
5. W O R K ,  E N E R G Y  A N D 
P O W E R

1. INTRODUCTION

This chapter explains the concepts of work and energy and how these quantities are related to each other. The 
law of conservation of energy is an important tool in physics, for the analysis of motion of a system of particles or 
bodies, and in understanding various phenomena in nature. When the nature of forces involved in a process are 
not exactly known, or when we want to avoid complicated calculations, then the law of conservation of energy 
proves to be an indispensable tool in solving many problems. The importance of energy cannot be explained in 
words. The progress of science and civilization is based on finding new ways to efficiently use the energy available 
in nature in various forms. Energy is required by a person to perform his/her daily activities, as well as to run our 
automobiles and machines. Depletion of natural energy resources is a major concern these days. The efficiency 
of energy utilization processes and quantity of energy sources harnessed by a country determines the pace of its 
economic development.

2. WORK

2.1 Work
In physics, a force is said to do work only when it acts on a body, and if there is a consequential displacement of 
the point of application in the direction of the force.

For example, say if a constant force F displaces a body through displacement s then the work done, W, is given by

W Fscos F.s= θ=
 

where s is magnitude of displacement and θ is angle between force and displacement. The SI unit of work is Joule 
or Newton-metre.

Sign Convention of Work

0

F

Direction of Motion

Figure 5.1: Motion of block in directon of applied force

We now define the sign convention of work as follows: 
0When 0 90<θ < , 

then W Fs cos is positive= θ

i.e., when the force constantly supports the motion of a body,work done by that force is said to be positive. 
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Figure 5.2: Motion of block

then W Fs cos ve= θ = −

i.e., in this case force is not truly supporting the motion of the body and hence the work done by that force is said 
to be negative.

2.2 Nature of Work

Work done is signified by the equation: F. S
 

Based on this equation, three possible situations are possible regarding the nature or sign of the work done as 
listed here under:

(a) To begin with, the work done is said to be positive if the angle between the force and the displacement 
vectors is an acute angle.

 E.g., when a horse pulls a cart on a level road, the work done by the horse is positive.

(b) Second, the work done is zero if the force and the displacement vectors are perpendicular to each other. 

E.g., when a body is moved along a circular path by a string, then the work done due to the string is zero.

(c) The last possible situation is that the work done is said to be negative if the angle between the force and the 
displacement vectors is an obtuse angle. 

E.g., when a body slides over a rough surface, the resultant work done due to the frictional force is negative. (It 
is pertinent here to remember the fact that the angle between the force and the displacement is 180 degrees.)

Students should be able to deduce that by positive work, force is actually doing what it is meant for, i.e. 
force wants to move a body in certain direction and if it moves in that direction then it’s positive work. 

Anurag Saraf (JEE 2011, AIR 226)

Illustration 1: Assume that a body is displaced from ( ) ( )A Br 2m,4m, 6m to r 6i 4 j 2k m= − = − +
 

 under a constant 

force ( )F 2i 3j k N= + −


. Now, calculate the total work done. (JEE MAIN)

Sol: The work done by the constant force F


 during displacement S


 of a particle is scalar product of force and 
displacement and is given by W F •S=



 

A B Ar 2 i 4 j 6k mS r r 6 i 4 j 2k 2 i 4 j 6k 4 i 8 j 8k
∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧     

= + − = − = − + − + − = − +          
     

   

W F.S 2 i 3 j k . 4 i 8 j 8k 8 24 8 ( 24 j)
∧ ∧ ∧ ∧ ∧ ∧ ∧   

= = + − − + = − − = −      
   

 

Illustration 2: A block of total mass 5 kg is being raised vertically upwards with the help of a string attached to it 
and it rises with an acceleration of 2 m/s2. Find the work done due to the tension in the string if the block rises by 
2.5 m. Also, calculate the work done due to the gravity and the net work done. (JEE ADVANCED)
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Sol: The tension in the string is acting vertically upwards and the block is also moving vertically 

m

mg

T

a

Figure 5.3

upwards, so the work done by the tension will be positive. The force of gravity is acting vertically 
downwards so the work done by gravity will be negative.

Let us first calculate the tension T.

From the force diagram T-mg = 5a; T = 5(9.8 + 2) = 59 N.

As it is clear that both T and displacement S are in the same direction (upwards), then work done 
by the tension T is W based on which we calculate that W Ts 59(2.5) 147.5 J= = = .

Now, work done due to gravity = –mgs = –5(9.8) (2.5) = –122.5 J

Therefore, net work done on the block = work done by T + work done by mg = 147.5+ (–122.5) = 25 J.

