
9. F L U I D  M E C H A N I C S

1. INTRODUCTION

Fluid is a collective term for liquid and gas. A fluid cannot sustain shear stress when at rest. We will study the 
dynamics of non-viscous, incompressible fluid. We will be learning about pressure variation, Archemides principle, 
equation of continity, Bernoulli’s Theorem and its applications and surface tension, Stoke’s Law and Terminal 
velocity of a spherical body.

2. DEFINITION OF A FLUID

A fluid is a substance that deforms continuously under the application of a shear (tangential) stress no matter how 
small the shear stress may be.

F

(a) Solid (b) Fluid

F

Figure 9.1: Behavior of a solid and a fluid, under the action of a constant shear force.

3. FLUID STATICS

It refers to the state when there is no relative velocity between fluid elements. In this section we will learn some of 
the properties of fluid statics.

3.1 Density
The density ρ  of a substance is defined as the mass per unit volume of a sample of the substance. If a small mass 

element ∆m occupies a volume ∆V, the density is given by m
V

∆
ρ =

∆

In general, the density of an object depends on position, so that f(x, y,z)ρ =
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If the object is homogeneous, its physical parameters do not change with position throughout its volume. Thus for 

a homogeneous object of mass M and volume V, the density is defined as M
V

ρ =

Thus SI units of density are kg m–3.

Note: As pressure is increased, volume decreases and hence density will increase.

As the temperature of a liquid is increased, mass remains the same while the volume is increased.

Vaibhav Krishnan (JEE 2009, AIR 22)

3.2 Specific Gravity
The specific gravity of a substance is the ratio of its density to that of water at 4ºC, which is 1000 kg/m3. Specific 
gravity is a dimensionless quantity numerically equal to the density quoted in g/cm3. For example, the specific 

gravity of mercury is 13.6, and the specific gravity of water at 100ºC is 0.999. Density of substance
RD=

Density of water at 4ºC

Illustration 1: Find the density and specific gravity of gasoline if 51 g occupies 75 cm3? � (JEE MAIN)

Sol: Density is mass per unit volume, and specific gravity is the ratio of density of substance and density of water.

	 Density = mass
volume

=
6 3

0.051kg
75 10 m−×

= 680 kg/m3

Sp. gr = density of gasoline
density of water

 = 
3

3

680kg / m
1000kg / m

=0.68 or Sp. gravity = 
3

3

mass of 75 cm gasoline
mass of 75 cm water

= 51g
75g

=0.68

Illustration 2: The mass of a liter of milk is 1.032 kg. The butterfat that it contains has a density of 865 kg/m3 when 
pure, and it constitutes 4 percent of the milk by volume. What is the density of the fat-free skimmed milk?�
� (JEE MAIN)

Sol: Find the mass of butterfat present in the milk. Subtract this from total mass to get mass of fat-free milk. The 
density of fat-free milk is equal to its mass divided by its volume.

	 Volume of fat in 1000 cm3 of milk = 4% × 1000 cm3 = 40 cm3	

	 Mass of 40 cm3 fat = Vρ = (40 × 10–6 m3)(865 kg/m3) = 0.0346 kg

	 Density of skimmed milk = mass
volume

= 
6 3

(1.032 0.0346)kg
(1000 40) 10 m−

−

− ×

3.3 Pressure
The pressure exerted by a fluid is defined as the force per unit area at a point within the 
fluid. Consider an element of area ∆A as shown in the figure and an external force ∆F 
is acting normal to the surface. The average pressure in the fluid at the position of the 

element is given by Pav = F
A

∆
∆

 [A normal force ∆F acts on a small cylindrical element of 

cross-section area ∆A.] 

F

A

Figure 9.2

MASTERJEE CONCEPTS



Physics  |   9 .3

As ∆A → 0, the element reduces to a point, and thus, pressure at a point is defined as

p = 
A 0

F dFlim
A dA∆ →

∆
=

∆ 	

When the force is constant over the surface A, the above equation reduces to p = F
A

The SI unit of pressure is Nm-2 and is also called Pascal (Pa). The other common pressure units are atmosphere and 
bar.

1 atm = 1.01325 × 105 Pa; 1 bar = 1.00000 × 105 Pa; 1 atm = 1.01325 bar

3.3.1 Pressure Is Isotropic

Imagine a static fluid and consider a small cubic element of the fluid deep within 
the fluid as shown in the figure. Since this fluid element is in equilibrium therefore, 
forces acting on each lateral face of this element must also be equal in magnitude. 
Because the areas of each face are equal, therefore, the pressure on each face is equal 
in magnitude. Therefore the pressure on each of the lateral faces must also be the 
same. In the limit as the cube element to a point, the forces on top and bottom 
surfaces also become equal. Thus, the pressure exerted by a fluid at a point is the same 
in all directions – pressure is isotropic. 

Note: Since the fluid cannot support a shear stress, the force exerted by a fluid pressure 
must also be perpendicular to the surface of the container that holds it.

3.3.2 Atmospheric Pressure (P0)

It is pressure of the earth’s atmosphere. This changes with weather and elevation. Normal atmospheric pressure at 
sea level (an average value) is 1.013 × 105 Pa. Thus, 

1 atm = 1.013 × 105 Pa=1.013 Bar

3.3.3 Absolute Pressure and Gauge Pressure

The excess pressure above atmospheric pressure is usually called gauge pressure and the total pressure is called 
absolute pressure. Thus, Gauge pressure = absolute pressure – atmospheric pressure. Aboslute pressure is always 
greater than or equal to zero. While gauge pressure can be negative also.

Illustration 3: Atmospheric pressure is about 1.01 × 105 Pa. How large a force does the atmosphere exert on a 2 
cm2 area on the top of your head?� (JEE MAIN)

Sol: Force = Pressure × Area

Because p = F/A, where F is perpendicular to A, we have F = pA. Assuming that 2 cm2 of your head is flat (nearly 
correct) and that the force due to the atmosphere is perpendicular to the surface (as it is), we have F = pA = (1.01 
× 105 N/m2) (2 × 10–4 m2) ≈  20N

3.3.4 Variation of Pressure with Depth

Weight of a fluid element of mass Dm,	 DW = (Dm)g . The force acting on the lower face of the element is pA 
and that on the upper face is (p + Dp)A. The figure (b) shows the free body diagram of the element. Applying the 
condition of equilibrium, we get, pA – (p + Dp) A – (Dm)g = 0

if ρ  is the density of the fluid at the position of the element, then Dm = ρA(Dy)

Figure 9.3: A small cubical 
element is in equilibrium 

inside a fluid
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and pA – (p + Dp) A – rgA(Dy) = 0

or p
y

∆
∆

= - rg

In the limit ∆y approaches to zero, p
y

∆
∆

 becomes 
dp g
dy

= −ρ . The above equation indicates that the 

slope of p versus y is negative. That is, the pressure p 

decreases with height y from the bottom of the fluid. In 

other words, the pressure p increases with depth h, i.e., dp g
dh

= ρ

3.4 The Incompressible Fluid Model
For an incompressible fluid, the density ρ of the fluid remains constant 
throughout its volume. It is a good assumption for liquids. To find pressure at 
the point A in a fluid column as shown in the figure, is obtained by integrating 
the following equation:

dp = rgdh or	
p h

p 00

dp g dh= ρ∫ ∫  or p – p0 = rgh	 or	 p = p0 + rgh � …(xvi)

where ρ  is the density of the fluid, and p0 is the atmospheric pressure at the 
free surface of the liquid. 

Note: Further, the pressure is the same at any two points at the same level in 
the fluid. The shape of the container does not matter.

P
0

P
0

h
A B

P P
A B
= = P +pgh

0

Illustration 4: Find the absolute pressure and gauge pressure at point A, B and C as shown in the Fig. 9.6 (1 atm = 
105 Pa)� (JEE MAIN)

Sol: Gauge Pressure = rgh, Absolute Pressure is sum of gauge pressure 
and atmospheric pressure.

Patm = 105 Pa. 

Absolute Pressure A -> PA + Patm= r1ghA = (800)(10)1 = 8 kPa

A A atmp p p 108 kPa′ = + =

Gauge Pressure = 8 kPa.

B -> B 1 2p g(2) g(1.5)= ρ + ρ 	

B B atmp p p′ = + = 131 kPa = (800)(10)(2) + (103)(10)(1.5) = 131 kPa

Gauge Pressure = 31 kPa.

(a) (b)

y
pA

(p+ p)A

( m)g
y

m

Figure 9.4

Figure 9.6

hp

y

A

Figure 9.5: A point A is located in 
a fluid at a height from the bottom 

and at a deth h from the free 
surface

A

B

C

Water

Mercury

Kerosene

2m

2m

1m

1.5m

p =800 kg/m
1

3

p =1000 kg/m
2

3

p =13.6x10 kg/m
3

3 3

0.5m
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C-> c 1 2 3p p g(2) g(2) g(0.5)= + ρ + ρ 	

C C atmp p 204kPa′ρ = + =

= (800)(10)(2) + (10)3(10)(2) + 1(13.6 × 103)(10)(0.5) = 204 kPa

Gauge Pressure = 104 kPa.

Illustration 5: A glass full of water of a height of 10 cm has a bottom of area 10 cm2, top of area 30 cm2 and volume 
1 litre.� (JEE ADVANCED)

(a)	 Find the force exerted by the water on the bottom.

(b)	 Find the resultant force exerted by the side of the glass on the water. 

(c)	 If the glass is covered by a jar and the air inside the jar is completely pumped out, what will be the answer to 
parts (a) and (b).

(d)	 If a glass of different shape is used provided the height, the bottom area and the volume are unchanged, will 
the answers to parts (a) and (b) change.

Take g = 10m/s2, density of water = 103 kg/m3 and atmospheric pressure = 1.01 × 105 N/m2.

Sol: Pressure at the bottom depends on the height of water in the container. Force = Pressure × Area. The force 
on water surface due to atmospheric pressure plus the weight of water are balanced by the force on water by the 
container bottom and its walls.

