PROBLEM SOLVING TACTICS

(a) In general convert the given hyperbola equation into the standard form $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$ and compare it with $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Then solve using the properties of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. So, it is advised to remember

the standard results.

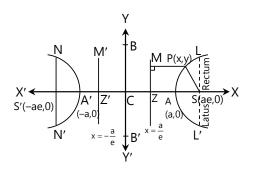
(b) Most of the standard results of a hyperbola can be obtained from the results of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ just by changing the sign of b².

FORMULAE SHEET

HYPERBOLA

(a) Standard Hyperbola:

Hyperbola Imp. Terms	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$-\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ or $\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = -1$
Centre	(0, 0)	(0, 0)
Length of transverse axis	2a	2b
Length of conjugate axis	2b	2a
Foci	(±ae, 0)	(0, ±be)
Equation of directrices	$x = \pm a/e$	y = ± b/e
Eccentricity	$e = \sqrt{\left(\frac{a^2 + b^2}{a^2}\right)}$	$e = \sqrt{\left(\frac{a^2 + b^2}{b^2}\right)}$
Length of L.R.	2b²/a	2a²/b
Parametric co-ordinates	(a sec φ, b tan φ)	(a tan φ, b sec φ)
	$0 \le \phi < 2\pi$	$0 \le \phi < 2\pi$
Focal radii	$SP = ex_1 - a$	$SP = ey_1 - b$
	$S \notin P = ex_1 + a$	S¢P = ey ₁ + b
S¢P – SP	2a	2b
Tangents at the vertices	x = -a, x = a	y =-b, y = b
Equation of the transverse axis	y = 0	x = 0
Equation of the conjugate axis	x = 0	y = 0



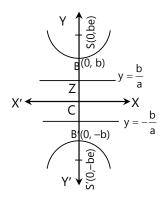


Figure 12.32: Hyperbola

Figure 12.33: Conjugate Hyperbola

- (b) Special form of hyperbola: If (h, k) is the centre of a hyperbola and its axes are parallel to the co-ordinate axes, then the equation of the hyperbola is $\frac{(x-h)^2}{a^2} \frac{(y-k)^2}{b^2} = 1$
- (c) **Parametric equations of a hyperbola:** The equation $x = a \sec \phi$ and $y = b \tan \phi$ are known as the parametric equation of the standard hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

If $S = \frac{x^2}{a^2} - \frac{y^2}{b^2}$, then $S_1 = \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1$; $T = \frac{xx_1}{a^2} - \frac{yy_1}{b^2} - 1$

(d) Position of a point and a line w.r.t. a hyperbola: n The point (x_1, y_1) lies inside, on or outside the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 according to $\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1$ being >, = or < zero.

The line y = mx + c intersects at 2 distinct points, 1 point or does not intersect with the hyperbola according as $c^2 >$, = or < $a^2m^2 - b^2$.

(e) Tangent:

- (i) **Point form:** The equation of tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at (x_1, y_1) is $xx_1 + yy_1 = 1$
 - $\frac{xx_1}{a^2} \frac{yy_1}{b^2} = 1.$
- (ii) **Parametric form:** The equation of tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at parametric coordinates (a sec ϕ , b tan ϕ) is $\frac{x}{a} \sec \phi \frac{y}{b} \phi = 1$.
- (iii) Slope form: The equation of the tangents having slope m to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ are $y = mx \pm \sqrt{a^2m^2 b^2}$ and the co-ordinates of points of contacts are

$$\left(\pm\frac{a^2m}{\sqrt{a^2m^2-b^2}},\pm\frac{b^2}{\sqrt{a^2m^2+b^2}}\right)$$

(f) Equation of a pair of tangents from an external point (x_1, y_1) to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $SS_1 = T^2$.

