mgH q V Vο ρ
 ∴ = −   or  2 2qgH a a H H

m 2 ο

   σ  = − + +      ε  
  … (i)
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4 gq
m

οε=
σ

 
 q 2g

2 mο

σ
∴ =

ε

Substituting in Eq. (i), we get

2 2gH 2g a H a H = + − +  
 or  ( ) 2 2H a H a H

2
= + − +  or 2 2 Ha H a

2
+ = +

or 
2

2 2 2 Ha H a aH
4

+ = + +  or 23 H aH
4

=  or 4H a
3

=  and H 0=  ( )H 4 / 3 a∴ =

(b) Potential energy of the particle at height H = Electrostatic potential energy + gravitational potential energy

U qV mgH= +

Here V=potential at height H

2 2qU a H H mgH
2 ο

σ  = + − +  ε
  … (ii)

At equilibrium position, dUF 0
dH
−

= =

Differentiating E.q. (ii) w.r.t.H

or ( )
2 2

q 1 1mg 2H 1 0
2 2 a Hο

  σ
+ − =  ε    + 

 q 2mg
2 ο

 σ
= 

ε  

 
2 2

Hmg 2mg 1 0
a H

 
∴ + − = 

 + 
 or 

2 2

2H1 2 0
a H

+ − =
+

2 2

2H 1
a H

=
+

 or 
2

2 2

H 1
4a H

=
+

 or 2 23H a=  or aH
3

=

From Eq. (ii), we can see that,

U 2mga=  at H 0=  and minU U 3mga= =  at aH
3

=
 

U

2mga

3mga

O aA  3 H

Figure 19.17

Therefore, U-H graph will be as shown.

Note that at aH
3

= , U is minimum.

Therefore, aH
3

=  is stable equilibrium position. 

5. ELECTRIC DIPOLE

An electric dipole is a system of equal and opposite charges separated by a fixed distance. Every electric dipole is 
characterized by its electric dipole moment which is a vector P



 directed from the negative to the positive charge.

The magnitude of dipole moment is, P=(2a)q; Here, 2a is the distance between the two charges.

5.1 Electric Potential and Field Due to an Electric Dipole

Consider an electric dipole lying along positive y-direction with its center at origin. 

Figure 19.18
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ˆP 2aqj=
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The electric potential due to this dipole at point A(x, y, z) as shown 

Figure 19.19

y

z

x + z + (y-a)
2 2 2

+q
+

-

a

a

x + z + (y+a)
2 2 2

A (x, y, z)

-q

is simply the sum of the potentials due to the two charges. Thus,

( ) ( )2 22 2 2 2

1 q qV
4 x y a z x y a zο

 
 

= − πε  + − + + + + 

By differentiating this function, we obtain the electric field of the 
dipole.

( ) ( )
x 3/2 3/22 22 2 2 2

V q x xE
x 4

x y a z x y a zο

 
 ∂  = = − 

∂ πε     + − + + + +        

( ) ( )
y 3/2 3/22 22 2 2 2

y a y aV qE
y 4

x y a z x y a zο

 
 − +∂  = = − 

∂ πε     + − + + + +        

( ) ( )
z 3/2 3/22 22 2 2 2

V q z xE
z 4

x y a z x y a zο

 
 ∂  = = − 

∂ πε     + − + + + +        

Special Cases

(i) On the axis of the dipole (say, along y-axis) X=0, z=0

( )2 2

q 1 1 2aqV
4 y a y a 4 y aο ο

 
∴ = − = πε − +  πε −

or 
( )2 2

pV
4 y aο

=
πε −

 (as 2aq = p) i.e., at a distance r from the Centre of the dipole(y=r) 

( )2 2

pV
4 r aο

≈
πε −

 or axis 2

pV
4 rο

=
πε

 (for r a )

V is positive when the point under consideration is towards positive charge and negative if it is towards negative charge.

Moreover the components of electric field are as under,

x zE 0,E 0= =       (as x = 0, z = 0)

and 
( ) ( )

y 2 2

q 1 1E
4 y a y aο

 
 = − πε − +  

 
( )22 2

4ayq

4 y aο

=
πε −

 or 
( )

y 22 2

2py1E
4 y aο

=
πε −

Note that yE  is along positive y-direction or parallel to P


. Further, at a distance r from the centre of the dipole (y=r).

( )
y 22 2

1 2prE
4 r aο

=
πε −

 or axis 3

1 2pE .
4 rο

≈
πε

 for r a  

(ii) On the perpendicular bisector of dipole

Say along x-axis (it may be along z-axis also). y = 0, z = 0
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2 2 2 2

1 q qV 0
4 x a x aο

 
∴ = − = 

πε  + + 
 or    

bisectorV 0⊥ =

Moreover the components of electric field are as under, x zE 0 E 0= =

and 
( ) ( )

y 3/2 3/22 2 2 2

q a aE
4 x a x aο

 
 −

= = − 
πε  + +

 

 
( )3/22 2

2aq

4 x aο

−
=

πε +
; 

( )
y 3/22 2

1 PE .
4 x aο

=
πε +

 

Here, negative sign implies that the electric field is along negative y-direction or antiparallel to P


. Further, at a 
distance r from the Centre of dipole (x = r), the magnitude of electric field is,

( )3/22 2

1 PE
4 r aο

=
πε +

 or bisector 3

1 PE .
4 r⊥

ο

≈
πε

 (for r a ) 

5.2 Force on Dipole
Suppose an electric dipole of dipole moment P 2aq=



 is  

F1

�

E
�

+q

A
a

O

-q

a

F2

�

B

P
�

E
��

Figure 19.20

placed in a uniform electric field E


 at an angle θ . Here, θ  
is the angle between P



 and E


. A force 1F qE=
 

 will act on 
positive charge and 

2F qE= −
 

 on negative charge. Since, 1 2F andF
 

 are equal in 
magnitude but opposite in direction. Hence, 1 2F F 0+ =

 

 or 
netF 0=


Thus, net force on a dipole in uniform electric field is zero. 
While in non-uniform electric field it may or may not be zero.

5.3 Torque on Dipole

The torque of 1F


 about O, ( )11 OA F q OA Eτ = × = ×
    

And torque of 2F


 about O is, ( )22 OB F q OB Eτ = × = − ×
    

 ( )q BO E= ×
 

The net torque acting on the dipole is,

( ) ( )1 2 q OA E q BO Eτ = τ + τ = × + ×
      

( )q OA BO E= × ×
  

( )q BA E= ×
 

  or P xEτ =
  

Thus, the magnitude of torque is PEsinτ = θ . The direction of torque is perpendicular to the plane of paper inwards. 
Further this torque is zero at 0οθ =  or 180οθ = , i.e., when the dipole is parallel or antiparallel to E



 and maximum 
at 90οθ = .

5.4 Potential Energy of Dipole
When an electric dipole is placed in an electric field E



, a torque P Eτ = ×
  

 acts on it.  

