(c) **Transportation problems:** In these problems, we determine a transportation schedule in order to find the cheapest way of transporting a product from plants/factories situated at different locations to different markets.

Example: There are I ports, or production plants, P_1 ,..... P_I , that supply a certain commodity, and there are J markets, M_1 ,.... M_j , to which this commodity must be shipped. Port P_i possesses an amount s_i of the commodity (i=1,2,....I), and market M_j must receive the amount r_j of the commodity (j = 1,.....J). Let b_{ij} be the cost of transporting one unit of the commodity from port P_i to market M_j . The problem is to meet the market requirements at minimum transportation cost is

$$\sum_{i=1}^{I} \sum_{j=1}^{J} y_{ij} b_{ij} \qquad ... (i)$$

The amount sent from port P_i is $\sum_{j=1}^{J} y_{ij} \le y_{ij}$ and since the amount available at port P_i is s_i , we must have

$$\sum_{j=1}^{J} y_{ij} \le s_i \text{ for } i = 1, \dots, I \qquad \dots (ii)$$

The amount sent to market M_j is $\sum_{i=1}^{I} y_{ij}$, and since the amount required there is r_j , we must have

$$\sum_{i=1}^{I} y_{ij} \le r_j \text{ for } j = 1, \dots, I \qquad \dots (iii)$$

It is assumed that we cannot send a negative amount from P_{I} to M_{i} , we have

$$y_{ij} \ge 0$$
 for I = 1,.....I and j = 1,....J. ... (iv)

Our problem is minimize (i) subject to (ii), (iii) and (iv).

FORMULAE SHEET

(a) Area bounded by a curve with x – axis: Area = $\int_{a}^{b} y \, dx = \int_{a}^{b} f(x) dx$

(b) Area bounded by a curve with y – axis: Area =
$$\int_{c}^{a} x \, dy = \int_{c}^{a} f(y) dy$$

(c) Area of a curve in parametric form: Area =
$$\int_{a}^{b} y \, dx = \int_{t_2}^{t_2} g(t) f'(t) dt$$

(d) Positive and Negative Area: A =
$$\left| \int_{a}^{c} f(x) dx \right| + \left| \int_{c}^{b} f(x) dx \right|$$
;

- (e) Area between two curves:
 - (i) Area enclosed between two curves intersecting at two different points. Area = $\int_{a}^{b} (y_1 - y_2) dx = \int_{a}^{b} [f_1(x) - f_2(x)] dx$
 - (ii) Area enclosed between two curves intersecting at one point and the x axis. Area = $\int_{a}^{\alpha} f_1(x) dx + \int_{\alpha}^{b} f_2(x) dx$
 - (iii) Area bounded by two intersecting curves and lines parallel to y axis.

Area =
$$\int_{a}^{b} (f(x) - g(x)) dx + \int_{c}^{b} (g(x) - f(x)) dx$$

(a) Standard Areas:

- (i) Area bounded by two parabolas $y^2 = 4ax$ and $x^2 = 4by$; a > 0, b > 0: Area = $\frac{16ab}{3}$
- (ii) Area bounded by Parabola $y^2 = 4ax$ and Line y = mx: Area $= \frac{8a^2}{3m^3}$

(iii) Area of an Ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
: Area = πab

Solved Examples

×Х

JEE Main/Boards

Example 1: Find area bounded by $y = 4 - x^2$, x-axis and the lines x = 0 and x = 2.

Sol: By using the formula of Area Bounded by the x - axis, we can obtain

Required Area.

$$= \int_{0}^{2} y \, dx = \int_{0}^{2} (4 - x^{2}) dx$$
$$= \left(4x - \frac{x^{3}}{3}\right)_{0}^{2} = 8 - \frac{8}{3} = \frac{16}{3} \text{ sq. units}$$

Example 2: Find the area bounded by the curve $y^2 = 2y - x$ and the y-axis.

Sol: Here given equation is the equation of parabola with vertex (1, 1) and curve passes through the origin.

Curve is $y^2 - 2y = -x$ or $(y - 1)^2 = -(x - 1)$

It is a parabola with

Vertex at (1, 1) and the curve passes through the origin. At B, x = 0 and y = 2

Area

$$= \int_{0}^{2} x \, dy = \int_{0}^{2} (2y - y^{2}) \, dy = \left(y^{2} - \frac{y^{3}}{3}\right)_{0}^{2} = \frac{4}{3} \text{ sq. units}$$

Example 3: Find the area of the region $\{(x, y): x^2 \le y \le x\}$

Sol: Consider the function $y = x^2$ and y = x Solving them, we get x = 0, y = 0 and x = 1, y = 1; $x^2 \le y \Rightarrow$ area

is above the curve y = $x^2 y \leq x \Longrightarrow$ area is below the line y = x

Example 4: Find the area of the region enclosed by

Yγ

y = sin x, y = cos x and x-axis,
$$0 \le x \le \frac{\pi}{2}$$

Sol: Find point of intersection is P. Therefore after obtaining the co-ordinates of P and then integrating with appropriate limits, we can obtain required Area.

At point of intersection P, $x = \frac{\pi}{4}$ as ordinates of y = sin

x and ;
$$y = \cos x$$
 are equal

Hence, P is
$$\left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right)$$
 Required area

$$= \int_{0}^{\pi/4} \sin x \, dx + \int_{\pi/4}^{\pi/2} \cos x \, dx = \left(-\cos x\right)_{0}^{\pi/4} + \left(\sin x\right)_{\pi/4}^{\pi/2}$$

$$= \left(-\frac{1}{\sqrt{2}} + 1\right) + \left(1 - \frac{1}{\sqrt{2}}\right) = 2 - \sqrt{2} \text{ sq. units}$$

$$\xrightarrow{P}_{\substack{I \\ L \\ \pi/2}} X$$