FORMULAE SHEET

Table: Domain and range of some standard functions-

Functions	Domain	Range
Polynomial function	R	R
Identity function x	R	R
Constant function K	R	(К)
Reciprocal function $\frac{1}{x}$	R _o	R _o
X^2 , $ \mathbf{x} $ (modulus function)	R	$R^+ \cup \{x\}$
x ³ ,x x	R	R
Signum function $\frac{ \mathbf{x} }{\mathbf{x}}$	R	{-1,0,1}
$X + \mathbf{x} $	R	$R^+ \cup \big\{ x \big\}$
x- x	R	$R^- \cup \{x\}$
[x] (greatest integer function)	R	1
x-{x}	R	[0,1]
\sqrt{x}	(0, ∞)	[0,∞]
a ^x (exponential function)	R	R+
Log x(logarithmic function)	R*	R

Inverse Trigo Functions	Domain	Range
sin ⁻¹ x	(-1,1]	$\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$
COS ⁻¹ X	[-1,1]	[0, π]
tan ⁻¹ x	R	$\left(\frac{-\pi}{2},\frac{\pi}{2}\right)$
cot ⁻¹ x	R	(0, π)
sec ⁻¹ x	R-(-1,1)	$[0,\pi] - \left\{\frac{\pi}{2}\right\}$
cosec ⁻¹ x	R-(-1,1)	$\left[\frac{-\pi}{2},\frac{\pi}{2}\right]-\{0\}$

Inverse function: f⁻¹ exists iff f is both one-one and onto.

 $f^1:B \rightarrow A$, $f^1(b)=a \implies f(a)=b$

Even and odd function: A function is said to be

- (a) Even function if f(x)=f(x) and
- **(b)** Odd function if f(-x) = -f(x)

Properties of even & odd function:

- (a) The graph of an even function is always symmetric about y-axis.
- (b) The graph of an odd function is always symmetric about origin.
- (c) Product of two even or odd function is an even function.
- (d) Sum & difference of two even (odd) function is an even (odd) function.
- (e) Product of an even or odd function is an odd function.
- (f) Sum of even and odd function is neither even nor odd function.
- (g) Zero function, i.e. f(x) = 0, is the only function which is both even and odd.
- (h) If f(x) is an odd (even) function, then f'(x) is even (odd) function provided f(x) is differentiable on R.

(i)A given function can be expressed as sum of even and odd function.

i.e. $f(x) = \frac{1}{2} \left[f(x) + f(-x) \right] + \frac{1}{2} \left[f(x) - f(-x) \right] = even function + odd function.$

Increasing function: A function f(x) is an increasing function in the domain, D if the value of the function does not decrease by increasing the value of x.

Decreasing function: A function f(x) is a decreasing function in the domain, D if the value of function does not increase by increasing the value of x.

Periodic function: Function f(x) will be periodic if a +ve real number T exists such that

 $f(x+T) = f(x), \forall x \in Domain.$

There may be infinitely many such real number T which satisfies the above equality. Such a least +ve number T is called period of f(x).

(i) If a function f(x) has period T, then period of f(xn+a)=T/n and period of (x/n+a)=nT.

(ii) If the period of f(x) is $T_1 \& g(x)$ has T_2 then the period of $f(x) \pm g(x)$ will be L.C.M. of $T_1 \& T_2$ provided it satisfies definition of periodic function.

(iii) If period of f(x) & f(x) are same T, then the period of af(x)+bg(x) will also be T.

Function	Period
sin x, cos x	2 π
sec x, cosec x	
tan x, cot x	π
sin (x/3)	6 π
tan 4x	π/4
cos 2 π x	1
cosx	π
sin ⁴ x+cos ⁴ x	π/2
$2\cos\left(\frac{x-\pi}{3}\right)$	6 π
sin3 x + cos³x	2π/3
Sin ³ x +cos ⁴ x	2 π
sinx sin5x	2 π
$\tan^2 x - \cot^2 x$	π
x-[x]	1
[x]	1