Figure 19.21

+q

90
o

-q

If we rotate the dipole through a small angle dθ , the work done by the torque is,

dW d= τ θ ;  dW PEsin d= − θ θ

The work is negative as the rotation dθ  is opposite to the torque. The change in 
electric potential energy of the dipole is therefore.

dU dW PEsin d= − = θ θ
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Now, at angle θ = 90°, the electric potential energy of the dipole may be assumed to be zero as net work done by 
the electric forces in bringing the dipole from infinity to this position will be zero.

Integrating, dU PEsin d= θ θ

From 090 toθ , we have 
90 90

dU PEsin d
θ θ
ο ο= θ θ∫ ∫  or  ( ) ( ) 90

U U 90 PE cos
θο
ο θ − = − θ 

( )U PEcos P E∴ θ = − θ = − ⋅
 

If the dipole is rotated from an angle θ1 to θ2 then

Work done by external forces = ( ) ( )2 1U Uθ − θ   or ( )ext.forces 2 1W PEcos PEcos= − θ − − θ

Or ( )ext.forces 1 2W PE cos cos= θ − θ  and work done by electric forces, ( )electric force ext.force 2 1W W PE cos cos= − = θ − θ

Illustration 9: Figure 19.22 is a graph of Ex, the x component of the electric field,  

Figure 19.22

2000

1000

E (V/m)X

�V=-Area

0 x(m)
0 1 x

versus position along the x axis. Find and graph V(x). Assume V = 0; V at x = 0m.                       
               (JEE MAIN)

Sol: The potential V(x) is given by V=E•dx=Area of the shaded region of the graph.

The potential difference is the negative of the area under the curve.

xE  is positive throughout this region of space, meaning that E


points in the positive 
x direction. 

If we integrate from x-0, then iV V(x 0) 0= − − . The potential for x>0 is the negative of the triangular area under the 
xE  curve. We can see that xE 1000xV / m= , where x is in meters(m). Thus,

( )tV V x 0= = − (Area under the xE curve) 

Figure 19.23

1000

2000

1 2
x

v(x) = -500x V
2

v(v)

( )( ) 21 1base height x 1000x 500x V.
2 2
× × = − = −

Figure 19.23 shows that the electric potential in this region of space is parabolic, 
decreasing from 0 V at x=0 m to -2000V at x=2m.

The electric field points in the direction in which V is decreasing. We’ll soon see that 
as this is a general rule.

Illustration 10: The electric potential at any point on the central axis of a uniformly charged disk is given by 
2 2V z R z .

2 ο

σ  = + − 
 ε

Starting with this expression, derive an expression for the electric field at any point on the axis of the disk.  
 (JEE MAIN)

Sol: As the point lie on the z axis the field due to ring is given by Z
VE
z

∂
= −

∂
.

Conceptualize/Classify: We want the electric field E


 as a function of distance z along the axis of the disk. For 
any value of z, the direction of E



 must be along that axis because the disk has circular symmetry about that axis. 
Thus, we want the component zE of E



 in the direction of z. This component is the negative of the rate at which the 
electric potential changes with distance z.

Compute: Thus, from the previous equations, we can write 

2 2
z

V dE z R z
z 2 dzο

∂ σ  = − = − + − 
 ∂ ε

; 
2 2

z1
2 z Rο

 σ
 = −
 ε + 

.
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6. CAPACITOR 

A capacitor is a combination of two conductors placed close to each other. It is used to store energy electrostatically 
in an electric field. The ‘non-conducting’ dielectric acts to increase the capacitor’s charge capacity. Capacitors are 
widely used as parts of electrical circuits in many common electrical devices. Unlike a resistor, a capacitor does not 
dissipate energy. Instead, a capacitor stores energy in the form of an electrostatic field between its plates.

The physics of capacitors can be utilized to any scenario involving electric fields. For example, Earth’s atmospheric 
electric field is analyzed by meterologists as being produced by a huge spherical capacitor that partially discharges 
via lightning. The charge that is collected as they slide along snow can be modeled as being stored in a capacitor 
that frequently discharges as sparks.

7. CAPACITANCE

There are 2 conductors in a capacitor. One conductor has positive charge (positive plate)  

Figure 19.24

and the other has an equal and opposite negative charge (negative plate). The charge 
on the positive plate is called the charge on the capacitor and the potential difference 
between the plates is called the potential of the capacitor. For a given capacitor, the 
charge Q on the capacitor is proportional to the potential difference V between the 
plates Thus, Q∝V or, Q=CV. 

The proportionality constant C is called the capacitance of the capacitor. It depends on the shape, size and 
geometrical placing of the conductors and the medium between them.

The SI unit of capacitance is coulomb per volt which is written as Farad. The symbol F is used for it.

Illustration 12: A Capacitor gets a charge of 60µC when it is connected to a battery of emf 12V. Calculate the 
capacitance of the capacitor. (JEE MAIN)

Sol: The capacitance is given by QC
V

=

The potential difference between the plates is the same as the emf of the battery which is 12V. 

Thus, the capacitance is Q 60 CC 5 F.
V 12V

µ
= = = µ

8. CALCULATING CAPACITANCE

To calcutate the capacitance of a capacitor once we know its geometry:-

(a) Assume a charges q and –q on the plates ; 

(b) Calculate the electric field E between the plates in terms of this charge, using Gauss’ law;

(c) Knowing E , calculate the potential difference V between the plates. 

(d) Calculate C.

9. TYPES OF CAPACITORS

9.1 Parallel Plate Capacitor
A parallel-plate capacitor contains two large plane plates parallel to each other  +Q

-Q

d

Figure 19.25

with a small separation between them. Suppose, the area of each of the surfaces 
is A and the separation between the two plates is d. Also, assume that vacuum 
fills the space between the plates. 
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The magnitude of charge density on each of these surfaces is given by Q
A

σ=

Let us draw a small area A parallel to the plates and in between them,  

Figure 19.26

B

V+ �A’

�A
E

+ + + + + + + +

V- A -Q
- - - - - - - -

+Q

d

draw a cylinder with A as a cross-section and terminate it by another 
symmetrically situated area A’ inside the positive plate. The flux through 
A’ and through the curved part inside the plate is zero as the electric 
field is zero inside a conductor. The flux through the curved part outside 
the plates is also zero as the direction of the field E is parallel to this 
surface. 

The flux through A is E. A E A.φ= ∆ = ∆
 

 The only charge inside the Gaussian surface is QQ A A.
A

∆ = σ∆ = ∆

From Gauss’s law, in 0E.dS Q /= ε∫
 



  or,  
0

QE A A
A

∆ = ∆
ε

 ;  or, 
0

QE .
A

=
ε

The potential difference between the plates is 
B

A

V V V E.dr.+ −= − = −∫
 

B

0A

QdE.dr Edr and V E dr Ed
A

= − = = =
ε∫

 

 

The capacitance of the parallel-plate capacitor is 0 0Q A AQC .
V Qd d

ε ε
= = =

Illustration 13: Calculate the capacitance of a parallel-plate capacitor having 20cm x 20cm square plates separated 
by a distance of 1.0mm.  (JEE MAIN)

Sol:  The capacitance is given by 0A
C

d
ε

= .