(a)	 Force exerted by the water on the bottom	 F1 = (P0 + rgh)A1 � … (i)

Here, P0 = atmospheric pressure = 1.01 × 105 N/m2; ρ = density of water = 103 kg/m3

g = 10 m/s2, h = 10 cm = 0.1 m and 	 A1 = area of base 10 cm2 = 10–3 m2 . Substituting in Eq. (i), we get F1= 
(1.01 × 105 + 103 × 10 × 0.1) ×10–3 or F1 = 102 N (downwards)	

(b)	 Force exerted by atmosphere on water F2 = (P0)A2

Here, A2 = area of top = 30 cm2 = 3 × 10–3 m2 ; F2 = (1.01 × 105)(3 × 10–3) = 303 N (downwards)

Force exerted by bottom on the water	 F3 = – F1 or	 F3= 102 N (upwards)

Weight of water W = (volume)(density)(g) = (10–3)(103)(10) = 10 N (downwards)

Let F be the force exerted by side walls on the water (upwards). Then, from equilibrium of water 

Net upward force = net downward force or F + F3 = F2 + W

F – F2 + W – F3 = 303 + 10 – 102 or F = 211 N (upwards)

(c)	 If the air inside of the Jar is completely pumped out,

F1 = (rgh)A1 (as P0 = 0) = (103)(10)(0.1)(10–3) = 1 N (downwards). In this case F2 = 0 and F3 = 1 N (upwards)	
∴ 	 F = F2 + W – F3 = 0 + 10 – 1 = 9 N (upwards)	

(d)	 No, the answer will remain the same. Because the answers depend upon P0, ρ, g, h , A1 and A2.

Illustration 6: Two vessels have the same base area but different shapes. The first vessel takes twice the volume 
of water that the second vessel requires to fill up to a particular common height. Is the force exerted by water on 
the base of the vessel the same in the two cases? If so, why do the vessels filled with water to the same height give 
different reading on a weighing scale?� (JEE MAIN)

Sol: Force on the base of the vessel depends on the pressure on it, and pressure depends on the height of the 
liquid in the vessel. On the other hand the normal reaction from the surface on which the vessel is kept, depends 
on both the pressure at the base as well as the weight of the liquid in the vessel.
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Pressure (and therefore force) on the two equal base areas are identical. But force is exerted by water on the sides 
of the vessels also, which has non-zero vertical component when the sides of the vessel are not perfectly normal to 
the base. This net vertical component of force by water on the side of the vessel is greater for the first vessel than 
the second. Hence, the vessels weigh different when the force on the base is the same in the two cases.

3.4.1 Pascal’s Laws

According to the equation p = p0 + rgh . Pressure at any depth h in a 
fluid may be increased by increasing the pressure p0 at the surface. 
Pascal recognized a consequence of this fact that we now call Pascal’s 
Law. A pressure applied to a confined fluid at rest is transmitted equally 
undiminished to every part of the fluid and the walls of the container.

This principle is used in a hydraulic jack or lift, as shown in the figure.

The pressure due to a small force F1 applied to a piston of area A1 is 
transmitted to the large piston of area A2. The pressure at the two pistons 
is the same because they are at the same level. 

1 2

1 2

F F
p

A A
= = 	 Or 2

2 1
1

A
F F

A
 

=   
 

. Consequently, the force on the larger piston is large.

Thus, a small force F1 acting on a small area A1 results in a larger force F2 acting on a larger area A2.

Since energy is always conserved, F1x1 = F2x2 where x1 and x2 are the distances moved by the pistons.

Nitin Chandrol (JEE 2012, AIR 134)

Illustration 7: Find the pressure in the air column 
at which the piston remains in equilibrium. Assume 
the pistons to be massless and frictionless.	
� (JEE MAIN)

Sol: Apply Pascal’s law at two points at equal 
height from a common datum.

Let pa be the air pressure above the piston.

Applying Pascal’s law at point A and B.

Patm + rwg(5) =pa + rkg(1.73) 3
2

; Pa = 138 kPa

Illustration 8: A weighted piston confines a fluid of density ρ in a closed 
container, as shown in the figure. The combined weight of piston and 
container is W = 200 N, and the cross-sectional area of the piston is  
A = 8 cm2. Find the total pressure at point B if the fluid is mercury and  
h = 25 cm (pm = 13600 kgm-3). What would be an ordinary pressure gauge 
reading at B?� (JEE ADVANCED)

Sol: Pressure difference between two points at different heights is equal to 
ρgh, where h is difference in heights of two points. Apply Pascal’s law at two 
points at different heights from a common datum.

F1

F2

A2A1

A hydraulic jack

�

Figure 9.7

Figure 9.8

Figure 9.9

Air

Piston

Kerosene
5m 1.73m

S=0.860°

Water

Datum
A B

B

h
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Pascal’s principle tells us about the pressure applied to the fluid by the piston and atmosphere. This added pressure 
is applied at all points within the fluid. Therefore the total pressure at B is composed of three parts: Pressure of 
atmosphere = 1.0 × 105 Pa

Pressure due to piston and weight = W
A

 = 
4 2

200N

8 10 m−×
 = 2.5 × 105 Pa

Pressure due to height h of fluid = hrg = 0.33 × 105 Pa

In this case, the pressure of the fluid itself is relatively small. We have 

Total pressure at B = 3.8 × 105 Pa = 383 kPa. The gauge pressure does not include atmospheric pressure. Therefore, 

Gauge pressure at B = 280 kPa	

Illustration 9: For the system shown in the figure, the cylinder on the left, at L, 
has a mass of 600 kg and a cross-sectional area of 800 cm2. The piston on the 
right at S, has cross-sectional area 25 cm2 and negligible weight. If the apparatus 
is filled with oil (ρ=0.78 g/cm3), find the force F required to hold the system in 
equilibrium as shown in figure.�  (JEE ADVANCED) 

Sol: Apply Pascal’s law at two points at different heights from a common datum.

The pressures at point H1 and H2 are equal because they are at the same level in 
the single connected fluid. Therefore, Pressure at H1 = pressure at H2 = (pressure 
due to F plus pressure due to liquid column above H2)

2

(600)(9.8)N
0.08m

 = 
4 2

F
25 10 m−×

 + (8m)(780 kg/m–3)(9.8) 

After solving, we get, F = 31 N 	

Illustration 10: As shown in the figure, as column of water 40 cm high supports 31 cm of an unknown fluid. What 
is the density of the unknown fluid?� (JEE MAIN)

Sol: Find the hydrostatic pressure at the bottom most point A due 
to both the water column and the unknown fluid column.

The pressure at point A due to the two fluids must be equal (or 
the one with the higher pressure would push lower pressure fluid 
away). Therefore, pressure due to water = pressure due to known 

fluid; h1r1g = h2r2g, from which r2 =
1

2

h
h

p1 = 40
31

 (1000 kg/m2) = 1290 
kg/m3

For gases, the constant density assumed in the compressible 
model is often not adequate. However, an alternative simplifying 
assumption can be made that the density is proportional to the 

pressure, i.e., ρ = kp. Let r0 be the density of air at the earth’s surface 

where the pressure is atmospheric po, then r0 = kp0 ; After eliminating k, we get ρ = 0

0
p

p
ρ

Putting the value of ρ in equation dp = –rgdy	 or 	 dp = 0
0

p gdy
p

 ρ
−  

 
p h

0

0p 00

dpOn rearranging,  we get g dy
p p

ρ
= −∫ ∫  where p is the pressure at a height y = h above the earth’s surface. 

Figure 9.10

Figure 9.11

L
600 kg 8m

H1 H2

S

F

A

31 cm

40 cm
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After integrating, we get ln
0

p
p

 = – 0

0
gh

p
ρ

	 or	
p0 gh

p0
0p p

−

=

Note: Instead of a linear decrease in pressure with increasing height as in the case of an incompressible fluid, in 
this case pressure decreases exponentially.

4. PRESSURE MEASURING DEVICES

4.1 Manometer
A manometer is a tube open at both ends and bent into the 
shape of a “U” and is partially filled with mercury. When one 
end of the tube is subjected to an unknown pressure p, the 
mercury level drops on that side of the tube and rises on the 
other so that the difference in mercury level is h as shown in 
the figure.

When we move down in a fluid, pressure increases with 
depth and when we move up the pressure decreases with 
height. When we move horizontally in a fluid, pressure 
remains constant. Therefore, p + r0gh0 – rmgh = p0 where p0 is 
atmospheric pressure, and rm is the density of the fluid inside 
the vessel. 

4.2 The Mercury Barometer
It is a straight glass tube (closed at one end) completely filled with mercury 
and inserted into a dish which is also filled with mercury as shown in the 
figure. Atmospheric pressure supports the column of mercury in the tube to 
a height h. The pressure between the closed end of the tube and the column 
of mercury is zero, p = 0. Therefore, pressure at points A and B are equal and 
thus p0 = 0 + rmgh. Hence, p0 = (13.6 × 103)(9.8)(0.76) = 1.01 × 105 Nm-2 for Pa.

Illustration 11: What must be the length of a barometer tube used to measure atmospheric pressure if we are to 
use water instead of mercury?� (JEE MAIN)

Sol: The length of the barometer tube will be inversely proportional to the density of fluid used in it.

We know that 	 p0 = rmghm = rwghw where rw and hw are the density and height of the water column supporting the 
atmospheric pressure p0.

\	 hw = m
w

w
h

ρ
ρ

 ; Since m

w

ρ
ρ

= 13.6 ; hw = 0.76 m = (13.6)(0.76) = 10.33 m. 	