Point of application of force also plays a major role.

Zero work is done by a force in following cases: -If the point of application of force is not changed in 
space but the body moves. If body doesn’t move but the point of application of force moves.

 Nivvedan (JEE 2009, AIR 113)

3. WORK DONE BY A VARIABLE FORCE

We need to be aware of the fact that when the force is an arbitrary function of position, then we need the principles 
of calculus to evaluate the work done by it. The Fig. 5.4 given here under shows F (x) as some function x. We now 
begin our evaluation in this regard by replacing the actual variation of the force by a series of small steps. In the 
Fig. 5.4 provided, the area under each segment of the curve is approximately equal to the area of a rectangle. Based 
on the height of the rectangle, the amount of work done is given by the relation, n n nW F X∆ = ∆ . Therefore, the 
total work done is approximately given by the summation of the areas of both the recangles: nnW F X≈ ∆∑ . As the 
number of the steps is reduced, the tops portions of the rectangle more closely resemble the actual curve shown 
in the Fig.5.4. In limit x o∆ → , which is equivalent to letting the number of steps to be infinite, the discrete sum is 

replaced by a continuous integral. 
x2
x1

W F(x) dx area under the F x curve and the x axis= = − −∫

F(x)

x
i0 x

f x
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Figure 5.4: Work done on particle by variable force

Illustration 3: A force F (10 0.50X)= +  is observed to act on a particle in the x direction, where F is in newton and 
x in meter. Find the actual work done by this force during a displacement from x=0 to x=2.0 m. (JEE MAIN)

Sol: If a particle is being displaced under action of variable force, the work done by this force is calculated as 
s2
s1

W F • ds= ∫




. 

As we know that the force is a variable quantity, we shall find the work done in a small displacement from x to x + 
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dx and then integrate the resultant value to calcuate the total work done. The work done in this small displacement 
is calculated as

( )dW F.dx 10 0.50x dx= = +
 

. ( )
2.02.0 2

0 0

xThus,W 10 0.50x dx 10x 0.50 21 J.
2

 
= + = + = 

  
∫

4. CONSERVATIVE AND NON-CONSERVATIVE FORCES

A force is said to be of the conservative category if the work done by it in moving a particle from one point to 
another does not depend upon the path taken but depends only upon the initial and final positions. The work done 
by a conservative force around a closed path calculated to be zero. Gravitational force, electric force, spring force, 
etc. are some of the examples of this category. Basically, all central forces are conservative forces. In contrast, if 
the work done by a force in moving a body from one point to another depends upon the path followed, then the 
force is said to be of the nonconservative category. The work done by such a force around a closed path cannot be 
zero. For example, both the frictional and viscous forces work in an irreversible manner and hence a definite part 
of energy is lost in overcoming these frictional forces. (Mechanical energy is converted to other energy forms such 
as heat, sound, etc.). Therefore, these forces are of the nonconservative category.

5. WORK DONE AGAINST FRICTION

We know that the frictional force always acts opposite to the direction of motion (and hence direction of the 
displacement); therefore, the work done by the frictional force is always on the negative side. Further, the work 
done by the frictional force is invariably lost in the form of heat and sound energy and thus it is a nonconservative 
force.

The work done by the frictional force is either negative or zero, but never positive. The frictional force 
always resists the attempted work done along a horizontal surface. Work done along a horizontal surface 
is given by: - mglµ , where

f

v

V

f

v

V

mg
l

mg

Figure 5.5

m is the mass of the object ;

µ is the coefficient of friction

g is the acceleration due to gravity (9.8m/s2)

l is the distance traveled by the block along the rough surface

Similarly, work done along an inclined surface with an angle θ  from horizontal is given by - mglcosµ θ

 Nitin Chandrol (JEE 2012, AIR 134)

Illustration 4: It is observed that a block of mass 4 kg slides down a plane inclined at 37o with the horizontal. The 
length of the plane is calculated to be of 3 m. The value of the coefficient of sliding friction between the block and 
the plane is 0.2. Based on the above, find the work done due to the gravity, the frictional force, and the normal 
reaction between the block and the plane.  (JEE MAIN)

MASTERJEE CONCEPTS
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Sol: Normal reaction is always perpendicular to the inclined plane hence it is perpen-

o

Figure 5.6

mg

s
�R

Figure 5.7

dicular to the displacement and thus the work done by it is zero. Whereas the frictional 
force is in opposite direction to the displacement and hence the work done by the 
firctional force is negative. The work done by the component of gravitational force 
along the inclined plane will be positive.