The capacitance is 
12 1 4 2

100
3

A 8.85 10 Fm 400 10 m
C 3.54 10 F 350pF.

d 1 10 m

− − −
−

−

ε × × ×
= = = × =

×

9.2 Cylindrical Capacitor
A cylindrical capacitor consists of a solid or a hollow cylindrical conductor  

Figure 19.27

V+

V-

x R1 R2

P

E r

Q

L

-Q

surrounded by another coaxial hollow cylindrical conductor. Let l be the length of 
the cylinders and R1 and R2 be the radii of the inner and outer cylinders respectively. 
If the cylinders are long as compared to the separation between them, the electric 
field at a point between the cylinders will be radial and its magnitude will depend 
only on the distance of the point from the axis.

To calculate the electric field at the point P, at a distance r, draw a coaxial cylinder 
of length x through the point. A Gaussian surface is made by the cylinder and its 
two cross sections. The flux through the cross sections is zero as the electric field 
is radial wherever it exists and hence is parallel to the cross sections. 

The flux through the curved part is E dS E2 rxφ = = π∫ E .dS EdS⇒ φ= =∫ ∫
 



. 

The charge enclosed by the Gaussian surface is in 0
0

Q Q QQ x. E2 rx x / or, E
l l 2 rl

 
= π = ε =  πε  

, in 0
0

Q Q QQ x. E2 rx x / or, E
l l 2 rl

 
= π = ε =  πε 

The potential difference between the cylinders is 
RB 1

2

0 0 1A R2

RQ QV V V E.dr dr ln .
2 rl 2 l R+ −= − =− =− =
πε πε∫ ∫

 

The capacitance is 
( )

0

2 1

2 lQC
V ln R / R

πε
= =
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9.3 Spherical Capacitor
A Spherical Capacitor consists of two concentric spherical shells, of radii a and b. As a Gaussian surface we draw a 

sphere of radius r concentric with the two shells ( )2
0 0q EA E 4 r ,= ε = ε π

 
in which the area of the spherical Gaussian 

surface is given by 24 rπ . We solve equation for E, obtaining 
2

0

1E ,
4 r

=
πε  

which we recognize as the expression for 

the electric field due to a uniform spherical charge distribution

a

2b
0 0 0

q dr q 1 1 q b aV Eds ,
4 4 a b 4 abr

+

−

   −
= = − = − =   πε πε πε   
∫ ∫  Substituted – dr for ds 

0
abC 4

b a
= πε

−
 (Spherical capacitor).

Isolated Sphere

We can assign a capacitance to a single isolated spherical conductor of radius R by assuming that the “missing 

plate” is a conducting sphere of infinite radius. 0
aC 4

1 a / b
= πε

−
.

If we then let b ∞ and substitute R for a, we find 0C 4 R= πε  (isolated sphere)

• Earth can be considered as a capacitor with infinite capacitance.

• When a conductor is grounded and charge flows into the earth, the ground is still at potential zero.

 GV Abhinav (JEE 2012 AIR 329)

Illustration 14: Three identical metallic plates are kept parallel to one another at a separation of a and b. The outer 
plates are connected by a thin conducting wire and a charge Q is placed on the central plate. Find final charges on 
all the six surfaces. (JEE ADVANCED)

Sol: The charge on any plate is computed using q CV=  where C is the capacitance  

Figure 19.28

1 2 3 4 5 6

a b

of the plate and V is the potential difference applied on it. The chrge induced in 
plates A and C are such that total q(A) q(C) 0+ = . Plates A and C are at the same 
potential.

Let the charge distribution in all the six faces be as shown in Fig. 19.28. While 
distributing the charge on different faces, we have used the fact that opposite faces 
have equal and opposite charges on them.

Net charge on plates A and C is zero. 

Hence, 2 1 3 1q q q q Q 0− + + − =  Or 2 3q q Q+ =           ….. (i)     

a b

E1

E2

q2 -q2 -q1

(Q-q )1

(q-Q )1

q3

Figure 19.29

 

Further A anc C at same potentials. Hence, B A B C 1 2V V V V or E a E b− = − =

1 1

0 0

q Q q
.a .b

A A
−

=
ε ε

 (A= Area of plates); ( )1 1 1
Qbq a Q q b q

a b
= − ∴ =

+
         ….. (ii)

Electric field inside any conducting plate (say inside C) is zero. Therefore,

32 1 1 1 1

0 0 0 0 0 0

qq q q Q q q Q
0

2A 2A 2A 2A 2A 2A
− −

− + + + − =
ε ε ε ε ε ε

MASTERJEE CONCEPTS
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Solving these three equations, we get 1 2 3
Qb Qq , q q

a b 2
= = =

+

10. COMBINATION OF CAPACITORS

The desired value of capacitance can be obtained by combining more than one  

Figure 19.30

V1 V2 V3

Q Q Q
+C- +C- +C-

Vn

Q
+C-n

V

+ -

capacitor. We shall discuss two ways in which more then one capacitor can be 
connected.

10.1 Series Combination of capacitors:
There is equal amount of charge Q deposited on each capacitor; but the potential 
difference between their plates is different (if the capacitance of each of the 
capacitors is different)

1 2 3 nV V V V .......... V= + + + +  
1 2 3 n

Q Q Q Q Q..... (from C )
C C C C V

= + + + + = ;

1 2 3 n

V 1 1 1 1.....
Q C C C C

∴ = + + + +

If C is the resultant capacitance of C1, C2……, Cn which are connected

In series then V 1
Q C

= ;    
1 2 3 n

1 1 1 1 1.....
C C C C C

∴ = + + + +

The value of C is smaller than the smallest of the values of the capacitors which are connected in series.

B Rajiv Reddy (JEE 2012 AIR 111)

10.2 Parallel Combination of Capacitors
In this arrangement of the capacitors the charge accumulated on each of the capacitors is different while the 
potential difference between them is the same and is equal to potential difference between the common points A 
and B of such a connection. 

Now, 1 1 2 2 3 3Q C V,Q C V,Q C V= = =

The total electric charge, ( )1 2 3 1 2 3Q Q Q Q C C C V= + + = + +

In general, 1 2 3
QC C C C .....,
V

= = + + +

Hence, by connecting capacitors in a parallel combination, a resultant capacitance can be obtained, whose value is 
equal to the sum of all capacitances connected in parallel.

 • When a potential difference V is applied across several capacitors connected in parallel, it is applied across each 
capacitor. The total charge q stored on the capacitors is the sum of the charges stored on all the capacitors.

 • Capacitors connected in parallel can be replaced with an equivalent capacitor that has the same total charge q 
and the same potential difference V as the actual capacitors.

 • When a potential difference V is applied across serveral capacitors connected in series, the capacitors have 
identical charge q. The sum of the potential differences across all the capacitors is equal to the applied potential 
difference V.

MASTERJEE CONCEPTS
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Illustration 15: Three capacitors each of capacitance 9pF are connected in series.

(a) What is the total capacitance of the combination? 

(b) What is the potential difference across each capacitor if the combination is connected to a 120V supply? 
  (JEE MAIN)

Sol: The equivalent capacitance in series combination is given by 
1

eq
1 2 3

1 1 1C
C C C

−
 

= + +  
 

. 