(g) Normal:

(i) **Point form**: The equation of the normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at (x_1, y_1) is $a^2x + b^2y = 1$.

$$\frac{a x}{x_1} + \frac{b y}{y_1} = a^2 + b^2.$$

(ii) **Parametric form:** The equation of the normal at parametric coordinates (a sec θ , b tan θ) to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ is } \qquad \text{ax } \cos \theta + \text{by } \cot \theta = a^2 + b^2.$$

(iii) Slope form: The equation of the normal having slope m to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

$$y = mx \mp \frac{m(a^2 + b^2)}{\sqrt{a^2 - b^2 m^2}}$$

(iv) Condition for normality: y = mx + c is a normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ if $m(a^2 + b^2)^2$

$$c^{2} = \frac{m(a^{2} + b^{2})^{2}}{(a^{2} - m^{2}b^{2})}$$

- (v) Points of contact: Co-ordinates of the points of contact are $\left(\pm \frac{a^2}{\sqrt{a^2 b^2m^2}}, \mp \frac{mb^2}{\sqrt{a^2 b^2m^2}}\right)$. (h) The equation of the director circle of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is given by $x^2 + y^2 = a^2 - b^2$.
- (i) Equation of the chord of contact of the tangents drawn from the external point (x_1, y_1) to the hyperbola is

given by $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1.$

(j) The equation of the chord of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ whose mid point is (x_1, y_1) is $T = S_1$.

(k) Equation of a chord joining points P(a sec $f_{1'}$ b tan f_1) and Q (a sec $f_{2'}$ b tan f_2) is

$$\frac{x}{a}\cos\left(\frac{\phi_1 - \phi_2}{2}\right) - \frac{y}{b}\sin\left(\frac{\phi_1 + \phi_2}{2}\right) = \cos\left(\frac{\phi_1 + \phi_2}{2}\right)$$

(I) Equation of the polar of the point $(x_{1'}, y_1)$ w.r.t. the hyperbola is given by T = 0.

The pole of the line lx + my + n = 0 w.r.t. $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $\left(-\frac{a^2\ell}{n}, \frac{b^2m}{n}\right)$

(m) The equation of a diameter of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ corresponding to the chords of slope m is $y = \frac{b^2}{a^2 m} x$

(n) The diameters $y = m_1 x$ and $y = m_2 x$ are conjugate if $m_1 m_2 = \frac{b^2}{a^2}$

- (o) Asymptotes:
 - Asymptote to a curve touches the curve at infinity.
 - The equation of the asymptotes of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ are $y = \pm \frac{b}{a}x$.

- The asymptote of a hyperbola passes through the centre of the hyperbola.
- * The combined equation of the asymptotes of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $\frac{x^2}{a^2} \frac{y^2}{b^2} = 0$
- * The angle between the asymptotes of $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $2 \tan^{-1} \frac{a^2}{b^2}$ or $2 \sec^{-1} e$.
- A hyperbola and its conjugate hyperbola have the same asymptotes.
- The bisector of the angles between the asymptotes are the coordinate axes.
- Equation of the hyperbola Equation of the asymptotes = constant.

(p) Rectangular or Equilateral Hyperbola:

- A hyperbola for which a = b is said to be a rectangular hyperbola, its equation is $x^2 y^2 = a^2$.
- $xy = c^2$ represents a rectangular hyperbola with asymptotes x = 0, y = 0.
- Eccentricity of a rectangular hyperbola is $\sqrt{2}$ and the angle between the asymptotes of a rectangular hyperbola is 90°.
- Parametric equation of the hyperbola $xy = c^2$ are x = ct, $y = \frac{c}{t}$, where t is a parameter.
- Equation of a chord joining t_1 , t_2 on $xy = c^2$ is $x + y t_1 t_2 = c(t_1 + t_2)$
- Equation of a tangent at (x_1, y_1) to $xy = c^2$ is $\frac{x}{x_1} + \frac{y}{y_1} = 2$.
- Equation of a tangent at t is x + yt² = 2ct
- Equation of the normal at (x_1, y_1) to $xy = c^2$ is $xx_1 yy_1 = x_1^2 y_1^2$.
- Equation of the normal at t on xy = c² is xt³ yt ct⁴ + c = 0.
 (i.e. Four normals can be drawn from a point to the hyperbola xy = c²)
- If a triangle is inscribed in a rectangular hyperbola then its orthocentre lies on the hyperbola.
- Equation of chord of the hyperbola $xy = c^2$ whose middle point is given is $T = S_1$.
- Point of intersection of tangents at t_1 and t_2 to the hyperbola $xy = c^2$ is $\left(\frac{2ct_1t_2}{t_1 + t_2}, \frac{2c}{t_1 + t_2}\right)$