Total force acting on the block moving on inclined plane constitutes frictional force, 
normal reaction due to ground and gravitational force acting on wire. The work done 
on block is given as W Fs cos= θ  

As the normal reaction is perpendicular to the point of displacement, work done by 
the normal reaction R = R s cos 90° = 0. The magnitude of displacement s = 3 m and 
the angle between force of gravity (mg) and displacement is equal to (90°-37°). 

Therefore, work done by gravity = mgs cos (90°-37°) 

= mgs sin 037 4 x9.8x3x3 / 5 70.56 J= =

Work done by friction = –(µR)s = –(µ mg cos 37°)s = –0.2 × 4 × 9.8 × 4 / 5 × 3 = –18.816 J.

6. POWER

Power is defined as the rate at which the actual work is done. If an amount of work W∆  is done in time t∆ , then 

average power, n
WP
t

∆
=

∆
 and instantaneous power,

t 0

W dWP Lim .
t dt∆ →

 ∆
= = ∆ 

It is a well-known fact that work done by a force F on an object that has infinitesimally small displacement ds is 

dw=F.ds. Then, instantaneous power, FdsdWP F. v .
dt dt

= = =

 

 

The S I unit of power is Watt (W) or Joule/second (J/s) and it is a scalar quantity. Dimensions of power is 1 2 3M L T− .

Illustration 5: A block of mass m is allowed to slide down a fixed smooth inclined plane of angle θ and length  . 
Calculate the magnitude of power developed by the gravitational force when the block reaches the bottom.   
 (JEE ADVANCED)

Sol: The power dlivered by the force F


 is the scalar product of the force and velocity i.e. P F.v=




When body reaches bottom of the inclined plane the velocity of of body is v 2gh 2g• sin= = θ  and the angle 

between velocity and vertical will be ( )o
90 − θ . 2 3 3P F.V mgsin 2g sin 2m g sin= = θ θ = θ

 

  .

Illustration 6: A particle of mass m is moving in a circular path of constant radius r such that its centripetal 

accelecration aC is varying with time t as 2 2
ca k rt= , where k is a constant. The power delivered to the particle by 

the force acting on it is (JEE MAIN)

(A) 2 22 mk rπ   (B) 2 2mk r t   (C) 
( )4 2 5mk r t

3
  (D) Zero

Sol: (B) As the centripetal force is perpendicular to the direction of the velocity, the work done and power delivered 
by the centripetal force will be zero, whereas the tangential force is in the direction of the velocity so the power 
delivered to the particle of mass m is tP F • v=  

Here 2 2
ca k rt=  or 

2
2 2v k rt or v krt

r
= =

Therefore, tangential acceleration, t
dva kr
dt

= =  or tangential force, Ft=m at =m kr

However, only tangential force does work. Power = Ftv = (mkr)(krt)  or  Power = mk2r2t
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7. ENERGY

Generally, the energy of a body is signified by the body’s capacity to do work. It is a scalar quantity and shares 
the same unit as that of work (Joule in SI unit). In mechanics, both kinetic and potential energies are involved with 
dynamics of the body.

7.1 Potential Energy

7.1.1. Potential Energy

Potential energy of a body is the energy possessed by virtue of its position or due to its state. It is independent of 
the way in which the body is transformed to this state. Although it is a relative parameter, it depends upon its value 
at reference level. We can define the change in potential energy as the negative of work done by the conservative 
force in operation in carrying a body from a reference position to the position under consideration.

7.1.2 Definition

∆U = -WAB where A is the initial state, B is the final state, and WAB is the total work done by conservative forces. We 
know that potential energy depends upon the work done by conservative force only. Hence, it cannot be defined 
for the nonconservative force (s). This is because of the proven fact that in this type work done depends upon the 
path followed alone.

7.1.3 Gravitational Potential Energy (GPE)

Suppose if we lift a block through some height (h) from A to B, then the work is done defying the gravity. The 
work done in such a case is stored normally in the form of gravitational potential energy of the block-energy 
system. Therefore, we can write that work done in raising the block = (mg)h. This is exactly equal to the increase in 
gravitational potential energy (GPE) of the block.

If the center of a body of mass m is raised by a height h, then increase in GPE = mgh

If the center of a body of mass m is lowered by a distance h, decrease in GPE = mgh

7.1.4 Elastic Potential Energy

Suppose when a spring is elongated (or compressed), then work is done against the restoring force of the spring. 
This resultant work done is stored in the spring in the form of elastic potential energy.