The potential difference applied across each capacitor is given by qV
C

=  where C is the capacitance of the capacitor.

(a) Here, 
eq 1 2 3

1 1 1 1
C C C C

= + +  1 1 1 13x
C C C C

= + + =    

 
12

eq

1 1i.e. 3x
C 9x10−

=  
12

1
3x10−

=    12
eqor C 3x10 F 3pF.−= =

(b) Here 1 2 3(b) Here V V V 120+ + =    
1 2 3

q q q q qi.e. 120 C or V
C C C V C

 
+ + = ∴ = = 

 

  3qi.e. 120
C

=  
12

3xqi.e. 120
9x10−

=   12or q 360x10 F−=

 ∴  P.D. across a capacitor 
12

12

q 360x10 40V
C 9x10

−

−
= = =

Short cut

Since three equal capacitors are across 120V, so p.d. across each capacitor 120 40V
3

= =

Illustration 16: Calculate the charge on each capacitor shown in Fig. 19.31. (JEE MAIN) 10 F� 20 F�

30 V

Figure 19.31

Sol: The equivalent capccitance is given by 1 2

1 2

C C
C

C C
=

+

The two capacitors are joined in series. Their equivalent capacitance

Is given by 
1 2

1 1 1
C C C
= +  

( )( )1 2

1 2

10 F 20 FC C 20or, C F.
C C 30 F 3

µ µ
= = = µ

+ µ
 

The charge supplied by the battery is Q = CV

In series combination, each capacitor has equal charge and this charge equals the charge supplied by the battery. 

Thus, each capacitor has a charge of 200 Cµ . ( )20 F 30V 200 F
3

 
= µ = µ 
 

Illustration 17: Find the equivalent capacitance of the combination  

Figure 19.32

20 F�10 F�

P

Q 30 F�

N

shown in Fig. 19.32 between the points P and N. (JEE MAIN)

Sol: The circuit is the combination of series and parallel connection of 
capacitors. The equivalent capacitance of series combination is given 

by eq 2

eq 2

C C
C

C C
=

+
 whereas the equivalent capacitance of the parallel 

connection is given by eq 1 3C C C= + .
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The 10µF and 20µF capacitors are connected in parallel. Their equivalent capacitance is 10µF +20µF = 30µF. 

We can replace the 10µF and the 20µF capacitors by a single capacitor of capacitance 30µF between P and Q. 

This is connected in series with the given 30µF capacitor. The equivalent capacitance C of this combination is given 

by 1 1 1 or,C 15 F
C 30 F 30 F
= + = µ

µ µ
.

11. ENERGY STORED IN AN ELECTRIC FIELD OF A CAPACITOR

The work that needs to be done by an external force to charge a capacitor is visualized as electric potential energy 
U stored in the electric field between the plates. This energy can be recovered by discharging the capacitor in a 
circuit.

Suppose that, at a given instant, a charge q’ has been transferred from one plate of a capacitor to the other. The 
potential difference V’ between the plates at that instant is q’/C. The work required to increase the charge by dq’ i 

qdW V'dq' dq'
C

= =

The work required to bring the total capacitor charge up to a final value q is 
2q

0

1 qw dW q'dq' .
C 2C

= = =∫ ∫

This work is stored as potential energy U in the capacitor, so that we can also write this as 
2qU

2C
=  (Potential energy).

 • The potential energy of a charged capacitor may be viewed as being stored in the electrc field between its 
plates.

Illustration 18: A parallel plate air capacitor is made using two plates  

Figure 19.33

E

+

+

+

-

-

-

d1

E

+

+

+

-

-

-

d2

0.2 m square, spaced 1 cm apart. It is connected to a 50V battery. 
 (JEE ADVANCED)

(a) What is the capacitance?

(b) What is the charge on each plate?

(c) What is the energy stored in the capacitor?

(d) What is the electric field between the plates?

(e) If the battery is disconnected and then the plates are pulled apart to a separation of 2cm, what are the 
answers to the above parts?

Sol: The capacitance, charge on capacitor, energy stored in capacitor, the electric field between plates of capacitor, 

are given by 2oA 1 VC ; Q CV; U CV and E
d 2 d
ε

= = = =  respectively.

(a) 
12

0
0

0

A 8.85X10 X0.2X0.2C
d 0.01

−ε
= = ; 5

0C 3.54X10 F−= µ

(b) 5 3
0 0 0Q C V (3.54X10 X50) C 1.77X10 C− −= = µ = µ  

(c) 2 11 2
0 0 0

1U C V 1 / 2(3.54X10 )(50)
2

−= = ;  8
0U 4.42X10 J.−=

(d) 0
0

0

V 50E 5000V / m.
d 0.01

= = =
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(e) If the battery is disconnected, the charge on the capacitor plates remain constant while the potential difference 
between plates can change.

50

0

A
C : 1.77X10 F

2d
−ε

= = µ ; 3
0Q Q 1.77X10 C−= = µ  ;   0

0
0

QQV 2V 100Volts.
C C / 2

= = = = ; 

( )
22

80
0

0

Q1 Q 1U 2U 8.84X10 J
2 C 2 C / 2

−= = = = , 0
0

0

2V
E E 5000V / m.

2d
= = =  

Work has to be against the attraction of plates when they are separated. This gets stored in the energy of the 
capacitor.

Illustration 19: Find the energy stored in a capacitor of capacitance 100 Fµ when it is charged to a potential 
difference of 20V.  (JEE MAIN) 

Sol: The energy stored in the capacitor is given by 21U CV
2

= .

The energy stored in the capacitor is ( )( )221 1U CV 100 F 20V 0.02J
2 2

= = µ =

Illustration 20: Prove that in charging a capacitor half of the  C

S

V

�

C

S

q

V

+

+ -

q

Figure 19.34

energy supplied by the battery is dissipated in the form of 
heat.  (JEE ADVANCED)

Sol: When the swich S is closed, q=CV charge is stored in the 

capacitor. Charge transferred from the battery is also q. Hence, 

energy supplied by the battery 2qV (CV)(V) CV= = =  Half, of 

its Energy, i.e., 21 CV
2

 is stored in the capacitor and the remaining 50% or 21 CV
2

 is dissipated as heat. 

