Quadratic Equations and Inequalities

PROBLEM-SOLVING TACTICS

Some hints for solving polynomial equations:

- (a) To solve an equation of the form $(x-a)^4 + (x-b)^4 = A$; Put $y = x \frac{a+b}{2}$ In general to solve an equation of the form $(x-a)^{2n} + (x-b)^{2n} = A$, where $n \in Z^+$, put $y = x - \frac{a+b}{2}$
- (b) To solve an equation of the form, $a_0 f(x)^{2n} + a_1 (f(x))^n + a_2 = 0$ we put $(f(x))^n = y$ and solve $a_0 y^2 + a_1 y + a_2 = 0$ to obtain its roots y_1 and y_2 . Finally, to obtain the solution of (1) we solve, $(f(x))^n = y_1$ and $(f(x))^n = y_2$
- (c) An equation of the form $(ax^2 + bx + c_1)(ax^2 + bx + c_2)....(ax^2 + bx + c_n) = A$. Where $c_1, c_2, ..., c_n, A \in R$, can be solved by putting $ax^2 + bx = y$.

- (d) An equation of the form $(x a)(x b)(x c)(x d) = \Rightarrow$ Awhere ab = cd, can be reduced to a product of two quadratic polynomials by putting $y = x + \frac{ab}{2}$.
- (e) An equation of the form (x a) (x b)(x c)(x d) = A where a < b < c < d, b a = d c can be solved by a change of variable $y = \frac{(x a) + (x b) + (x c) + (x d)}{4} = x \frac{1}{4}(a + b + c + d)$
- (f) A polynomial f(x, y) is said to be symmetric if $f(x, y) = f(y, x) \forall x, y$. A symmetric polynomial can be represented as a function of x + y and xy.

Solving equations reducible to quadratic

- (a) To solve an equation of the type $ax^4 + bx^2 + c = 0$, put $x^2 = y$.
- (b) To solve an equation of the type $a(p(x))^2 + bp(x) + c = 0$ (p(x) is an expression of x), put p(x) = y.

(c) To solve an equation of the type $ap(x) + \frac{b}{p(x)} + c = 0$ where p(x) is an expression of x, put p(x) = yThis reduces the equation to $ay^2 + cy + b = 0$

- (d) To solve an equation of the form $a\left(x^2 + \frac{1}{x^2}\right) + b\left(x + \frac{1}{x}\right) + c = 0$, put $x + \frac{1}{x} = y$ and to solve $a\left(x^2 + \frac{1}{x^2}\right) + b\left(x - \frac{1}{x}\right) + c = 0$, put $x - \frac{1}{x} = y$
- (e) To solve a reciprocal equation of the type $ax^4 + bx^3 + cx^2 + bx + a = 0$, $a \neq 0$, we divide the equation by $\frac{d^2y}{dx^2}$ to obtain $a\left(x^2 + \frac{1}{x^2}\right) + b\left(x + \frac{1}{x}\right) + c = 0$, and then put $x + \frac{1}{x} = y$

(f) To solve an equation of the type (x + a)(x + b)(x + c)(x + d) + k = 0 where a+b=c+d, put $x^2 + (a+b)x = y$

- (g) To solve an equation of the type $\sqrt{ax+b} = cx+d$ or $\sqrt{ax^2 + bx + c} = dx + e$, square both the sides.
- (h) To solve an equation of the type = $\sqrt{ax + b} \pm \sqrt{cx + d} = e$, proceed as follows.

Step 1: Transfer one of the radical to the other side and square both the sides.

Step 2: Keep the expression with radical sign on one side and transfer the remaining expression on the other side **Step 3:** Now solve as in 7 above.

FORMULAE SHEET

(a) A quadratic equation is represented as : $ax^2 + bx + c = 0$, $a \neq 0$

(b) Roots of quadratic equation: $x = \frac{-b \pm \sqrt{D}}{2a}$, where D(discriminant) = $b^2 - 4ac$

(c) Nature of roots: (i) $D > 0 \Rightarrow$ roots are real and distinct (unequal)

(ii) $D = 0 \Rightarrow$ roots are real and equal (coincident)

(iii) $D < 0 \Rightarrow$ roots are imaginary and unequal

- (d) The roots $(\alpha + i\beta)$, $(\alpha i\beta)$ and $(\alpha + \sqrt{\beta})$, $(\alpha \sqrt{\beta})$ are the conjugate pair of each other.
- (e) Sum and Product of roots : If α and β are the roots of a quadratic equation, then

(i)
$$S = \alpha + \beta = \frac{-b}{a} = \frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$$
 (ii) $P = \alpha\beta = \frac{c}{a} = \frac{\text{constant term}}{\text{Coefficient of } x^2}$

- (f) Equation in the form of roots: $x^2 (\alpha + \beta)x + (\alpha, \beta) = 0$
- (g) In equation $ax^2 + bx + c = 0$, $a \neq 0$ If
 - (i) $b = 0 \Rightarrow$ roots are of equal magnitude but of opposite sign.
 - (ii) $c = 0 \Rightarrow$ one root is zero and other is -b/a
 - (iii) $b = c = 0 \Rightarrow$ both roots are zero.
 - (iv) $a = c \Rightarrow$ roots are reciprocal to each other.
 - (v) $a > 0, c < 0 \text{ or } a < 0, c > 0 \Rightarrow \text{ roots are of opposite signs.}$
 - (vi) a > 0, b > 0, c > 0 or a < 0, b < 0, $c < 0 \Rightarrow$ both roots are -ve.

(vii)
$$a > 0$$
, $b < 0$, $c > 0$ or $a < 0$, $b > 0$, $c < 0 \Rightarrow$ both roots are +ve.

(h) The equations $a_1x^2 + b_1x + c_1 = 0$ and $a_2x^2 + b_2x + c_2 = 0$ have

(i) One common root if
$$\frac{b_1c_2 - b_2c_1}{c_1a_2 - c_2a_1} = \frac{c_1a_2 - c_2a_1}{a_1b_2 - a_2b_1}$$

(ii) Both roots common if
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

(i) In equation
$$ax^2 + bx + c = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{D}{4a^2} \right]$$

(i) If a>0, the equation has minimum value = $\frac{4ac - b^2}{4a}$ at $x = \frac{-b}{2a}$ and there is no maximum value.

(ii) If a < 0, the equation has maximum value $\frac{4ac-b^2}{4a}$ at $x = \frac{-b}{2a}$ and there is no minimum value.

(j) For cubic equation $ax^3 + bx^2 + cx + d = 0$,

(i)
$$\alpha + \beta + \gamma = \frac{-b}{a}$$

(ii) $\alpha\beta + \beta\gamma + \lambda\alpha = \frac{c}{a}$

(iii) $\alpha\beta\gamma = \frac{-d}{a}$... where α, β, γ are its roots.