Sol: (c) Adding Au₁ and Au₂ we get A($u_1 + u_2$). Then using the invariance method we obtain $u_1 + u_2$.

By adding, we have $A(u_1 + u_2) = Au_1 + Au_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

We then solve the above equation for $u_1 + u_{2'}$ if we consider the augmented matrix $(A|B) = \begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 2 & 1 & 0 & | & 1 \\ 3 & 2 & 1 & | & 0 \end{pmatrix}$

Applying $R_3 \rightarrow R_3 - 2R_2 + R_1$ and $R_2 \rightarrow R_2 - 2R_1$, we get (A|B) ~ $\begin{pmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & -1 \end{pmatrix} \Rightarrow u_1 + u_2 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$

PROBLEM-SOLVING TACTICS

- If A, B are square matrices of order n, and I is a corresponding unit matrix, then
- (a) $A(adj.A) = |A| I_n = (adj A) A$
- (b) $| adj A | = | A |^{n-1}$ (Thus A (adj A) is always a scalar matrix)
- (c) adj (adj.A) = $|A|^{n-2} A$
- (d) $| adj (adj.A) | = | A |^{(n-1)^2}$
- (e) adj (A^T) = (adj A)^T
- (f) adj (AB) = (adj B) (adj A)
- (g) $adj (A^m) = (adj A)^m, m \in N$
- (h) adj (kA) = k^{n-1} (adj. A) , $k \in R$
- (i) $adj(I_n) = I_n$
- (j) adj 0 = 0
- (k) A is symmetric \Rightarrow adj A is also symmetric
- (I) A is diagonal \Rightarrow adj A is also diagonal
- (m) A is triangular \Rightarrow adj A is also triangular
- (n) A is singular \Rightarrow | adj A | = 0

FORMULAE SHEET

(a)	Туре	es of matrix:									
	(i)	Symmetric Matrix: A square matrix $A = [a_{ij}]$ is called a symmetric matrix if $a_{ij} = a_{ji}$, for all i,j.									
	(ii)	Skew-Symmetric Matrix: when $a_{ij} = -a_{ji}$									
	(iii)	Hermitian and skew – Hermitian Matrix:				$A = A^{\theta}$ (Hermitian matrix)					
						$A^{\theta} = -A$ (skew-Hermitian matrix)					
	(iv)	Orthogonal matrix: if $AA^{T} = I_{n} = A^{T}A$									
	(v)	Idempotent matrix: if A ² = A									
	(vi)	Involuntary matrix: if $A^2 = I$ or $A^{-1} = A$									
	(vii)	Nilpotent matrix: if $\exists p \in N$ such that $A^p = 0$									
(b)	Trac	e of matrix:									
	(i)	$tr(\lambda A) = \lambda tr(A)$									
	(ii)	tr(A + B) = tr(A) + tr(B)									
	(iii)	tr(AB) = tr(BA)									
(c)	Tran	nspose of matrix:									
	(i)	$(A^{T})^{T} = A$	(ii)	$(A \pm B)^{T} = A^{T} \pm B^{T}$			(iii) $(AB)^{T} = B^{T}A^{T}$	Г	(iv)	$(kA)^{T} = k(A)^{T}$	A)⊺
	(v)	$(A_1A_2A_3A_{n-1}A_n)$	_n) ^T =	$\boldsymbol{A}_n^{T} ~ \boldsymbol{A}_{n-1}^{T} \dots \dots ~ \boldsymbol{A}_3^{T} ~ \boldsymbol{A}_2^{T}$	A_1^T		(vi) $I^{T} = I$		(vii)	tr(A) = tr(A)	A [⊤])
(d)	Prop	perties of multiplication:									
	(i)	AB ≠ BA	(ii)	(AB)C = A(BC)			(iii) A.(B + C) = A	A.B + A.C			
(e)	Adjo	oint of a Matrix:									
	(i)	A(adj A) = (adj A)A = $ A I_n$ (adj AB) = (adj B) (adj A)			(ii)	adj	$A = A ^{n-1}$				
	(iii)				(iv) $adj (adj A) = A ^{n-2}$						
	(v)	(adj KA) = K ⁿ⁻¹ (adj A			-						
(e)	Inve	erse of a matrix: A^{-1} exists if A is non singular i.e. $ A \neq 0$									
	(i)	$A^{-1} = \frac{1}{ A }$ (Adj. A)			(ii)	A-1A	$= I_n = AA^{-1}$				
	(iii)	$(A^{T})^{-1} = (A^{-1})^{T}$				(A ⁻¹) ⁻¹ = A				
	(v)	$ A^{-1} = A ^{-1} = \frac{1}{ A }$									