11.1 Energy Density
Neglecting fringing, the electric field in a parallel-plate capacitor has same value at all points between the plates. 
The energy density u, which is the potential energy per unit volume between the plates should also be uniform. We 

can find u by dividing the total potential energy by the volume Ad of the space between the plates 
2

between the Plat U CVes u .
Ad 2Ad

= = , 

C = ε0A/d, this result becomes
2

0
1 Vu
2 d

 
= ε  

 
 

V/d equals the electric field magnitude E; so  ( )2
0 Energy de1

2
yE tu nsi= ε

Although we derived this result for the special case of a parallel-plate capacitor, it holds generally, whatever may 
be the source of the electric field. 
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12. FORCE BETWEEN THE PLATES OF A CAPACITOR

Consider a parallel plate capacitor with plate area A. Suppose a positive charge q is given to  
q -q

+
+
+
+
+
+
+

-
-
-
-
-
-
-

Figure 19.35

one plate and a negative charge – q to the other plate. The electric field on the negative plate 
due to positive charge is 

0 0

qE
2 2A
σ

= =
ε ε

 q
A

σ=

The magnitude of force on the charge in negative plate is 
2

0

qF qE
2A

= =
ε

This is the force with both the plates attract each other. Thus, 
2

0

qF
2A

=
ε

13. DIELECTRICS

If the medium between the plates of a capacitor is filled with an insulating substance (dielectric), the electric field 
due to the charges plates induces a net dipole moment in  

Figure 19.36
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Electric field lines with

vacuum between the

plates

The induced charges on

the faces of the dielectric

reduce the electric field

(a) (b)

the dielectric. This effect called polarization, gives rise to 
a field in the opposite direction. Due to this, the potential 
difference between the plates is reduced. Consequently, the 
capacitance C increases from its value C0 when there is no 
medium (vacuum). The dielectric constant K is defined by 

the relation dielectric

vacuum 0

C CK
C C

= =

Where vacuumC = capacity of a capacitor when there is 
vacuum between the plates. Thus, the dielectric constant of 
a substance is the factor by which the capacitance increases 
from its vacuum value, when dielectric is inserted fully 
between the plates. 

13.1 Dielectrics at an Atomic View
What happens, in atomic and molecular terms, when we put a dielectric in an electric field? There are two possibilities, 
depending on the type of molecule:-

(a) Polar Dielectrics: The molecules of some dielectrics, like water, have permanent electric dipole moments. 
In such cases, the electric dipoles tend to line up with an external electric field because the molecules are 
continuously jostling each other as a result of their random thermal motion. This alignment becomes more 
complete as the magnitude of the applied field is increased (or as the temperature, and thus the jostling, are 
decreased). The alignment of the electric dipoles produces an electric field that is directed opposite to the 
applied field and is smaller in magnitude.

(b) Nonpolar moments: Even nonpolar molecules acquire dipole moments by induction when placed in an 
external electric field. This occurs because the external field tends to “stretch” the molecules, slightly separating 
the centres of negative and positive charge.
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Figure 19.37

Molecules with a permanent electric dipole 
moment, showing their random orientation in 
the absence of an external electric field. 

An electric field is applied producing partial 
alignment of the dipoles. Thermal agitation 
prevents complete alignment
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Figure 19.38

(i) A nonpolar dielectric slab. The circles represent the electrically neutral atoms within the slab.

(ii) An electric field is applied via charged capacitor plates; the field slightly stretches the atoms, separating the 
centres of positive and negative charge.

(iii) The separation produces surface charges on the slab faces. These charges set up a field E


’, which opposes 

the applied field 0E


. The resultant field E


 inside the dielectric (the vector sum of 0E


and E


’) has the same 

direction as 0E


 but a smaller magnitude.

Real Capacitors

• Real capacitors used in circuits are parallel plate capacitors with a dielectric material inserted in 
between the plates and rolled into a cylinder.

• This model reduces the size to get maximum capacitance.

 Nitin Chandrol (JEE 2012 AIR 134)

MASTERJEE CONCEPTS
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Illustration 21: A parallel plate capacitor is to be designed with a voltage rating 1kV, using a material of dielectric 
constant 3 and dielectric strength about 107

 Vm-1
. (Dielectric strength is the maximum electric field a material 

can tolerate without breakdown, i.e. without starting to conduct electricity through partial ionization.) For safety, 
we should like the field never to exceed, say 10% of the dielectric strength. What minimum area of the plates is 
required to have a capacitance of 50pF?   (JEE ADVANCED)

Sol:  The area of the capacitor is given by C DA ⋅
=

ε
 where 0 r x

lim
→∞

ε = ε ⋅ ε  is the permittivity of the medium.

10% of the given field i.e. 107
 Vm-1.

 Given E=0.1x107
 Cm-1

.

Using dVE
dr
−

= ;   Vi.e. E ,weget
r

=  we get; 3
7

V 1000r 10 m
E 0.1x10

−= = =

Using C 0 rA ,
d

ε ε
=  we get; 

( ) ( )12 13
2

3
0 r 0 r

450x10 10Cd CrA 19cm
8.854x10 3

− −

−
= = = =
ε ε ε ε ×

Illustration 22: A parallel plate capacitor with air between the plates has a capacitance of 8pF (1pF = 1210− F.) What 
will be the capacitance if the distance between the plates is reduced by half, and the space between them is filled 
with a substance of dielectric constant 6? (JEE MAIN)

Sol: The capacitance is k AC
d
ε

= where k is the dielectric constant. If d reduces to ½ and k changes to 6 then new 

capacitance is 12 times the original capacitance.

Using C’ = 0 rAC ,
d

ε ε
=  C' ∈r C = 12(8 × 10‒12) = 96 × 10‒12F = 96pF

Illustration 23: Two parallel-plate capacitors, each of capacitance 40 Fµ , are connected in series. The space 
between the plates of one capacitor is filled with a dielectric material of dielectric constant K=4. Find the equivalent 
capacitance of the system. (JEE ADVANCED)

Sol: The equivalent capacitance of series connection is 1 2
eq

1 2

C C
C

C C
=

+
.

 The capacitance of the capacitor with the dielectric is C1 = KC0 = 4 × 40 µF = 160 µF.

The other capacitor has capacitance C2 = 40 µF. 

As they are connected in series, the equivalent capacitance is 
( )( )1 2

1 2

160 F 40 FC C
C 32 F

C C 200 F

µ µ
= = = µ

+ µ

13.4 Dielectrics and Gauss law
From parallel plate capacitor with a dielectric equation we can write Gauss’ law in the form 0 Kε ∫ E.dA q=

 

(Gauss’ 
law with dielectric)

This equation, although derived for a parallel-plate capacitor, is true generally and is the most general form in 
which Gauss’ law can be written.

Some more information about capacitors

(a) If charge is held constant, i.e. battery disconnected and dielectric is inserted between plates.

 (i) Charge remains unchanged, i.e., q = q0, as in an isolated system, charge is conserved.

 (ii) Capacity increases, i.e. C = KC0, as by presence of a dielectric capacity becomes K times.

 (iii) P.D. between the plate decreases, i.e., V=(V0/ K) 0
0 0

qqV as q q and c KC
C KC

 = = = =  as, 
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0
0 0

qqV as q q and c KC
C KC

 = = = = 

 (iv) E between the plates decreases, i.e., ( )0E E / K ,=  as, 0 0 0 0
0

V E V VVE as V and E
d Kd K K d

 
= = = = = 

 
 (v) Energy stored in the capacitor decreases, i.e. ( )0U U / K= .

  

22
0 0

0 0
q UqU as q q and C KC

2C Kd K
 = = = = = 

q0

+ + + + + + + + + +

- - - - - - - - - -

C0 V0 E0 U0, , ,

(a)

q
+ + + + + + + + + +

- - - - - - - - - -

C, V, E, U K

(b)

Figure 19.39

(b) If potential is held constant, i.e., battery remains attached and dielectric in inserted between plates.

 (i) PD remains constant, i.e. V = V0, as battery is a source of constant potential difference.