5. PRESSURE DIFFERENCE IN ACCELERATING FLUIDS

Consider a beaker filled with some liquid of density p accelerating upwards with an acceleration ay along positive 
y-direction. Let us draw the free body diagram of a small element of fluid of area A and length dy as shown in figure. 
Equation of motion for this fluid element is, PA – W – (P + dP)A = (mass)(ay) or –W – (dP) A =(Aρ dy)(ay)

or (Arg dy) – (dP)A = (Aρ dy)(ay) or y
dP (g a )
dy

= −ρ +

P

P0

=?

h0
B

h

A

P0

Figure 9.12: An U-shaped manometer tube 
connected to a vessel

Figure 9.13

A mercury barometer

A

PoPo
h

Po
O

B

Pm

=
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y

x

A

(P + dP)A

PA

ayA dy

P

P + dP

Figure 9.14

Similarly, if the beaker moves along positive x-direction with acceleration ax, the equation of motion for the fluid 
element shown in the figure is, PA – (P + dP) A 
= (mass)(ax)

or (dP)A = (Aρ dx)ax Or x
dP a
dx

= −ρ

But suppose the beaker is accelerated and it 
has components of acceleration ax and ay in x 
and y directions respectively, then the pressure 
decreases along both x and y directions. The 
above equation 

in that case reduces to,

x
dP a
dx

= −ρ 	 and	 y
dP (g a )
dy

= −ρ + � ….. (i) 

For surface of a Liquid Accelerated in Horizontal Direction.

Consider a liquid placed in a beaker which is accelerating horizontally with an 
acceleration ‘a’. Let A and B be two points in the liquid at a separation x in the 
same horizontal line. As we have seen in this case.

dP a
dx

= −ρ  or	 dP = -ra dx. Integrating this with proper limits, we get

PA – PB = pax						      ….. (ii)

Further,	  PA = P0 + rgh1 And	 PB = P0 + rgh2

Substituting in Eq. (ii), we get	 pg(h1 – h2) = pax \	 1 2h h
x
−

 

= a tan
g

= θ \	 atan
g

θ =

Note: When ay is not equal to zero then the angle of inclination is given by

x

y

ady (dp)tan
dx g adp

dy

 
 
 θ = = =  + 
     

Figure 9.15

Figure 9.16

y

x

A

(P + dP)A
PA

ax
A

dx

P
P + dP

ax

y

x

A

x

a

B

h1

h2
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Illustration 12: A liquid of density ρ is in a bucket that spins with angular velocity ω as shown is 
the figure. Show that the pressure at a radial distance r from the axis is 

2 2

0
rP P

2
ρω

= + where P0 is the atmospheric pressure.� (JEE ADVANCED)

Sol: The net force on the liquid surface in equilibrium is always perpendicular to it as the liquid 
surface cannot sustain shear stress.

Consider a fluid particle P of mass m at coordinates (x, y). From a non-inertial rotating frame of 
reference, two forces are acting on it.

(i) Pseudo force 2(mx )ω 	

(ii) Weight (mg) in the direction shown in figure.

Net force on it should be perpendicular to the free 
surface (in equilibrium). Hence,

2 2mx xtan
mg g

ω ω
θ = = 	or	

2dy x
dx g

ω
=

∴
y x 2

0 0

xdy dx
g
ω

= ⋅∫ ∫ ∴ 	
2 2xy
2g
ω

=

This is the equation of the free surface of the liquid, which is a parabola.	

As x = r, 
2 2ry
2g
ω

= ∴ 0P(r) P gy= + ρ or	
2 2

0
rP(r) P

2
ρω

= +

Hence proved. 

Illustration 13: An open rectangular tank 5 m × 4 m × 3 m high containing 
water up to a height of 2 m is accelerated horizontally along the longer side.

(a)	 Determine the maximum acceleration that can be given without spilling 
the water. 

(b)	 Calculate the percentage of water split over, if this acceleration is 
increased by 20%.

(c)	 If initially, the tank is closed at the top and is accelerated horizontally 
by 9 m/s2, find the gauge pressure at the bottom of the front and rear 
walls of the tank. (Take g = 10 m/s2)� (JEE MAIN)

Sol: As the water column is accelerated towards right in horizontal direction, 
the free surface will not be horizontal but will be inclined at an angle with 
the θ horizontal, such that the left edge of the surface is at a higher level 
than the right edge. This is because the pressure at the left of water column 
will be more than the pressure at the right of it.

(a) Volume of water inside the tank remains constant

03 y
2

 +
  
 

5 × 4 = 5 × 2 × 4 or y0 = 1m \tan q0 = 3 1
5
−  = 0.4

Since, tan q0 = 0a
g

, therefore a0 = 0.4 g = 4 m/s2

(b) When acceleration is increased by 20%

Figure 9.17

Figure 9.18

Figure 9.19

Figure 9.20

Figure 9.21

Figure 9.22
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P

P(x,y)

P mx ²�
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P
y

P(r)x=r

Rear Front

2 m
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a

Water
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3 m

5 m

2 m
y0

0

3m
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a = 1.2 a0 = 0.48 g ∴ tan θ = a
g

 = 0.48

Now, y = 3 – 5 tan θ = 3 – 5 (0.48) = 0.6 m

Fraction of water split over = 

(3 0.6)4 2 5 5 4
2 0.1

2 5 4

+
× × − × ×

=
× ×

Percentage of water split over = 10%

(c) a’ = 0.9 g; tan θ’ = a' 0.9
g

=

Volume of air remains constant -> 14 yx (5)(1) 4
2

× = ×  ⇒ Pressure does not change in the air.

Since y = x tan θ’∴ 21 x tan ' 5
2

θ =  or	 x = 3.33 m; y = 3.0m

Gauge pressure at the bottom of the 

(i) Front wall pf = zero

(ii) Rear wall pr = (5 tan θ’)rwg = 5(0.9)(103)(10) = 4.5 × 104 Pa	

Illustration 14: A vertical U-tube with the two limbs 0.75 m apart with water and rotated 
about a vertical axis 0.5 m from the left limb, as shown in the figure. Determine the difference 
in elevation of the water levels in the two limbs, when the speed of rotation is 60 rpm.�  
� (JEE MAIN)

Sol: Each element of water in the tube is accelerated towards the axis. Along the horizontal 
part of the tube, the pressure will increase gradually as one moves radially away 
from the axis. The extra pressure provides the required centripetal acceleation.

Consider a small element of length dr at a distance r from the axis of rotation. 
Considering the equilibrium of this element. 

(p + dp) – p = rw2 r dr	 or dp = rw2 r dr

On integrating between 1 and 2

p1 – p2 = 
r1

2

r2

r drρω ∫  = 
2

2 2
1 2(r r )

2
ρω

− 	

or h1 – h2 = 
2 2

2 2
1 2

(2 )[r r ]
2g 2(10)
ω π

− = [(0.5)2 – (0.25)2] = 0.37 m.	

6. BUOYANCY

If a body is partially or wholly immersed in a fluid, it experiences an upward force due to the fluid surrounding it. 

The phenomenon of force exerted by fluid on the body is called buoyancy and the force is called buoyant force. A 
body experiences buoyant force whether it floats or sinks, under its own weight or due to other forces applied on it.

Note: The buoyant force is due to the fact that the hydrostatic pressure at different depths is not the same. 
Buoyant force is independent of:

(a)	 Total volume and shape of the body.
(b) 	 Density of the body.

Figure 9.23

Figure 9.25

Figure 9.24

3m

Water W

Air
y

x

5m

60 rpm

0.5m

0.75m
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6.1 Archimedes Principle
A body immersed in a fluid experiences an upward buoyant force equivalent to the weight of the fluid displaced by 
it. The proof of this principle is very simple. Imagine a body of arbitrary shape completely immersed in a liquid of 
density ρ. A body is being acted upon by the forces from all directions. Let us consider a vertical element of height 
h and cross-sectional area dA.The force acting on the upper surface of the element is F1 (downward) and that on 
the lower surface is F2 (upward). Since F2> F1, therefore, the net upward force acting on the element is dF = F2 – F1. 
It can be easily seen that

F1 = (rgh1)dA 	 and 		 F2= (rgh2)dA. 		  So	 dF = rg(h) dA

Also, 	 h2 – h1 = h		 and 	h(dA) = dV	  \	 The net upward force is F = gdV Vgρ = ρ∫
Hence, for the entire body, the buoyant force is the weight of the volume of the fluid displaced.

Note: Buoyant force acts on the centre of gravity of the displacement liquid. This point is called centre of Buoyancy.

The fluid exerts force on the immersed part of the body from all directions.

The net force experienced by every vertical element of the body is in the upward direction.

A uniform body floats in a liquid if density of the body is less than or equal to the density of the liquid 
and sinks if density of the uniform body is greater than that of the liquid.

B Rajiv Reddy (JEE 2012, AIR 11)

6.1.1 Detailed Explanation

An object floats on water if it can displace a volume of water whose weight is greater than that of the object. If the 
density of the material is less than that of the liquid, it will float even if the material is a uniform solid, such as a 
block of wood floats on water surface. If the density of the material is greater than that of water, such as iron, the 
object can be made to float provided it is not a uniform solid. An iron built ship is an example to this case

Apparent weight of a body immersed in a liquid = w – w0, where ‘w’ is the true weight of the body and w0 is the 
apparent loss in weight of the body, when immersed in the liquid.

6.1.2 Buoyant Force in Accelerating Fluids

Suppose a body is dipped inside a liquid of density ρL placed in an elevator moving with acceleration a
 . The 

buoyant force F in this case becomes, F = VρL geff ; 

Here,	 geff = | g a |−
 

Illustration 15: An iceberg with a density of 920 kgm-3 floats on an ocean 
of density 1025 kgm-3. What fraction of the iceberg is visible?�(JEE MAIN)

Sol: The buoyant force on the iceberg will be equal to its weight. The 
buoyant force is equal to the weight of water displaced by the iceberg, i.e. 
the weight of volume of water equal to the volume of iceberg immersed.

Let V be the volume of the iceberg above the water surface, then the 
volume under inside is V0 – V. Under floating conditions, the weight (ρIV0g) 
of the iceberg is balanced by the buoyant force rw(V0 – V)g.

