PROBLEM SOLVING TACTICS

(a) Suppose two liquids of densities r_1 and r_2 having masses m_1 and m_2 are mixed together.

Then the density of the mixture will be = $\frac{(m_1 + m_2)}{\left(\frac{m_1}{\rho_1} + \frac{m_2}{\rho_2}\right)}$

If two liquids of densities r_1 and r_2 having volume V_1 and V_2 are mixed, then the density of the mixture will be

$$\frac{\rho_1 V_1 + \rho_2 V_2}{V_1 + V_2} \, .$$

(b) When solving questions on Bernoulli's always assume a reference level and calculate the heights from the reference level.

FORMULAE SHEET

Fluid Statics:

- Density = $\frac{\text{mass}}{\text{volume}}$, S.I. units: kg/m³ 1.
- Specific gravity / Relative density / Specific density = $\frac{\text{Ratio of its density}}{\text{Ratio of density of water at 4°C}}$ 2.

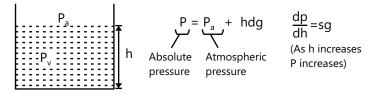
S.I. units: No units

- If two liquids of volume V₁ and V₂ and densities d₁ and d₂ respectively are mixed then the density d of the 3. mixture is $d = \frac{V_1 d_1 + V_2 d_2}{V_1 + V_2}$; If $V_1 = V_2$ then $d = \frac{d_1 + d_2}{2}$
- If two liquids of densities d₁ and d₂ and masses m₁ and m₂ respectively are mixed together, 4.

then the density d of the mixture is d = $\frac{m_1 + m_2}{\frac{m_1}{d_1} + \frac{m_2}{d_2}}$; if $m_1 = m_2$ then $d = \frac{2d_1d_2}{d_1 + d_2}$ Pressure = $\frac{\text{Normal component of force}}{\text{Area on which force acts}} = \frac{f}{A}$, S.I. units: N/m², Pa

Pressure P acting at the bottom of an open fluid column of height h and density d is 6.

= 1.013×10^5 Pa = 1.013×10^5 Pa = 1.013×10^6 dynes/cm² = 76 cm of Hg = 760 torr = 1.013 bars.

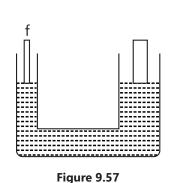


 $P - P_a = hdg$

gauge pressure = absolute - atmospheric pressure.

7.

5.



Area of smaller piston, a; area of larger piston, A, f is applied on the smaller piston

Force F developed on the larger piston
$$\frac{F}{A} = \frac{f}{a}$$

- $\therefore \qquad \mathsf{F} = \frac{\mathsf{f}\mathsf{A}}{\mathsf{a}}$
- 8. Beaker is accelerated in horizontal direction

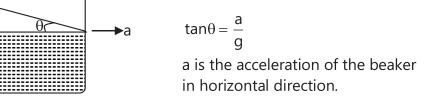


Figure 9.58

9. Beaker is accelerated and it has components of acceleration $a_{x'}$ and a_{y} in x and y directions respectively.

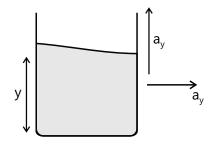


Figure 9.59

P increases with depth
$$\rightarrow \frac{dP}{dy} = p(g + ay)$$

P is the density of the fluid.

 ρ is the density of the fluid. $\frac{dP}{dx} = -pax$

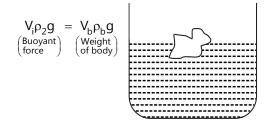
10. Buoyant force $F = V_1 \rho_1 (\vec{g} - \vec{a})$

 V_1 = immersed volume of liquid

 ρ_1 = density of liquid

g = acceleration due to gravity

- a = acceleration of body dipped inside liquid.
- 11. Body floats when Buoyant force balances the weight of the body.



 $V_{b'} \rho_b$ = volume and density of body.