 (ii) Capacity increases, i.e., C = KC0, as by presence of a dielectric capacity becomes K times.

 (iii) Charge on capacitor increases, i.e., q = Kq0 ( )0 0 0 0as q CV KC V Kq as q C V = = = = 

 (iv) Electric field remains unchanged, i.e., E = E0,
0 0

0 0 0
V VVE E as V V and E

d d d
  

= = = = =  
   

 (v) Energy stored in the capacitor increases, i.e., U = KU0

  As, ( )( )22
0 0

1 1U CV (KC V
2 2

= = ; 
2

0 0 0 0 0
1 1KU as C KC and U C V
2 2

 
= = = 

 
 

Illustration 24: A parallel-plate capacitor has plate area A and  b

c

a

d
x

Figure 19.40

plate separation d. The space between the plates is filled up to 
a thickness x(<d) with a dielectric of dielectric constant K. 
Calculate the capacitance of the system.  (JEE ADVANCED)

Sol: As the distance between the plates is filled with dielectric material upto a distance x<d, this system represent 

two capacitors connected in series. Thus equivalent capacitance is 1 2
eq

1 2

C C
C

C C
=

+
where each capacitance depends 

on the dielectric constant K and distance from the plate of capacitor.

The situation is shown in Fig. 19.40. The given system is equivalent to the series combination of two capacitors, one 
between a and c and the other between c and b. 

Here c represents the upper surface of the dielectric. This is because the potential at the upper surface of the 
dielectric is constant and we can imagine a thin metal plate being placed there.
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The capacitance of the capacitor between a and c is 0
1

K A
C

x
ε

=  and that between c and b is 0
2

A
C

d x
ε

=
−

.

The equivalent capacitance is 
( )
01 2

1 2

K AC C
C

C C Kd x K 1
ε

= =
+ − −

Illustration 25: In the situation shown in Fig. 19.41 the area of the  

V K

x

L

d

Figure 19.41

plates is A. The dielectric slab is released from rest. Prove that the 
slab will execute periodic motion and find its time period. Mass of 
the slab is m.  (JEE ADVANCED)

Sol: As the slab is moving in constant electric field applied 
between the plates of capacitors, the force acting on it is constant. 

The acceleration is obtained by Fa
m

= .When the slab moves 

completly out side the plates the electric force pulls the slab slides 

inside the plates of capacitor. The time period of oscillation is given by 2st
a

=  where s is the distance travelled by 

the slab. After using, dUF
dx

= − , where U→  Potential energy. Constant force,  
( )2

0Constant force,
bV K 1

F
2d

ε −
=

Here, Ab width of plate
L

= =

∴  Acceleration of slab 
Fa
m

=
  

or 
( ) ( )2

0 A / l V K 1
a

2md

ε −
=

The equilibrium position of the slab is, at the instant when the slab is fully inside the plates. So, the slab will execute 
oscillations in the phases as shown in Fig. 19.42.

x x

x

(a) (b) (  )c

(d) (e)

x x

x

(a) (b) (  )c

(d) (e)

Figure 19.42

T
4

= time taken to reach from position (a) to position (b) = t (say) ; using 

( )

( )
( ) ( )

( )
( )

2

2
2 00 A/l V K 1

1using S at
2

2swe have t ;
a

2 l x 4 l x mdl

AV K 1

2md

S l x

−

=

=

− −
= =

ε ε

=

−

−

 

We have ( )

( )
( ) ( )

( )
( )

2

2
2 00 A/l V K 1

1using S at
2

2swe have t ;
a

2 l x 4 l x mdl

AV K 1

2md

S l x

−

=

=

− −
= =

ε ε

=

−

−( ) ( ) ( )
( )2

0
0

2(A/l)V (K 1)

2 l x 4 l x mdl

AV K 1

2md

S l x
ε −

− −
= =

ε
−

−
=

The desired time period is, ( )
( )2

0

L x mdl
The desired time period is, T 4t 8

AV K 1

−
= =

ε −
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Illustration 26: Three concentric conducting shells A, B and C of radii a, b and c are  

Figure 19.43

A

B

C

a

b

c

a shown in Fig. 19.43. A dielectric of dielectric constant K is filled between A and B, 
find the capacitance between A and C. (JEE ADVANCED) 

Sol: The potential difference in the region dr between the shells is given by 
V E dr∆ = ⋅∫  where E is the electric field. Capacitance is the ratio of charge and 

potential difference. Let the sphere A have a charge q. When the dielectric is filled 
between A and B, the electric field will change in this region. Therefore the potential 
difference and hence the capacitance of the system will change. So, first find the 
electric field E(r) in the region a r c≤ ≤ . Then find the potential difference (V) 

between A and C and finally the capacitance of the system is qC
V

= ,  
2

0

qE(r) for a r b
4 r

= ≤ ≤
πε   for  

2
0

qE(r) for a r b
4 r

= ≤ ≤
πε

 
2

0

q for b r c
4 r

= ≤ ≤
πε

. Using, dv E.dr= −∫
 

Here potential difference between A and C is, b b
A C 2 2a a

0 0

q qV V V .dr dr
4 Kr 4 r

= − = −
πε πε∫ ∫  

( ) ( )
0 0

b a c bq 1 1 1 1 1 q
4 K a b b c 4 Kab bc

 − −    
 = − + − = +    πε πε        

 ( ) ( )
0

q c b a Ka c b
4 kabc

 = − + − πε

 The desired capacitance is 
( ) ( )

04 KabcqC
V Ka c b c b a

πε
= =

− + −

14. R-C CIRCUITS

To understand the charging of a capacitor in C-R circuit, let us first consider the charging of a capacitor without 
resistance. 

C

S V V

q =CV0
+ -

�

Figure 19.44

Consider a capacitor connected to a battery of emf V through a switch S. When we close the  q

q0

Figure 19.45

switch, the capacitor gets charged immediately. Charging takes no time. A charge q0 = CV  
comes in the capacitor as soon as switch is closed and the q-t graph in this case is a straight 
line parallel to t-axis as shown. 

But if there is some resistance in the circuit charging takes some time. Because resistance  

Figure 19.46

C

S V

opposes the charging (or current flow in the circuit).

Final charge (called steady state charge) is still q0 but it is acquired after a long period of 
time. 

The q-t equation in this case is, ( )t/ c
0q q l e− τ= −
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Here, q0 = CV and cτ = CR = time constant. 

q-t graph is an exponentially increasing graph. The charge q increases  

Figure 19.47

q0

q0

q

t=�C t

0.632exponentially from 0 to q0. 

From the graph and equation we see that at t = 0, q = 0 and at t = ∞, q = q0

14.1 Charging 
When a capacitor C is connected to a battery through a resistance R, the plates of a capacitor will acquire equal and 
opposite charge and the potential difference across it becomes equal to the emf of the battery. The process (called 
charging) takes sometime and during this time there is an electric current through the resistance. If at any time t, 
I is the current through the resistance R and q is the charge on capacitor C, the equation of emf for the circuit will 
be C RV V E, i.e., V IR E+ = + =  

But I (dq/ dt)= and   q CV=

so,  dq qR E
dt C

+ =   or  
( )

q t

0 0

dq dt
CRCE q

= −
−∫ ∫

Which on solving for q gives ( )t/CR
0q q l e−= −  with ( )0q CE for t= = ∞  …..(i)

This is the required result and from this it is clear that:

(a) During charging, charge on the capacitor increases from 0 to 0q  (=CE) non-linearly.