Thus,	 ρIV0g = rw(V0 – V)g

or		  rwV = (rw – ρI)V0	

V

Above water

(V -V)0
�w

�w 0V

V -V0

Under water

Figure 9.26
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or	 w I

0 w

V
V

ρ − ρ
=

ρ

Since, rw = 1025 kg m-3 and ri = 920 kg m3, therefore,	
0

V 1025 920
V 1025

−
=  = 0.10

Hence 10% of the total volume is visible.	

Illustration 16: When a 2.5 kg crown is immersed in water, it has an apparent weight of 22 N. What is the density 
of the crown?� (JEE MAIN)

Sol: Apply Archemides principle. 

Let W = actual weight of the crown and W’ = apparent weight of the crown

ρ = density of crown, r0 = density of water. The buoyant force is given by FE = W – W’ or 	

r0Vg = W – W’. Since W = rVg, therefore, V = W
gρ

. Eliminating V from the above equation, we get

ρ= 0W
W W'

ρ

−
. Here W = 25 N; W’ = 22 N;	 r0 = 103 kg m-3	; ρ = 

3(10) (25)
25 22−

 = 9.3 × 103 kg m-3.

Illustration 17: The tension in a string holding a solid block below the surface of a liquid (of 
density greater than that of solid) as shown in figure is T0 when the system is at rest. What 
will be the tension in the string if the system has an upward acceleration a?� (JEE MAIN)

Sol: The weight and tension force on the block are balanced by the buoyant force on it. 
When the system is accelerated upwards, the effective value of g is increased.

Let m be the mass of block.	

Initially for the equilibrium of block, F = T0 + mg�  ….(i)

Here, F is the up thrust on the block. 

When the lift is accelerated upwards, geff becomes g + a instead of g. 

Hence g aF' F
g

 +
=  

 
�  ...(ii)

From Newton’s second law, F’ – T – mg = ma	�  ...(iii)

Solving equations (i), (ii) and (iii), we get 0
aT T 1
g

 
= + 

 

Illustration 18: An ice cube of side 1 cm is floating at the interface of kerosene 
and water in beaker of base area 10 cm2. The level of kerosene is just covering 
the top surface of the ice cube.

(a) Find the depth of submergence in the kerosene and that in the water.

(b) Find the change in the total level of the liquid when the whole ice melts into 
water.� (JEE ADVANCED)

Sol: Apply Archemedes principle. Sum of the buoyant forces by kerosene and 
water will be equal to the weight of the ice cube.

(a) 	 Condition of floating 0.8 rwghk + rwghw = 0.9 rwgh

or	 0.8 hk + hw = (0.9)h	�  … (i)

Where hk and hw are the submerged depths of the ice in the kerosene and water, respectively.

Figure 9.27

Figure 9.28

Figure 9.29

Kerosine

S=0.8
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Also	hk + hw = h� ... (ii)

Here it is given that h = 1 cm

Solving equations (i) and (ii), we get

hk = 0.5 cm,	 hw = 0.5 cm

(b) 3

Ice
1 cm m heat→ 3

(water)
0.9 cm

Fall in the level of kerosene Dhk = 0.5
A

; Rise in the level of water Dhw = 0.9 0.5 0.4
A A
−

=

Net fall in the overall level Dh = 0.1
A

 = 0.1
10

 = 0.01 cm = 0.1 mm.

6.2 Stability of a Floating Body
The stability of a floating body depends on the effective point of application of the buoyant force. The weight of 
the body acts at its centre of gravity. The buoyant force acts at the centre of gravity of the displaced liquid. This is 
called the centre of buoyancy. Under equilibrium condition, the centre of gravity G and the centre of buoyancy B 
lie along the vertical axis of the body as shown in the figure(s).

Fa

W

(b)

W

(a)

Fb

M

W

Figure 9.30

(a) The buoyant force acts at the centre of gravity of the displaced fluid.

(b) When the boat tilts, the line of action of the buoyant force intersects the axis of the boat at the metacentre M. In 
a stable boat, M is above the centre of gravity of the boat. When the body tilts to one side, the centre of buoyancy 
shifts relative to the centre of gravity as shown in the figure (b). The two forces act along different vertical lines. 
As a result, the buoyant force exerts a torque about the centre of gravity. The line of action of the buoyant force 
crosses the axis of the body at the point M, called metacentre. If G is below M, the torque will tend to restore the 
body to its equilibrium position. If G is above M, the torque will tend to rotate the body away from its equilibrium 
position and the body will be unstable.

Illustration 19: A wooden plank of length 1 m and uniform cross section is hinged at 
one end to the bottom of a tank as shown in the figure. The tank is filled with water 
up to a height of 0.5 m. The specific gravity of the plank is 0.5. Find the angle θ that 
the plank makes with the vertical in the equilibrium position. (Exclude the case θ = 0)
� (JEE ADVANCED)

Sol: The net torque about the hinge due the weight of the plank and due to the buoyant force acting on the plank 
should be zero.

The forces acting on the plank are shown in the figure. The height of water level is 0.5m. The length of the plank 
is 1.0 = 2  . We have OB =  . The buoyant force F acts through the mid-point of the dipped part OC of the plank.

We have OA = OC
2

=
2cosθ
 ; Let the mass per unit length of the plank be ρ.

mg

Figure 9.31
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Its weight mg = 2   rg; The mass of the part OC of the plank = 
cos

 
ρ θ 

 .

The mass of water displaced = 1 1 2
0.5 cos cos

ρ
ρ =

θ θ
 ; The buoyant force F is, therefore, F = 2 g

cos
ρ

θ
 .

Now, for equilibrium, the torque of mg about O should balance the torque of F about O.

So, mg (OB) sin θ = F(OA) sin θ or (2  ρ)   = 2
cos 2cos

  ρ
  θ θ  

  	or cos2θ = 1
2

or cos θ = 1

2
,	 or θ = 45º

6.3 Forces on Fluid Boundaries
Whenever a fluid comes in contact with solid boundaries, it exerts a force 
on it. Consider a rectangular vessel of base size l × b filled with water to a 
height H as shown in figure The force acting at the base of the container is 
given by Fb = p × (area of the base)

Pressure is same everywhere at the base and is equal to rgH. Therefore,  
Fb = rgH(lb) = ρ glb H Since, lbH = V (volume of the liquid) .Thus,  
Fb = rgV = weight of the liquid inside the vessel. 

A fluid contained in a vessel exerts forces on the boundaries. Unlike the base, 
the pressure on the vertical wall of the vessel is not uniform but increases 
linearly with depth from the free surface. Therefore, we have to perform the 
integration to calculate the total force on the wall. Consider a small rectangular element of width b and thickness dh 
at depth h from the free surface. The liquid pressure at this position is given by p = rgh. The force at the element is  
dF = p(dbh) = rgbh dh; 

The total force is F = rgb
H

2

O

1h dh gbH
2

= ρ∫ . The total force acting per unit width of the critical walls is 2F 1 gH
b 2

= ρ

The point of application (the centre of force) of the total force from the free surface is given by 
H

c
0

1h h dF
F

= ∫

Where 
H

0

h dF∫ is the moment of force about the free surface.

Here	
H H H

2 3

0 0 0

1h dF h( gbh dh) gb h dh gH
3

= ρ = ρ = ρ∫ ∫ ∫ ; 

Since F = 1
2

rgbH2 ,	 therefore, hc = 2
3

H

Illustration 20: Find the force acting per unit width on a plane wall 
inclined at an angle θ with the horizontal as shown in the figure.	
� (JEE MAIN)

Sol: The pressure at each point on the wall will be different, 
depending on the height. Find pressure on a small element, and use 
the method of integration.

Consider a small element of thickness dy at a distance y measured 
along the wall from the free surface. There pressure at the position 
of the element is p = rgh = rgy sin θ. The force given by dF = p(b dy) = rgb(y dy) sin q

The total force per unit width b is given by F gsin
b

= ρ θ .
H/sinH/sin 2

0 0

y
y dy g sin

2

θθ  
= ρ θ  

  
∫

Figure 9.32

Figure 9.33

Fb

l

H
dF

dy

y
h=y sin�
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Or  
2F 1 Hg

b 2 sin
= ρ

θ 	

Note: That the above formula reduces to 1
2

rgH2 for a vertical wall (θ = 90º)

6.4 Oscillations of a Fluid Column
The initial level of liquid in both the columns is the same. The area of cross-section of 
the tube is uniform. If the liquid is depressed by x in one limb, it will rise by x along 
the length of the tube is the other limb. Here, the restoring force is provided by the 
hydrostatic pressure difference. 

( ) ( ) ( )1 2 1 2F P A h h gA gA sin sin x∴ = − ∆ = − + ρ = − ρ θ + θ

suppose, m is the mass of the liquid in the tube. Then,	 ( )1 2ma gA sin sin x= −ρ θ + θ

Since, F or a is proportional to –x, the motion of the liquid column is simple harmonic 
in nature, time period of which is given by,

( )1 2

x m2 or 2
a gA sin sin

Τ = π Τ = π
ρ θ + θ

6.5 Oscillations of a Floating Cylinder
Consider a wooden cylinder of mass m and cross-sectional area A floating in a 
liquid of density ρ . At equilibrium, the cylinder is floating with a depth h submerged 
[See Fig. 8.35]. If the cylinder is pushed downwards by a small distance y and then 
released, it will move up and down with SHM. It is desired to find the time period 
and the frequency of oscillations.

According to the principle of flotation, the weight of the liquid displaced by 
the immersed part of the body is equal to the weight of the body. Therefore, at 
equilibrium,

Weight of cylinder = Weight of liquid displaced by the immersed part of cylinder

or 	 ( )mg Ah g= ρ  ∴  Mass of cylinder, m= Ahρ

When the cylinder is pushed down to an additional distance y, the restoring force F (upward) equal to the weight 
of additional liquid displaced acts on the cylinder. 

∴  Restoring force, F= - (weight of additional liquid displaced) or ( )F A y g= − ρ

The negative sign indicates that the restoring force acts opposite to the direction of the displacement.

