FORMULAE SHEET

- (a) Distance between the points $(x_{1'}, y_{1'}, z_1)$ and $(x_{2'}, y_{2'}, z_2)$ is $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2 + (z_2 z_1)^2}$
- (b) Coordinates of the point dividing the distance between the points (x_1, y_1, z_1) and (x_2, y_2, z_2) in the ratio m:n are $\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}, \frac{mz_2 + nz_1}{m+n}\right)$
- (c) If $A(x_{1'}, y_{1'}, z_1)$, $B(x_{2'}, y_{2'}, z_2)$ and $C(x_{3'}, y_{3'}, z_3)$ are vertices of a triangle, then its centroid is

$$\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3}\right)$$

(d) If $A(x_{1'}, y_{1'}, z_{1})$ and $B(x_{2'}, y_{2'}, z_{2})$ are the two points, the point which divides the line segment AB in ratio λ :1 is

$$\left(\frac{\lambda x_2 + x_1}{\lambda + 1}, \frac{\lambda y_2 + y_1}{\lambda + 1}, \frac{\lambda z_2 + z_1}{\lambda + 1}\right)$$

(e) If $(x_{1'}, y_{1'}, z_1)$ and $(x_{2'}, y_{2'}, z_2)$ are the two points on the line with $x_2 - x_{1'}, y_2 - y_{1'}, z_2 - z_1$ as direction ratios, then their d.c.s are

$$\pm \frac{x_2 - x_1}{\sqrt{\Sigma(x_2 - x_1)^2}}, \pm \frac{y_2 - y_1}{\sqrt{\Sigma(x_2 - x_1)^2}}, \pm \frac{z_2 - z_1}{\sqrt{\Sigma(x_2 - x_1)^2}}$$

(f) If ℓ , m, n are d.c.s of a line, then $l^2 + m^2 + n^2 = 1$. Thus, if a line makes angles α , β , γ with axes, then $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ and $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$

(g) If a, b, c are the d.r.s of a line, then the d.c.s of the line are $\pm \frac{a}{\sqrt{\Sigma a^2}}, \pm \frac{b}{\sqrt{\Sigma a^2}}, \pm \frac{c}{\sqrt{\Sigma a^2}}$

(h) If p(x, y, z) is a point in space such that $\overrightarrow{OP} = \overrightarrow{r}$ has d.c.s ℓ , m, n, then

(a) $\ell | \vec{r} |, m | \vec{r} |, n | \vec{r} |$ are the projections on x-axis, y-axis and z-axis, respectively.

- (b) $x = \ell \mid \vec{r} \mid, y = m \mid \vec{r} \mid, z = n \mid \vec{r} \mid$
- (c) $\vec{r} = |\vec{r}| (l\hat{i} + m\hat{j} + n\hat{k})$ and $\hat{r} = l\hat{i} + m\hat{j} + n\hat{k}$

Moreover, if a, b, c are d.r.s of a vector \vec{r} , then $\vec{r} = \frac{|\vec{r}|}{\sqrt{a^2 + b^2 + c^2}} (a\hat{i} + b\hat{j} + c\hat{k}).$

(i) Length of projection of the line segment joining $(x_{1'}, y_1, z_1)$ and $(x_{2'}, y_{2'}, z_2)$ on a line with d.c.s ℓ , m, n is $|\ell(x_2 - x_1) + m(y_2 - y_1) + n(z_2 - z_1)|$

(j) If θ is the angle between two lines having direction ratios a_1 , b_1 , c_1 and a_2 , b_2 , c_2 then

$$\cos\theta = \pm \frac{a_{1}a_{2} + b_{1}b_{2} + c_{1}c_{2}}{\sqrt{\Sigma a_{1}^{2}}\sqrt{\Sigma a_{2}^{2}}}$$

- (k) Two lines are parallel if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ and two lines are perpendicular if $a_1a_2 + b_1b_2 + c_1c_2 = 0$
- (I) Cartesian equations of a line passing through (x_1, y_1, z_1) and having direction ratios a, b, c are $\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c} = t$