(b) The density CR is called capacitive time constant τ  of the circuit [as it has dimensions of time] and physically 
represents the time in which charge on the capacitor reaches 0.632 times of its maximum value during 
charging.

(c) During charging current at any time t in the circuit will be 

 ( ) ( )t/CR t/CR
0 0 0

dq d EI q l e I e with I at t 0
dt dt R

− − = = − = = =  

i.e., initially it acts as short circuit or as a simple conducting wire. If t , I 0→ ∞ → , i.e., it acts as open circuit or 
as a broken wire.

14.2 Discharging

If a charged capacitor C having charge 0q is discharged through a resistance R, then at any time t,

V = IR  but as ( )I dq / dt and q CV= − =

dq qR 0
dt C

+ =   i,e., 
q t

q 00

dq dt
dt CR

= −∫ ∫  or t/CR
0q q e−=

This is the required result and from this it is clear that

(a) During discharging, the charge on capacitor decreases exponentially from q0 to 0

(b) The capacitive time constant CRτ =  is the time in which charge becomes (l/e), i.e., 0.368 times of its initial 
value (q0)

(c) During discharging current at any time t in the circuit:

 
( )t/CR t/CR

0 0 0
dq d EI q e I e with I
dt dt R

− −= − = − = = with ( )t/CR t/CR
0 0 0

dq d EI q e I e with I
dt dt R

− −= − = − = =  and its direction is opposite to that of charging.
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(d) As in discharging of a capacitor through a resistance t/CR
0q q e−=  i.e., 

e 0

tR
Clog (q / q)

=

So resistance R can be determined from the value of t and ( )0q / q , i.e. ( )0V / V . Using this concept in 
laboratory we determine the value of high resistances ( )MΩ  by the so called ‘Leakage method’.

Definition of cτ  At t = cτ ,  q = q0 (1-e-1) = 0.632 q0

Hence, cτ can be defined as the time in which 63.2% charging is over in a C-R circuit. Note that cτ  is the time.

Hence, c time   τ =     or  0 0CR M L T   =    .

15. VAN DE GRAAFF GENERATOR

Van de Graaff generator is a device that can generate a potential  

Figure 19.48
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difference of a few million volts. The highly intense electric field 
produced in this matching is used to accelerate charged particles, 
which can then be used to study the composition of matter at the 
microscopic level. 

Principle: let us presume (See Fig. 19.48) that charge Q is 

residing on an isolated conducting shell, having radius R.

There is another conducting sphere having charge q and radius 
equal to r at the centre of the above mentioned spherical shell (r<R)

The electric potential on the spherical shell of radius R is equal to 

R
kQ kqV
R R

= +

The electric potential on the surface of the sphere of radius r is, r
kQ kqV
R r

= +

Therefore, the potential difference between the surfaces of the two sphere is, r R
kQ kq kQ kq 1 1V V kq
R r R R r R−

 
= + − − = − 

 
The above equation shows that the smaller sphere is at a higher electric potential in comparison to the larger 
spherical shell. If the smaller sphere is brought in contact with the larger spherical shell then electric charge will 
flow from the smaller sphere towards the larger spherical shell. Note if charge can be continuously transferred to 
the smaller sphere in some way, it will keep getting accumulated on the larger shell, thereby increasing its electric 
potential to a very high value.

Construction: S is a large spherical conducting shell with a radius of a few meters. This is erected to suitable 
height over the insulating pillars, C1 and C2. A long narrow belt of insulating material moves continuously between 
2 pulleys P1 and P2 as shown in the Fig. 19.48. B1 and B2 are two sharply pointed brushes fixed near pulleys, P1 and 
P2 respectively, such that B2 touches the belt near the pulley P2. B1 is called the spray brush and B2 is called the 
collector brush.

Working: The spray brush is given a positive potential w.r.t. the earth by high tension source known as E.H.T. 
around the sharp points of B1, the high potential causes the air to ionize and this sprays positive charges on the 
belt. As the belt moves, and reaches the sphere S, the collecting brush B2, which touches the belt near pulley P2, 
collects the positive charge, which spreads on the outer surface of S. the uncharged belt returns down and again 
collects the positive charge from B1. As the belt moves continuously between P1 and P2 the positive charge starts 
accumulating on sphere S and the charge due to ionization is minimized by enclosing the metallic shell in an earth 
connected steel tank filled with air at high pressure. The charge particles may accelerate in this large potential to 
high kinetic energies of the order of more than 2 MeV.
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PROBLEM-SOLVING TACTICS

Below we illustrate how the above methodologies can be employed to compute the electric potential for a line of 
charge, a ring of charge and a uniformly charged disk.

Charged Rod Charged Ring Charged disk

Figure
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Figure 19.51

(2) Express dq in 
terms of charge 
density

'dq dx= λ dq dl= λ dq dA= σ

(3) Substitute dq into 
expression for dV

'

e
dxdV k
r

λ
= e

dldV k
r
λ

= e
dAdV k
r

σ
=

(4) Rewrite r and 
the differential 
element in terms 
of the appropriate 
coordinates

'

'2 2

dx

r x y= +
2 2

dl Rd

r R z

= φ

= +

' '

'2 2

dA 2 r dr

r r z

= π

= +

(5) Rewrite dV '

e '2 2 1/2

dxdV k
(x y )

λ
=

+

'

e 2 2 1/2

RddV k
(R z )

λ φ
=

+

' '

e '2 2 1/2

2 r drdV k
(r z )

πσ
=

+

(6) Integrate to get V 1/2

/2 '2 20

0

2 2

2 2

dxV
4 x y

ln
4

( / 2) ( / 2) y

( / 2) ( / 2) y

−

λ
=

πε +

λ
=

πε

 + + 
 − + + 

∫




 

 

'
e 2 2 1/2

e 2 2

e 2 2

RV k d
(R z )

(2 R )k
R z

Qk
R z

λ
= φ

+
π λ

=
+

=
+

∫
' 'R

e '2 2 1/20

2 2
e

2 2e
2

r drV k 2
(r z )

2k z R z

2k Q
z R z

R

= πσ
+

 = πσ + − 
 

 = + − 
 

∫

Derive E from V

( )

y

2 20

VE
y

/ 2
2 y / 2 y

∂
= −

∂
λ

=
πε

+





( )
e Z

z 3/22 2

k QVE
z R z

∂
= − =

∂ +
z

e
2 2 2

VE
z

2k Q z z
zR z R

∂
= −

∂
 
 = −
 + 

Point- charge limit 
for E e

y 2

k Q
E y

y
≈ >>  e

z 2

k Q
E z R

z
≈ >> e

z 2

k Q
E z R

z
≈ >>
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For any given combination, one may proceed as follows:

Step 1: Identify the two points between which the equivalent capacitance is to be calculated. Call any one of them 
as P and the other as N.