Acceleration a of the cylinder is given by 
( )A y g gFa y ...(i)

m Ah h

− ρ  
= = = − ρ   �

… (i)

Since g/h is constant, a yα −  Thus the acceleration a of the body (wooden cylinder) is directly proportional to 
the displacement y and its direction is opposite to the displacement. Therefore, motion of the cylinder is simple 
harmonic. 

∴ Time period hT 2
g

= π
�

 … (ii) 

∴ Frequency g1 1f
T 2 h

= =
π

 � … (iii) 

These very interesting results show that time period and frequency have the same form as that of simple pendulum. 
The submerged depth at equilibrium takes the place of the length of the pendulum.

�1 �2

x

x

Figure 9.34

Figure 9.35

h h+y
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7. FLUID DYNAMICS

In the order to describe the motion of a fluid, in principle, one might apply Newton’s laws to a particle (a small 
volume element of fluid) and follow its progress in time. This is a difficult approach. Instead, we consider the 
properties of the fluid, such as velocity, pressure, at fixed points in space. In order to simplify the discussion we 
take several assumptions:

(i) The fluid is non viscous	 (ii) The flow is steady

(iii) The flow is non rotational	 (iv) The fluid is incompressible.

7.1 Equation of Continuity
It states that for streamlined motion of the liquid, the volume of liquid 
flowing per unit time is constant through different cross-sections of 
the container of the liquid. Thus, if v1 and v2 are velocities of fluid at 
respective points A and B of areas of cross-sections a1 and a2 and r1 
and r2 be the densities respectively. Then the equation of continuity is 
given by r1a1v1 = r2a2v2	�  ... (i) 

If the same liquid is flowing, then 1 2ρ = ρ ; then the equation (i) can 
be written 

As a1v1 = a2v2	�  ...(ii)

⇒	 av = constant 	 ⇒	 v ∝ 1/a

Equation of continunity repersents the law of conservation of mass of moving fluids.

a1v1r1 = a2v2r2	 (General equation of continuity)

This equation is applicable to actual liquids or to other fluids which are not incompressible.

Yashwanth Sandupatla (JEE 2012, AIR 821)

Illustration 21: Water is flowing through a horizontal tube of non-uniform cross-section. At a place, the radius of 
the tube is 1.0 cm and the velocity of water is 2 m/s. What will be the velocity of water, where the radius of the pipe 
is 2.0 cm?� (JEE MAIN)

Sol: Apply the equation of continuity. Where area of cross-section is larger, the velocity of water is lesser and vice-
versa.

Using equation of continuity, A1v1 = A2v2 ; 
1

2 1
2

A
v v

A
 

=   
 

	 or 
22

1 1
2 1 12

22

r r
v v v

rr

   π
 = =    π   

Substituting the value, we get	
2

2 2

1.0 10v
2.0 10

−

−

 ×
=   × 

 or v2 = 0.5 m/s

Illustration 22: Figure shows a liquid 
being pushed out of a tube by pressing 
a piston. The area of cross-section of the 
piston is 1.0 cm2 and that of the tube 
at the outlet is 20 mm2

. If the piston is 
pushed at a speed of 2 cm-s-1, what is the 
speed of the outgoing liquid? 

Figure 9.36

Figure 9.37

A

B

a1

v1 a2

v2

�
�
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Sol: Apply the equation of continuity. Where area of cross-section is larger, the velocity of liquid is lesser and vice-versa.

From the equation of continuity	 A1v1 = A2v2

	 or	 (1.0 cm2) (2 cm s-1) = (20 mm2) v2

	 or	 v2 = 
2

1
2

1.0 cm
2 cm s

20 mm
−× 	

	  = 
2

1 1
2

100 mm
2 cm s 10 cm s

20 mm
− −× =

SHM of fluids in tubes:

Tubes form angles θ1 and θ2 with the horizontal.

( )1 2

mT 2
gA sin sin

= π
ρ θ + θ

m is total mass of fluid in tubes, A is area of cross – section ρ  is density of fluid.

8. BERNOULLI’S THEOREM

When a non-viscous and an incompressible fluid flows in a streamlined motion from one place to another in a 
container, then the total energy of the fluid per unit volume is constant at every point of its path. Total energy = 
pressure energy + Kinetic energy + Potential energy 

= PV + 1
2

Mv2 + Mgh 

Where P is pressure, V is volume, M is mass and h is height from a 
reference level.

∴ The total energy per unit volume = P + 1
2

rv2 + rgh

Where ρ is density. Thus if a liquid of density ρ, pressure P1 at a height 
h1 which flows with velocity v1 to another point in streamline motion 
where the liquid has pressure P2, at height h2 which flows with velocity 
v2, 

then 2 2
1 1 1 2 2 2

1 1P v gh P v gh
2 2

+ ρ + ρ = + ρ + ρ

8.1 Derivations

8.1.1 Pressure Energy

If P is the pressure on the area A of a fluid, and the liquid moves through a distance due to this pressure, then 
Pressure energy of liquid = work done = force × displacement = PAl

The volume of the liquid is Al. 

∴ Pressure energy per unit volume of liquid = PAl P
Al

=

8.1.2 Kinetic Energy

If a liquid of mass m and volume V is flowing with velocity v, then the kinetic energy is 1
2

 mv2. 

�1 �2

x

x

Figure 9.38

Figure 9.39
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∴ Kinetic energy per unit volume of liquid. = 2 21 m 1v v
2 V 2

 
= ρ 

 
. Here, ρ is the density of liquid.

8.1.3 Potential energy

If a liquid of mass m is at a height h from the reference line (h = 0), then its potential energy is mgh. ∴  Potential 

energy per unit volume of the liquid = m
v

 
 
 

gh = rgh

Thus, the Bernoulli’s equation P + 1
2

rv2 + rgh = constant 

This can also be written as: Sum of total energy per unit volume (pressure + kinetic + potential) is constant for an 
ideal fluid.

P
gρ

 is called the ‘pressure head’, 
2v

2g
 the velocity head and h the gravitational head.

GV Abhinav JEE 2012, AIR 329

Intresting takeaway is the SI unit of each of these is meter (m).

Illustration 23: Calculate the rate of flow of glycerin of density 1.25×103 kg/m3 through the conical section of a 
pipe, if the radii of its ends are 0.1 m and 0.04 m and the pressure drop across its length is 10 N/m2. � (JEE MAIN)

Sol: Apply the equation of continuity. Where area of cross-section is larger, the velocity 
of fluid is lesser and vice-versa.

From continuity equation,	 A1v1 = A2v2

or	
22

1 2 2 2
2

2 1 11

v A r r 0.04 4
v A r 0.1 25r

 π  
= = = = =    π   

� ... (i)

From Bernoulli’s equation , P1 + 2 2
1 2 2

1 1v P v
2 2

ρ = + ρ

or	 2 2 2 2 2
2 1 3

2 10v v 1.6 10 m / s
1.25 10

−×
− = = ×

×
� ... (ii) 

Solving equations (i) and (ii), we get 	 v2 = 0.128 m/s

\	 Rate of volume flow through the tube

	 Q = A2v2 = (pr2
2) v2= π (0.04)2(0.128) = 6.43 × 10–4 m3/s

Illustration 24: Figure shows a liquid of density 1200 kg m–3 flowing steadily in 
a tube of varying cross section. The cross section at a point A is 1.0 cm2 and that 
at B is 20 mm2, the points A and B are in the same horizontal plane. The speed 
of the liquid at A is 10 cm s-1. Calculate the difference in pressure at A and B. �
� (JEE ADVANCED)

Sol: Apply the equation of continuity. Where area of cross-section is larger, the velocity of fluid is lesser and vice-
versa.

Figure 9.40

Figure 9.41
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From equation of continuity. The speed v2 at B is given by, A1v1 = A2v2

or	 (1.0 cm2) (10 cm s-1) = (20 mm2)v2 or		
2

1 1
2 2

1.0cmv 10cm s 50cm s
20mm

− −= × =

By Bernoulli equation,	 2 2
1 1 1 2 2 2

1 1P gh v P gh v
2 2

+ ρ + ρ = + ρ + ρ

Here h1 = h2.	 Thus P1 – P2 = 2 2
2 1

1 1v v
2 2

ρ − ρ = 2 2 2 2 21 (1200 kg m )(2500 cm s 100 cm s )
2

− − −× −

	  = 600 kg m-3 × 2400 cm2 s-2 = 144 Pa

8.2 Application Based on Bernoulli’s Equation

8.2.1 Venturimeter

Figure shows a venturimeter used to measure 
flow speed in a pipe of non-uniform cross-
section. We apply Bernoulli’s equation to the 
wide (point 1) and narrow (point 2) parts of 
the pipe, with h1 = h2

2 2
1 1 2 2

1 1P v P v
2 2

+ ρ = + ρ

From the continuity equation 1 1
2

2

A v
v

A
=

Substituting and rearranging, 

we get 
2

2 1
1 2 1 2

2

A1P P v 1
2 A

 
 − = ρ −
 
  �

…(i) 

The pressure difference is also equal to rgh, where h is the difference in liquid level in the two tubes. 

Substituting in equation (i), we get 1 2
1

2

2ghv
A

1
A

=
 

−  
 

Because A1 is greater than A2, v2 is greater than v1 and hence the pressure P2 is less than P1.