- (m) Vector equation of a line passing through the point A(\vec{a}) and parallel to vector \vec{b} is $\vec{r} = \vec{a} + \lambda \vec{b}$ for scalar λ .
- (n) Cartesian equation of a line passing through two points having coordinates $(x_{1'}, y_{1'}, z_1)$ and $(x_{2'}, y_{2'}, z_2)$ is $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}.$
- (o) Vector equation of a line passing through two points having position vectors \vec{a} and \vec{b} is $\vec{r} = \vec{\alpha} + \lambda(\vec{b} \vec{a})$
- (**p**) Distance between the parallel lines $\vec{r} = \vec{a}_1 + \lambda \vec{b}$ and $\vec{r} = \vec{a}_2 + \mu \vec{b}$ is $\frac{|b \times (\vec{a}_2 \vec{a}_1)|}{|\vec{b}|}$
- (q) Shortest distance (S.D.) between two lines with equations; $\vec{r} = \vec{a}_1 + \lambda \vec{b}_1$ and $\vec{r} = \vec{a}_2 + \mu \vec{b}_2$ is

$$\frac{|(\vec{b}_1 \times \vec{b}_2) \cdot (\vec{a}_2 - \vec{a}_1)|}{|\vec{b}_1 \times \vec{b}_2|}.$$
 If θ is the angle between the lines, then $\cos \theta = \frac{\vec{b}_1 \cdot \vec{b}_2}{|\vec{b}_1||\vec{b}_2|}$

(r) The length of perpendicular from the point (α, β, γ) to the line $\frac{x - x_1}{\ell} = \frac{y - y_1}{m} = \frac{z - z_1}{n} (\ell, m, n \text{ being d.cs})$ is given by $\sqrt{(\alpha - x_1)^2 + (\beta - y_1)^2 + (\gamma - z_1)^2 - [\ell(\alpha - x_1) + m(\beta - y_1) + n(\gamma - z_1)]^2}$

- (s) If \vec{a} and \vec{b} are the unit vectors along the sides of an angle, then $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are the vectors, respectively, along the internal and external bisector of the angle. In fact, the bisectors of the angles between the lines,
 - $\vec{r} = x\vec{a}$ and $\vec{r} = y\vec{b}$ are given by $\vec{r} = \lambda \left(\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}\right); \lambda \in R$
- (t) Equation of plane passing through the point (x_1, y_1, z_1) is $a(x x_1) + b(y y_1) + c(z z_1) = 0$.
- (u) Equation of plane passing through three points (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

- (v) Equation of a plane making intercepts a, b, c on axes is $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$
- (w) Vector equation of a plane through the point \vec{a} and perpendicular to the unit vector \hat{n} is $(\vec{r} \vec{a}) \cdot \hat{n} = 0$
- (x) If θ is the angle between the two planes $\vec{r} \cdot \hat{n}_1 = d_1$ and $\vec{r} \cdot \hat{n}_2 = d_2$, then $\cos \theta = \frac{\hat{n}_1 \cdot \hat{n}_2}{|\hat{n}_1||\hat{n}_2|}$

(y) Equation of a plane containing the line $\frac{\mathbf{x} - \mathbf{x}_1}{\mathbf{a}} = \frac{\mathbf{y} - \mathbf{y}_1}{\mathbf{b}} = \frac{\mathbf{z} - \mathbf{z}_1}{\mathbf{c}}$ and passing through the point $(\mathbf{x}_2, \mathbf{y}_2, \mathbf{z}_2)$ not on the line is $\begin{vmatrix} \mathbf{x} - \mathbf{x}_1 & \mathbf{y} - \mathbf{y}_1 & \mathbf{z} - \mathbf{z}_1 \\ \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{x}_2 - \mathbf{x}_1 & \mathbf{y}_2 - \mathbf{y}_1 & \mathbf{z}_2 - \mathbf{z}_1 \end{vmatrix} = 0$

(z) Equation of a plane through the line $\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$ and parallel to the line $\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$ is $\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$