Step 2: Connect (mentally) a battery between P and N with the positive terminal connected to P and the negative 
terminal to N. Send a charge +Q from the positive terminal of the battery.

Step 3: Write the charges appearing on each of the plates of the capacitors. The charge conservation principle  
may be used. The facing surfaces of a capacitor will always have equal and opposite charges. Assume variables  
Q1, Q2 …, etc., for charges wherever needed.

Step 4: Take the potential of the negative terminal N to be zero and that of the positive terminal P to be V. Write 
the potential of each of the plates. If necessary, assume variables V1, V2…. 

Step 5: Write the capacitor equation Q = CV for each capacitor. Eliminate Q1, Q2 …and V1, V2…., etc., to obtain the 
equivalent capacitance C=Q/V.

FORMULAE SHEET

S. No FORMULA

 1. q CV=

 2. 0 E.dA q.ε =∫
 



 3. 
f

1 2 i
V V E.dS.− = ∫

 

 

 4.
d

0
V Eds E ds Ed

+

−
= = =∫ ∫

 5. 0q EA.= ε

 6. 0A
C

d
ε

=  (parallel-plate capacitor)

 7. ( )0
LC 2

ln b / a
= πε  (cylindrical capacitor)

 8.
0

abC 4
b a

= πε
−

 (spherical capacitor)

 9. 0C 4 R= πε  (isolated sphere)

 10. 
n

eq J
j 1

C C
=

= ∑  (n capacitors in parallel)

 11.
n

j 1eq J

1 1
C C=

= ∑  (n capacitors in series)
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S. No FORMULA

 12. 21U CV
2

=  (potential energy)

 13.
2qU

2C
=  (potential energy)

 14. 2
0

1u E
2

= ε  (energy density)

 15. 2
0

qE
4 K r

=
π ε

 16. 0 KE.dA qε =∫
 



 (Gauss’ law with dielectric).

 17. Force on a Dielectric Slab inside a Capacitor
( )2

0bV K 1
F

2d

ε −
=

Electric Potential Formulae

S. No Term Description

1 Electric Potential 
energy

∆U = -W Where ∆U = Change in potential energy and W= Work done by the electric lines of 
force.

For a system of two particles U(r) = q1q2 / 4πεr

Where r is the separation between the charges.

We assume U to be zero at infinity.

Similarly for a system of n charges

U = Sum of potential energy of all the distinct pairs in the system

For example for three charges

U = 1 2 12 2 3 23 1 3 13(1 / 4 )(q q / r q q / r q q / r )πε + +

2 Electric PE of a 
charge

= qV where V is the potential.

3 Electric Potential Like Electric field intensity is used to define the electric field; we can also use Electric Potential 
to define the field. Potential at any point P is equal to the work done per unit test charge by 
the external agent in moving the test charge from the reference point (without Change in KE)

Vp = Wext / q. So for a point charge V0 = Q / 4πεr

Where r is the distance of the point from charge.
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S. No Term Description

4. Some points 
about Electric 
potential

1. It is scalar quantity

2. Potential at a point due to system of charges will be obtained by the summation of potential 
of each charge at that point

V = V1 + V2 + V3 + V4

3. Electric forces are conservative forcew so work done by the electric force between two points 
is independent of the path taken

4. 2 1V V E.dr− = −∫
5. In Cartesian coordinates system

x y zdV E.dr; dV (E dx E dy E dz)= − = − + +

So x y zE V / x, E V / y and E V / z,= ∂ ∂ = ∂ ∂ = ∂ ∂

Also ( ) ( ) ( )E V / x i V / y i V / z k = ∂ ∂ + ∂ ∂ + ∂ ∂ 
6. Surface where electric potential is same everywhere is called equipotential surface.

Electric field components parallel to equipotential surface are always zero.

5 Electric dipole A combination of two charges +q and –q separated by a distance d has a dipole moment  
p = qd, where d is the vector joining negative to positive charge.

6 Electric potential 
due to dipole

2V (1 / 4 ) (pcos / r )= πε × θ  

Where r is the distance from the center and θ  is angle made by the line from the axis of dipole.

7 Electric field due 
to dipole

3 3
r

2 2 3 2
r

E (1 / 4 )(psin / r ); E (1 / 4 ) (2pcos / r )

Total E E E (p/ 4 r )( (3cos 1)

θ

θ

= πε θ = πε × θ

= + = πε θ +

Torque on dipole = p × E

Potential Energy U = ‒p.E

8 Few more points 1. E.dl∫  over closed path is zero 

2. Electric potential in the spherical charge conductor is Q / 4πεR where R is the radius of the 
shell and the potential is same everywhere in the conductor.

3. Conductor surface is a equipotential surface

Electric potential due to various charge distributions

Name/Type Formula Note Graph

Point Charge Kq
r

 • q is source charge

 • r is the distance of the point from the 
point charge.

V

r

Ring (uniform/non 
uniform charge 
distribution) 

At centre, 
KQ
R

At axis, 
2 2

KQ

R x+

 • Q is source charge

 • x is distance of the point from centre.

V
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Name/Type Formula Note Graph

Uniformly charged 
hollow conducting/ 
non - conducting 
sphere or solid 
conducting sphere

For KQr R,V
R

≥ =

For KQr R,V
R

≤ =

 • R is radius of sphere

 • r is distance of the point from centre 
of the sphere

 • Q is total charge ( 2( 4 R )= σ π

V

R
r

KQ/R

Uniformly charged 
solid non - conducting 
sphere (insulating 
material)

For KQr R, V
r

≥ =

For r R,≤

2 2

3

2 2

0

KQ(3R r )V
2R

(3R r )
6

−
=

ρ
= −

ε

 • R is radius of sphere

 • r is distance of point from centre of 
the sphere.

 • Q is total charge 34( R )
3

= ρ π

 •  centre surface
3V V
2

=

 • Inside sphere potential varies 
parabolically.

 • Outside potential varies 
hyperbolically.

V

R
r

3KQ/2R

KQ/R

Line charge Not defined  • Absolute potential is not defined

 • Potential difference between 
two points is given by formula 

B A B AV V 2K ln(r / r )− = − λ , where 

lambda is the charge per unit length

Infinite nonconducting 
thin sheet

Not defined  • Absolute potential Is not defined

 • Potential difference between 
two points is given by formula 

B A B A
0

V V (r r )
2
σ

− = − −
ε

, where 

sigma is the charge density

Infinite charged 
conducting thin sheet

Not defined  • Absolute potential is not defined

 • Potential difference between 
two point is given by formula 

B A B A
0

V V (r r )σ
− = − −

ε
, where 

sigma is the charge density

Electric dipole moment: ˆp qdz=
 , where two charges of charge q±  are placed along the z axis at z d

2
= ±

Electric dipole field: Along the z axis (z>>d): 
3

0

1 p ˆE z
2 z

=
πε



, in the +z direction. 

    Along the x axis(x>>d): 
3

0

1 p ˆE x
2 x

=
πε



 in the +x direction. 

    Along the x axis(y>>d): 
3

0

1 p ˆE y
2 y

=
πε



 in the +y direction.