The discharge or volume flow rate can be obtained as,	 1 1 1 2
1

2

2ghdV A v A
dt A

1
A

= =
 

−  
 

Anurag Saraf (JEE 2011, AIR 226)

p2

H A1

p1

A2

v1 v2

h

Venturimeter

Figure 9.42
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9. TORRICELLI’S THEOREM

It states that the velocity of efflux of a liquid through an orifice is 
equal to that velocity which a body would attain in falling from a 
height from the free surface of a liquid to the orifice. If h is the height 
of the orifice below the free surface of a liquid and g is acceleration 

due to gravity, the velocity of efflux of liquid = v= 2gh . Total energy 

per unit volume of the liquid at the surface = KE + PE + Pressure 
energy = 0 + rgh + P0� ...(i)

and total energy per unit volume at the orifice = KE + PE + Pressure 

energy = 2
0

1 v 0 P
2

ρ + +

Since total energy of the liquid must remain constant in steady flow, in accordance with Bernoulli’s equation, 

we have rgh + P0 = 2
0

1 v P
2

ρ + 	or	 v = 2gh

Range = velocity × time ; R = Vx × time = 2gh 1×

Now, 	 H – h = 21 gt
2

⇒
2(H h)t

g
−

= . From equation (i),

R = 2(H h)2gh
g

−
×  = 2h 2(H h) h(H h)2× − × − 	

\	 R 2 h(H h)= −

Range is max. if dR 0
dh

= ⇒
H 2h2 0

2 h(H h)

−
× =

−
⇒ H – 2h = 0 ⇒ Hh

2
=

Rh = RH – h

Rh = 2 h(H h)−

RH–h = 2 h(H h)−

i.e. Range would be the same when the hole is at a 
height h 

or at a height H – h from the ground or from the top 
of the beaker.

R is maximum at h = H
2

 and Rmax =H. 

Vijay Senapathi (JEE 2011, AIR 71)

Figure 9.43

Figure 9.44
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9.1 An Expression for the Force Experienced by the Vessel
The force experienced by the vessel from which liquid is coming out.

F = dp
dt

 (Rate of change of momentum) = d (mv)
dt

 = d ( Avtv)
dt

ρ

2F Av= ρ 	Where ρ = It is the density of the liquid.

A = It is the area of hole through which liquid is coming out. 

9.2 Time taken to Empty a Tank
Consider a tank filled with a liquid of density ρ up to a height H. A small hole of area of cross section a is made at 
the bottom of the tank. The area of cross-section of the tank is A.

Let at some instant of time the level of liquid in the tank be y. Velocity of efflux at this instant of time would be, 

v 2gy= . 

At this instant volume of liquid coming out of the hole per second is 1dV
dt

 
  
 

. 

Volume of liquid coming down in the tank per second is 2dV
dt

 
  
 

.

1 2dV dV
dt dt

= ; \	 dyav A
dt

 
= − 

  	
∴

dya 2gy A
dt

 
= − 

 
Or	

t 0
1/2

0 H

Adt y dy
a 2g

−= −∫ ∫
	

∴ H
0

2At [ y ]
a 2g

=  = A 2H
a g

Illustration 25: A tank is filled with a liquid up to a height H. A small hole is made at the bottom of this tank. Let t1 
be the time taken to empty first half of the tank and t2 the time taken to empty rest half of the tank. 

Then find 1

2

t
t

. � (JEE MAIN)

Sol: This problem needs to be solved by method of integration.

Substituting the proper limit in equation (i), derived in the theory, we have
t1 H/2 1/2

H
0

Adt y dy
a 2g

−= −∫ ∫  Or H
1 H/2

2At [ y ]
a 2g

= Or 2A HH
2a 2g

 
= − 

  

Or 1
A Ht ( 2 1)
a g

= − � …(ii)

Similarly	 t 02 1/2
0 H/2

Adt y dy
a 2g

−= −∫ ∫ 	 Or	 2
A Ht
a g

= � ... (iii)

From equations (ii) and (iii), we get 1

2

t
2 1

t
= −  Or	 1

2

t
0.414

t
=
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From here we see that t1< t2. This is because inititally the pressure is high and the liquid comes out with 
greater speed.

Ankit Rathore (JEE Advanced 2013, AIR 158)

10. VISCOSITY

When a liquid moves slowly and steadily on a horizontal surface, its layer in contact with the fixed surface is 
stationary and the velocity of the layers increase with the distance from the fixed surface.

Consider two layers CD and MN of a liquid at distances x and x + dx from the fixed surface AB having velocities v 

and v + dv respectively as shown in the figure. Here dv
dx

 
 
 

 denotes the rate of change of velocity with distance and 

is known as velocity gradient. The tendency of the upper layer is to accelerate the motion and the lower layer tries 
to retard the motion of upper layer. The two layers together tend to destroy their relative motion as if there is some 
backward dragging force acting tangentially on the layers. To maintain the motion, an external force is applied to 
overcome this backward drag.

Hence the property of a liquid virtue of which it opposes the relative motion between its different layers is 
known as viscosity. 

The viscous force is given by dvF A
dx

= −η

Where η is a constant, called the coefficient of viscosity.

The SI unit of η is N-s/m2. It is also called decapoise or Pascal second. Thus,

1 decapoise = N-s/m2 = 1 Pa-s = 10 poise.

Dimensions of h are [ML-1T-1] 

The negative sign in the above equation shows that the direction of viscous force F is opposite to the 
direction of relative velocity of the layer.

Viscous force depends upon the velocity gradient whereas the mechanical frictional force is independent 
of the velocity gradient.

Vaibhav Gupta (JEE 2009, AIR 54)

10.1 Effect of Temperature
In case of liquids, coefficient of viscosity decreases with increase of temperature as the cohesive forces decrease 
with increase of temperature.

Illustration 26: A plate of area 2 m2 is made to move horizontally with a speed of 2 m/s by applying a horizontal 
tangential force over the free surface of a liquid. The depth of the liquid is 1 m and the liquid in contact with the 
bed is stationary. Coefficient of viscosity of liquid is 0.01 poise. Find the tangential force needed to move the plate. 
� (JEE MAIN)

Figure 9.45

MASTERJEE CONCEPTS

MASTERJEE CONCEPTS



9.24  |   Fluid Mechanics

Sol: Apply the Newton’s formula for the frictional force between two layers 
of a liquid.

Velocity gradient = v
y

∆
∆

 = 2 0 m / s2
1 0 m

−
=

−

From Newton’s law of viscous force, 

|F| = ηA v
y

∆
∆

 = (0.01 × 10-1)(2)(2) = 4 × 10-3 N.

So, to keep the plate moving, a force of 4 × 10-3 N must be applied.

10.2 Stokes’ Law and Terminal Velocity
Stokes established that the resistive force or F, due 
to the viscous drag, for a spherical body of radius r, 
moving with velocity V, in a medium of coefficient of 
viscosity η is given by 

F = 6 pη rV

10.3.1 An Experiment for Terminal Velocity

Consider an established spherical body of radius r and density ρ falling freely from rest under gravity through a 
fluid of density σ and coefficient of viscosity η. When the body acquires the terminal velocity V

W = Ft+ 6 rVπη ;

346 rV pr ( )g
3

πη = π ρ − σ ⇒
2r ( )g2V

9
ρ − σ

=
η

Note: From the above expression we can see that terminal velocity of a spherical body is directly proportional to 
the densities of the body and the fluid (ρ – σ). If the density of the fluid is greater than that of the body (.i.e. σ>ρ), 
the terminal velocity is negative. This means that the body instead of falling, moves upward. This is why air bubbles 
rise up in water.

Illustration 28: Two spherical raindrops of equal size are falling vertically through air with a terminal velocity of  
1 m/s. What would be the terminal speed if these two drops were to coalesce to form a large spherical drop?	
�
� (JEE MAIN)

Sol: Use the formula for terminal velocity for spherical body. 

vT ∝ r2. Let r be the radius of small rain drops and R the radius of large drop. 

Equating the volume, we have 	 2 34 4R 2 r
3 3

 
π = π 

 

\	 R = (2)1/3. r	 or	 1/3R (2)
r

= \	 T

T

v '
v

=
2

R
r

 
 
 

= (2)2/3

\	 vT’ = (2)2/3 vT = (2)2/3 (1.0) m/s = 1.587 m/s.

Mg

Figure 9.47

Figure 9.46

1m

v=2 m/s

F
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Illustration 29: An air bubble of diameter 2 mm rises steadily through a solution of density 1750 kg m-3 at the rate 
of 0.35 cm s-1. Calculate the coefficient of viscosity of the solution. The density of air is negligible.� (JEE MAIN)

Sol: As the air bubble rises with constant velocity, the net force on it is zero.

The force of buoyancy B is equal to the weight of the displaced liquid. Thus B = 4
3

pr3sg.

This force is upward. The viscous force acting downward is F = 6 π hrv.

The weight of the air bubble may be neglected as the density of air is small. For uniform velocity

F = B or, 6 phrv = 4
3

pr3σg or, η = 
22r g
9v

σ = 
3 2 3 2

2 1

2 (1 10 m) (1750 kg m )(9.8 ms )

9 (0.35 10 ms )

− − −

− −

× × ×

× ×
11 poise≈ .

This appears to be a highly viscous liquid.

10.3 Stream Line Flow
When liquid flows in such a way that the velocity at a particular point is 
the same in magnitude as well as in direction. As shown in figure every 
molecule should have the same velocity at A, if it crossed from that point. 
Notice that the velocity at the point B will be different from that of A. 
But every molecule which reaches at the point B, gets the velocity of the 
point B.

10.4 Turbulent Flow
When the motion of a particle at any point varies rapidly in magnitude and direction, the flow is said to be 
turbulent or beyond critical velocity. If the paths and velocities of particles change continuously and haphazardly, 
then the flow is called turbulent flow.

10.5 Critical Velocity and Reynolds Number
When a fluid flows in a tube with small velocity, the flow is steady. As the velocity is gradually increased, at one 
stage the flow becomes turbulent. The largest velocity which allows a steady flow is called the critical velocity.

Whether the flow will be steady or turbulent mainly depends on the density, velocity and the coefficient of viscosity 

of the fluid as well as the diameter of the tube through which the fluid is flowing. The quantity N = vDρ
η

 is called 

the Reynolds number and plays a key role in determining the nature of flow. It is found that if the Reynolds number 
is less than 2000, the flow is steady. If it is greater than 3000, the flow is turbulent. If it is between 2000 and 3000, 
the flow is unstable. 

