
25.22  |   Area Under the Curve and Linear Programming

(c) Transportation problems: In these problems, we determine a transportation schedule in order to find the 
cheapest way of transporting a product from plants/factories situated at different locations to different 
markets.

Example: There are I ports, or production plants, 1 IP ,..........P , that supply a certain commodity, and there are 
J markets, 1 JM ,..........M , to which this commodity must be shipped. Port iP  possesses an amount is  of the 
commodity (i=1,2,……I), and market jM  must receive the amount jr  of the commodity ( j = 1,……..J). Let ijb be 
the cost of transporting one unit of the commodity from port iP  to market jM . The problem is to meet the 
market requirements at minimum transportation cost is 
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The amount sent to market jM  is 
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It is assumed that we cannot send a negative amount from IP  to jM , we have 

   ijy  ≥ 0 for I = 1,……..I and j =1,……..J.  ... (iv)

Our problem is minimize (i) subject to (ii), (iii) and (iv).

FORMULAE SHEET

(a) Area bounded by a curve with x – axis: 
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(b) Area bounded by a curve with y – axis: Area = 
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(c) Area of a curve in parametric form: Area = 
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(d) Positive and Negative Area: A =
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(e) Area between two curves:

(i)  Area enclosed between two curves intersecting at two different points.
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(ii)  Area enclosed between two curves intersecting at one point and the x – axis.

   Area = 
b

1 2
a

f (x)dx f (x)dx
α

α

+∫ ∫

(iii)  Area bounded by two intersecting curves and lines parallel to y – axis.
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(a) Standard Areas:

(i)  Area bounded by two parabolas y2 = 4ax and x2 = 4by; a > 0, b > 0 : 16abArea
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(ii)  Area bounded by Parabola y2 = 4ax and Line y = mx : Area 
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(iii) Area of an Ellipse 
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Solved Examples

JEE Main/Boards

Example 1: Find area bounded by y = 4 – x2, x-axis and 
the lines x = 0 and x = 2.

Sol: By using the formula of Area          Y

4

X
2O

Bounded by the x – axis, we can 
obtain 

Required Area.

= 
2 2

2

0 0

y dx (4 x )dx= −∫ ∫

= 
23

0

x 8 164x 8
3 3 3

 
− = − =  

 
sq. units  

Example 2: Find the area bounded by the curve  
y2 = 2y – x and the y-axis.

Sol: Here given equation is the    
Y

O 2
X

t

B
2

equation of parabola with vertex 
(1, 1) and curve passes through 
the origin. 

Curve is y2 – 2y = –x or (y – 1)2 = 
– (x – 1)

It is a parabola with 

Vertex at (1, 1) and the curve passes through the origin. 
At B, x = 0 and y = 2
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Example 3: Find the area of the region {(x, y): x2 ≤ y ≤ x} 

Sol: Consider the function y = x2 and y = x Solving 
them, we get x = 0, y = 0 and x = 1, y = 1;x2 ≤ y ⇒ area 

is above the curve y = x2 y ≤ x ⇒ area is below the line 
y = x
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Example 4: Find the area of the region enclosed by  

y = sin x, y = cos x and x-axis, 0 ≤ x ≤ 
2
π .

Sol: Find point of intersection Y
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is P. Therefore after obtaining 
the co-ordinates of P and then 
integrating with appropriate 
limits, we can obtain required 
Area.

At point of intersection P, 

x
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x and ; y = cos x are equal 

Hence, P is 1.
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