 V_i = Volume of the immersed part of body.

 ρ_2 = density of liquid.

Fraction of volume immersed $\frac{V_i}{V_b} = \frac{\rho_b}{\rho_2}$ % of volume immersed $\frac{V_i}{V_b} \times 100 = \frac{\rho_b}{\rho_2} \times 100$.

12. Apparent weight of a body inside a fluid is $W_{app} = W_{act} - Upthrust$

 $W_{_{app}} = V_{_{b}}g~(\rho_{_{b}}-\rho_{_{2}})$

- $V_{b'} \delta_{b}$ = volume and density of body.
- V_i = Volume of the immersed part of body.

 ρ_2 = density of liquid.

13. General equation of continuity

 $\rho_1 A_1 V_1 = \rho_2 A_2 V_2$ Generally $\rho_1 = \rho_2$ i.e., density is uniform.

 $A_1 \& A_2$ are area of cross-section at point P and Q.

 $V_1 \& V_2$ are velocities of the fluid at point P and Q.

14. Bernoulli's Equation

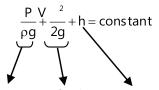
$$P_1 + \rho g h_1 + \frac{1}{2} \rho V_1^2 = P_2 + \rho g h_2 + \frac{1}{2} \rho V_2^2$$

i.e.,

 $P + \rho gh + \frac{1}{2}\rho v^2 = constant$

Pressure Height Velocity at the point

at that point from the reference level



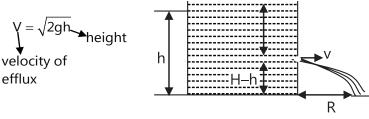
Pressure Velocity gravitational head head

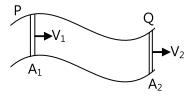
15. Volumetric flow Q = Av =
$$\frac{dV}{dt}$$

A - Area of cross section; v - Velocity; V- Volume

S.I. unit =
$$\frac{m^3}{S}$$

16. Torricelli Theorem:





Range R = $2\sqrt{h(H-h)}$ Range is maximum at $h = \frac{H}{2}$ and $R_{max} = H$

 A_{b} – Area of orifice

A - Area of cross-section of the container.

Time taken to fall from H₁ to H₂ = t × $\frac{A}{A_0}\sqrt{\frac{2}{g}}$

17. Viscous Force $F = \eta A \frac{dv}{dy}$

 \downarrow

coefficient of viscosity

- L Length of pipe
- P_1 and P_2 are pressure at two ends of pipe.
- R Radius of pipe.

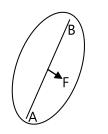
When liquid is flowing through a tube, velocity of flow of a liquid at distance from the axis.

 $V = \frac{P}{4\eta L} \Bigl(r^2 - x^2 \Bigr). \label{eq:V}$ Velocity distribution curve is a parabola.

18. Stoke's Law: Formula for the viscous force on a sphere

F = 6πηrv	$(\eta - \text{coefficient of viscosity})$
	(r – radius of sphere)
	(v – velocity of sphere)
$V_{T} = \frac{2}{9}r^{2}\frac{(\rho - \sigma)g}{\eta}$	(p – density of sphere)
	(∞ – density of fluid)

19. Surface Tension



 $T = \frac{F}{L}$ F is the total force acting on either side of AB. L is length of AB.

Figure 9.63

20. Surface Energy: dW = TdA

Surface Tension T =
$$\frac{dV}{dA} = \frac{Surface energy}{Area}$$

21. Pressure inside the soap bubble is P, then

$$P - P_0 = \frac{4T}{R}$$

22. Air Bubble Inside a Liquid

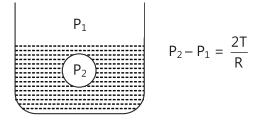


Figure 9.64

R – radius of bubble

T – surface tension force

23. Capillary Rise

- $h = \frac{2T\cos\theta}{r\rho g}$ r = is the radius of capillary tube
- θ = angle of contact