11. SURFACE TENSION

The properties of a surface are quite often marked different from the properties of 
the bulk material. A molecule well inside a body is surrounded by similar particles 
from all sides. But a molecule on the surface has particles of one type on one side 
and of a different type on the other side. Figure shows an example: A molecule of 
water well inside the bulk experiences force from water molecules from all sides, 
but a molecule at the surface interacts with air molecules from above and water 
molecules from below. This asymmetric force distribution is responsible for surface 
tension.

A surface layer is approximately 10-15 molecular diameters. The force between two 
molecules decreases as the separation between them increases. The force becomes 

Figure 9.48

Figure 9.49
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negligible if the separation exceeds 10-15 molecular diameters. Thus, if we go 10-15 
molecular diameters deep, a molecule finds equal forces from all directions.

Imagine a line AB drawn on the surface of a liquid (figure). The line divides the surface 
in two parts, surface on one side and the surface on the other side of the line. Let us 
call them surface to the left of the line and surface to the right of the line. It is found 
that the two parts of the surface pull each other with a force proportional to the 
length of the line AB. These forces of pull are perpendicular to the line separating the 
two parts and are tangential to the surface. In this respect the surface of the liquid 
behave like a stretched rubber sheet. The rubber sheet which is stretched from all 
sides is in the state of tension. Any part of the sheet pulls the adjacent part towards 
itself.

Let F be the common magnitude of the forces exerted on each other by the two parts 
of the surface across a line of length  . We define the surface tension T of the liquid as T = F/ 

The SI unit of surface tension is N/m.

Note: The surface tension of a particular liquid usually decreases as temperature increases. To wash clothing 
thoroughly, water must be forced through the tiny spaces between the fibers. This requires increasing the surface 
area of the water, which is difficult to do because of surface tension. Hence, hot water and soapy water is better 
for washing.

Surface tension acts over the free surface of a liquid only and not within the interior of the liquid.

Due to surface tension the insects can walk on liquid surface.	

Vaibhav Krishnan (JEE 2009, AIR 22)

Illustration 30: Calculate the force required to take away a flat circular plate of radius 4 cm from the surface of 
water, surface tension of water being 75 dyne cm-1. 	� (JEE MAIN)

Sol: Force = Surface tension×length of the surface

Length of the surface = circumference of the circular plate = 2pr = (8π) cm

Required force = T × L = 72 × 8π = 1810 dyne.

12. SURFACE ENERGY

When the surface area of a liquid is increased, the molecules from the interior rise to 
the surface. This requires work against force of attraction of the molecules just below 
the surface. This work is stored in the form of potential energy. Thus, the molecules in 
the surface have some additional energy due to their position. This additional energy 
per unit area of the surface is called ‘surface energy’. The surface energy is related to the 
surface tension as discussed below: 

Let a liquid film be formed on a wire frame and a straight wire of length   can slide on 
this wire frame as shown in figure. The film has two surfaces and both the surfaces are in 
contact with the sliding wire and hence, exert forces of surface tension on it. If T be the 
surface tension of the solution, each surface will pull the wire parallel to itself with a force T  . Thus, net force on 
the wire due to both the surfaces is 2T  . One has to apply an external force F equal and opposite to it to keep the 
wire in equilibrium. Thus, F = 2T   

Figure 9.51

Figure 9.50
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Now, suppose the wire is moved through a small distance dx, the work done by the force is,

dW = F dx = (2T  )dx

But (2  )(dx) is the total increase in the area of both the surfaces of the film. Let it be dA. Then,

dW = T da or T = dW
dA

Thus, the surface tension T can also be defined as the work done in increasing the surface area by unity. Further, 
since there is no change in kinetic energy, the work done by the external force is stored as the potential energy of 
the new surface. 

∴ T = dU
dA

 (as dW = dU)

Thus, the surface tension of a liquid is equal to the surface energy per unit surface area.

Illustration 31: How much work will be done in increasing the diameter of a soap bubble from 2 cm to 5 cm? 
Surface tension of soap solution is 3.0 × 10-2 N/m.� (JEE MAIN)

Sol: Work done will be equal to the increase in the surface porential energy, which is surface tension multiplied by 
increase in area of surface of liquid.

Soap bubble has two surfaces. Hence,	 W = T ∆A

Here,	 ∆A = 2[4p{(2.5×10–2)2 – (1.0×10–2)2}] = 1.32 × 10-2 m2

		  W = (3.0×10–2)(1.32×10–2)J = 3.96×10–4J	

Illustration 32: Calculate the energy released when 1000 small water drops each of same radius 10–7m coalesce to 
form one large drop. The surface tension of water is 7.0×10-2 N/m. � (JEE MAIN)

Sol: Energy released will be equal to the loss in surface potential energy.

Let r be the radius of smaller drops and R of bigger one.

Equating the initial and final volumes, we have 34 R
3

π  = (1000) 34 r
3

 
π 

 
R = 10r = (10)(10–7) m = 10-6 m. Further, the water drops have only one free surface. Therefore,

∆A = 4pR2 – (1000)(4pr2) = 4p[(10–6)2 – (103)(10–7)2] = –36π(10–12)m2

Here, negative sign implies that surface area is decreasing. Hence, energy is released in the process. 

U = T[∆A] = (7×10–2)(36p×10–12)J = 7.9×10–12J	

13. EXCESS PRESSURE

The pressure inside a liquid drop or a soap bubble must be in excess of the pressure outside the bubble drop 
because without such pressure difference, a drop or a bubble cannot be in stable equilibrium. Due to the surface 
tension, the drop or bubble has got the tendency to contract and disappear altogether. To balance this, there must 
be excess of pressure inside the bubble.
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13.1 Excess Pressure Inside a Drop

Figure 9.52

To obtain a relation between the excess of pressure and the surface tension, consider a water drop of radius r and 
surface tension T. Divide the drop into two halves by a horizontal passing through its centre as shown in figure and 
consider the equilibrium of one-half, say, the upper half. The force acting on it are:

(a)	 Force due to surface tension distributed along the circumference of the section.

(b)	 Outward thrust on elementary areas of it due to excess pressure.

Obviously, both the types of forces are distributed. The first type of distributed forces combine into a force of 
magnitude 2pr×T. To find the resultant of the other type of distributed forces, consider an elementary area DS of 
the surface. The outward thrust on DS = pDS where p is the excess of the pressure inside the bubble. If this thrust 
makes an angle θ with the vertical, then it is equivalent to DSp cos θ along the vertical and DSp sin θ along the 
horizontal. The resolved component DSp sin θ is infective as it is perpendicular to the resultant force due to surface 
tension. The resolved component DSp cos θ is equal to balancing the force due to surface tension

The resultant outward thrust = ΣDSp cos θ = pΣDS cos θ = pΣDS cos q	 = pΣDS’ 

where DS’ = DS cos θ = area of the projection of DS on the horizontal dividing plane 

= p × pr2 (  DS’ = pr2)

For equilibrium of the bubble we have pr2 p = 2pr T	or 2Tp
r

=

If we have an air bubble inside a liquid, a single surface is formed. 

There is air on the concave side and liquid on the convex side. 

The pressure in the concave side (that is in the air) is greater than 

the pressure in the convex side (that is in the liquid) by an amount 2T
R

.

∴ 2 1
2TP P
R

− =

Nivvedan (JEE 2009, AIR 113)

13.2 Excess Pressure Inside Soap Bubble
A soap bubble consists of two spherical surface films with a thin layer of liquid between them. 1P' P 2S / R− = where 
R is the radius of the bubble. 

P2
P1

Figure 9.53
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As the thickness of the bubble is small on a macroscopic scale, the difference in the radii 
of the two surfaces will be negligible.

Similarly, looking at the inner surface, the air is on the concave side of the surface, hence 
2P P' 2S / R− = . Adding the two equations, 2 1P P 4S / R− =

Illustration 33: What should be the pressure inside a small air bubble of 0.1 mm radius 
situated just below the water surface? Surface tension of water = 7.2×10–2 N/m and 
atmospheric pressure = 1.013 ×105 N/m2. �
� (JEE MAIN)

Sol: Pressure inside the air bubble is larger than that outside it by amount 2T/R, where T is surface tension and R 
is its radius.

Surface tension of water T = 7.2×10–2 N/m; Radius of air bubble R = 0.1 mm = 10–4 m

The excess pressure inside the air bubble is given by,	 P2 – P1 = 2T
R

∴ Pressure inside the air bubble, P2 = P1 + 2T
R

; Substituting the values, we have,

P2 = (1.013×105) + 
2

4

(2 7.2 10 )
10

−

−

× ×  = 1.027 × 105 N/m2	

Illustration 34: A 0.02 cm liquid column balances the excess pressure inside a soap bubble of radius 7.5 mm. 
Determine the density of the liquid. Surface tension of soap solution = 0.03 Nm–1.� (JEE MAIN)

Sol: Pressure inside the soap bubble is larger than that outside it by amount 4T/R, where T is surface tension and 
R is its radius. Gauge pressure of liquid column is ρgh where symbols have the usual meaning.

The excess pressure inside a soap bubble is DP = 4S/R = 
1

3

4 0.03Nm
7.5 10 m

−

−

×

×
 = 16 Nm–2

The pressure due to 0.02 cm of the liquid column is P = hrg = (0.02 × 10–2 m) ρ (9.8 ms–2)

Thus, 16 N m–2	= (0.02 × 10–2 m) ρ (9.8 ms–2);	 ρ = 9.2 × 103 kg m–3.

14. CAPILLARY ACTION

When a glass tube of very fine bore called a capillary tube is dipped in a liquid 
(like water), the liquid immediately rises into it due to the surface tension. The 
phenomenon of rise of a liquid in a narrow tube is known as capillarity.

Suppose that a capillary tube of radius r is dipped vertically in a liquid. The liquid 
surface meets the wall of the tube at some inclination θ called the angle of contact. 
Due to surface tension, a force, ∆  T acts on an element ∆  of the circle of contact 
along which the liquid surface meets the solid surface and it is tangential to the 
liquid surface at inclination θ to the wall of the tube. (The liquid on the wall of 
the tube exerts this force. The tube also exerts the same force on the liquid in 
the opposite direction.) Resolving this latter force along and perpendicular to the 
wall of the tube, we have ∆  Tcosθ along the tube vertically upwards and ∆  Tsinθ 
perpendicular to the wall. The latter component is ineffective. It simply comes the 
liquid against the wall of the tube. The vertical component ∆  Tcos θ pulls the liquid up the tube.

The total vertical upward force = Σ∆  T cos θ = T cos qΣD   = T cosθ.2pr (   ΣD   = 2pr). Because of this upward 
pull liquid rises up in the capillary tube till it is balanced by the downward gravitational pull. If h is the height of the 
liquid column in the tube up to the bottom, the gravitational pull, i.e. weight of the liquid inside the tube is (pr2 h 
+ V)rg, where V is the volume of the liquid in meniscus. For equilibrium of the liquid column in the tube 2prT cos 
θ = (pr2h + V)rg

Figure 9.54

P1

P’

P2

Figure 9.55



9.30  |   Fluid Mechanics

If value of the liquid in meniscus is negligible then, 2prT cos θ = (pr2h )rg; h = 2Tcos
r g

θ
ρ

The small volume of the liquid above the horizontal plane through the lowest point of the meniscus can be 
calculated if θ is given or known. For pure water and glass θ = 0º and hence the meniscus is hemispherical.

\	 V = volume of the cylinder of height r – volume of hemisphere.

	 = 3 31 4r r
2 3

π
π − 	= 3 3 32 1r r r

3 3
π − π = π

\	 For water and glass 
3

2 r2 rT r h g
3

 π
π = π + ρ 

 

	 r2T r h g
3

 
= + ρ 

  	
⇒	

2T rh
r g 3

= −
ρ

For a given liquid and solid at a given place as ρ, T, θ and g are constant, 	 \	 hr = constant

i.e. lesser t the radius of capillary greater will be the rise and vice-versa.

Illustration 36: A capillary tube of radius 0.20 mm is dipped vertically in water. Find the height of the water 
column raised in the tube. Surface tension of water = 0.075 N m–1 and density of water = 1000 kg m–3. Take 
g = 10 m s–2.� (JEE MAIN)

Sol: Use the formula for height of the liquid in the capillary.

We have, h= 2S cos
r g

θ
ρ

= 
1

3 3 2

2 0.075 N m 1

(0.20 10 m) (1000 kg m )(10 m s )

−

− − −

× ×

× ×
= 0.075 m = 7.5 cm.

PROBLEM SOLVING TACTICS

(a)	 Suppose two liquids of densities r1 and r2 having masses m1 and m2 are mixed together. 

	 Then the density of the mixture will be = 1 2

1 2

1 2

(m m )
m m

+

 
+  ρ ρ 

	 If two liquids of densities r1 and r2 having volume V1 and V2 are mixed, then the density of the mixture will be 

	

1 1 2 2

1 2

V V
V V

ρ + ρ
+

.

(b)	 When solving questions on Bernoulli’s always assume a reference level and calculate the heights from the 
reference level.
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FORMULAE SHEET

Fluid Statics:

 1.	 Density = mass
volume

, S.I. units: kg/m3

2. 	 Specific gravity / Relative density / Specific density	 = Ratio of its density
Ratio of density of water at 4ºC

, 

	 S.I. units: No units

3. 	 If two liquids of volume V1 and V2 and densities d1 and d2 respectively are mixed then the density d of the 

mixture is 1 1 2 2

1 2

V d V d
d

V V
+

=
+

; If V1 = V2 then 1 2d d
d

2
+

=

4. 	 If two liquids of densities d1 and d2 and masses m1 and m2 respectively are mixed together, 

	 then the density d of the mixture is d = 1 2

1 2

1 2

m m
m m
d d

+

+
; if m1 = m2 then 1 2

1 2

2d d
d

d d
=

+

5. 	 Pressure = Normal component of force
Area on which force acts

= f
A

, S.I. units: N/m2, Pa

6. 	 Pressure P acting at the bottom of an open fluid column of height h and density d is

	 = 1.013 × 105 Pa = 1.013 × 105 Pa = 1.013 × 106 dynes/cm2= 76 cm of Hg = 760 torr = 1.013 bars.

Pa

Pv
h

P = Pa

Absolute

pressure

Atmospheric

pressure

+  hdg dp

dh
=sg

(As h increases

P increases)

Figure 9.56

	 P – Pa = hdg

	 gauge pressure = absolute – atmospheric pressure.

7.

Figure 9.57

Area of smaller piston, a; area of larger piston, A, f is applied on the smaller piston

Force F developed on the larger piston F f
A a

=
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\	 fAF
a

=

8. 	 Beaker is accelerated in horizontal direction

Figure 9.58

9. 	 Beaker is accelerated and it has components of acceleration ax, and ay in x and y directions respectively.

ay

ay
y

Figure 9.59

	 P increases with depth → dP p(g ay)
dy

= +

	 P is the density of the fluid.

	 ρ is the density of the fluid. dP pax
dx

= −

10. 	 Buoyant force	 F = 1 1V (g a)ρ −
 

				    V1 = immersed volume of liquid

				    r1 = density of liquid

				    g = acceleration due to gravity

				    a = acceleration of body dipped inside liquid.

11. 	 Body floats when Buoyant force balances the weight of the body.

i 2 b b
Buoyant Weight
force of body

V g V g
   
   
   

ρ = ρ  

Figure 9.60

	 Vb, rb = volume and density of body.

	 Vi = Volume of the immersed part of body. 



Physics  |   9 .33

	 r2 = density of liquid.

	 Fraction of volume immersed bi

b 2

V
V

ρ
=

ρ

	 % of volume immersed i

b

V
V

 × 100 = b

2

ρ

ρ
 ×100.

12. 	 Apparent weight of a body inside a fluid is Wapp = Wact – Upthrust

										              Wapp = Vbg (rb – r2)

	 Vb, db = volume and density of body.

	 Vi = Volume of the immersed part of body.

	 r2 = density of liquid.

13. 	 General equation of continuity

	 1 1 1 2 2 2A V A Vρ = ρ 	 Generally r1 = r2	 i.e., density is uniform.

	 A1& A2 are area of cross-section at point P and Q.

	 V1& V2 are velocities of the fluid at point P and Q.

14. 	 Bernoulli’s Equation

	
2 2

1 1 1 2 2 2
1 1P gh V P gh V
2 2

+ ρ + ρ = + ρ + ρ

	 i.e., 

	 at that point from the reference level

	

15. 	 Volumetric flow Q = Aν = dV
dt

		 A – Area of cross section; ν – Velocity; V– Volume

	 S.I. unit = 
3m

S
	

16. 	 Torricelli Theorem:

	  V 2gh=  
height 

velocity of 
efflux 

Figure 9.61

Figure 9.62
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	 Range R 2 h(H h)= −

	 Range is maximum at Hh
2

=  and Rmax = H

	 Ab – Area of orifice

	 A – Area of cross-section of the container.

	 Time taken to fall from H1 to H2 = t × 
0

A 2
A g

17. 	 Viscous Force	 F = dvA
dy

η

				    ↓

				    coefficient of viscosity

	 L – Length of pipe

	 P1 and P2 are pressure at two ends of pipe.

	 R – Radius of pipe.

	 When liquid is flowing through a tube, velocity of flow of a liquid at distance from the axis. 

	
( )2 2PV r x

4 L
= −

η
. Velocity distribution curve is a parabola.

18. 	 Stoke’s Law: Formula for the viscous force on a sphere

	 F = 6phrv				   (η – coefficient of viscosity)

						      (r – radius of sphere)

						      (v – velocity of sphere)

	 2
T

( )g2V r
9

ρ − σ
=

η
		  (ρ – density of sphere)

						      (∝ – density of fluid)

19. 	 Surface Tension

Figure 9.63

20. 	 Surface Energy: dW = TdA

	

Surface energydVSurface Tension T
dA Area

= = 	

21. 	 Pressure inside the soap bubble is P, then

	 P – P0 = 4T
R
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22. 	 Air Bubble Inside a Liquid

Figure 9.64

	 R – radius of bubble

	 T – surface tension force

23. 	 Capillary Rise

	

2Tcosh
r g

θ
=

ρ
	 r = is the radius of capillary tube

	 θ = angle of contact

Sol: Level of liquid will rise or fall depending on the 
density of the solid.

Let 	 M = Mass of the floating solid.

r1 = density of liquid formed by the melting of the solid.

r2= density of the liquid in which the solid is floating. 
The mass of liquid displaced by the solid is M. Hence, 

the volume of liquid displaced is 
2

M
ρ

. When the solid 

melts, the volume occupied by it is 
1

M
ρ

. Hence, the level 

of liquid in container will rise or fall according as

2 1

M M
−

ρ ρ
is less than or greater than zero. 

⇒ rises for 1 2ρ < ρ

⇒  falls for 1 2ρ > ρ

There will be no change in the level if the level if r1 = 
r2. In case of ice floating in water r1 = r2 and hence, the 
level of water remains unchanged when ice melts.

Example 3: An iron casting containing a number of 
cavities weighs 6000 N in air and 4000 N in water. What 

JEE Main/Boards

Example 1: For the arrangement shown in the figure. 
What is the density of oil?

C

B

d=12.3mm
Oil

Water

� = 135 mm

d=12.3 mm

Sol: Pressure will be same at all points at the same 
height in the same liquid.

P0 + rw gl = P0 + roil (   + d)g

⇒ 3w
oil

1000.(135) 916 kg / m
d (135 12.3)

ρ
ρ = = =

+ +




Example 2: A solid floats in a liquid of different material. 
Carry out an analysis to see whether the level of liquid 
in the container will rise or fall when the solid melts.

Solved Examples