7.1.5 Nature of Restoring Force

Suppose if a spring is extended or compressed by a distance x, the spring then exerts a restoring force so as to 
oppose this change.

GPE is always thought of as only of block. But to be more specific it is the energy of block-earth system. 
Potential energy never comes in context of a single particle. It is always for a configuration. In the case 
of GPE, writers however generally skip writing “Earth” each time.

 Chinmay S Purandare (JEE 2012, AIR 698)

7.1.6 Spring

In case of a spring, natural length of the spring is assumed to be the reference point and correspondingly is always 
assigned zero potential energy (This is a universal assumption.). However, in gravity, we can choose any point as 
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our reference and hence assign it any value of potential energy.

1l
0

Figure 5.8: Energy stored in stretched spring

For Stretching

( )( )
Xf i

2
f i f 1

i 0

1U U F.dS ;U 0 kx i dx i ;U kx
2

− = − − = − − =∫ ∫
 

   
l
0 x-x +ve

l
0

Figure 5.9: Energy stored  
in compressed spring

For Compression

( )( )
Xf i

2
f i

i 0

1U U F.dS kxi dx i U kx
2

− = − = − − = =∫ ∫
 

Thus, if the spring is either stretched or compressed from natural length by x the corresponding potential energy 
is 21 / 2kx

7.1.7 Relationship between Force and Potential Energy

Now, let us discuss the relationship between force and potential energy.

U+ U�

BA

�r

Figure 5.10

Let us assume that a body is taken from A to B in such away that there is no net change in its kinetic engery. Then

( )

avg r 0

Work done change in P.E. ; F r U U U U

U u UF if r 0; F lim
r r r∆ →

⇒ = − ∆ = − + ∆ = − ∆

 ∆ ∆ ∂
⇒ = − ∆ → = − = − ∆ ∆ ∂ 

( )

avg r 0

Work done change in P.E. ; F r U U U U

U u UF if r 0; F lim
r r r∆ →

⇒ = − ∆ = − + ∆ = − ∆

 ∆ ∆ ∂
⇒ = − ∆ → = − = − ∆ ∆ ∂ 

7.2 Kinetic Energy

Kinetic energy (KE) is the energy of a body possessed by virtue of its motion alone. Therefore, a body of mass m 

and moving with a velocity v has a kinetic energy 2
k

1E mv
2

= .

We already know that velocity is a relative parameter; therefore, KE is also a relative parameter.

We provide a detailed account on kinetic energy after presenting the concept of conservation of mechanical 
energy.

8. EQUILIBRIUM

We have already studied in the chapter on “Laws of Motion” that a body is said to be in translatory equilibrium only 
if net force acting on the body is zero, i.e., Fnet 0=



net = 0

However, if the forces are conservative, then dUF
dr

= − ; for equilibrium, then  
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F = 0; Thus, dU dU0 , or 0
dr dr

− = =

i.e., exactly at the equilibrium position the slope of U-r graph is zero or the potential energy is optimum (maximum 
or minimum or constant). Equilibria are of three types, i.e., stable equilibrium, unstable equilibrium, and neutral 
equilibrium. Further, the situations where F = 0 and dU/dr = 0 can be obtained only under three conditions as 
specified hereunder.

2

2

2

2

2

2

d U(a) If 0, then it is stable equilibrium;
dr
d U(b) If 0, then it is unstable equilibrium; and
dr
d U(c) If 0, then it is neutral equilibrium.
dr

>

<

=

A system always wants to minimize its energy. The above equilibriums are categorized only on this 
basis. Stable indicates that if system is disturbed slightly, from these configuration, it would try to come 
back to its original state (position of energy minima). For unstable equilibrium, a slight disturbance 
would cause the system to find some other suitable configuration (position of energy maxima). A neutral 
equilibrium is generally found when U becomes constant and each position is a state of equilibrium. A 
slight disturbance has no after reactions and the new state is also an equilibrium position.

Anurag Saraf (JEE 2011, AIR 226)

Illustration 7: The potential energy of a particle of mass 5 kg, moving in xy plane, is given by U = (-7x + 24y)J  

where x and y being in meters. Initially (at t=0), the particle is at the origin and has velocity v 14.4 i 4.2 j m / s
∧ ∧ 

= +  
 



. 

Then Calculate (a) the acceleration of the particle and (b) the direction of acceleration of the particle. (c) The speed 
of the particle at t = 4 s.  (JEE MAIN)

Sol: If particle has potential energy U then corresponding conservative force, is dUF
dr

= −  and according to the 

Newton’s second law of motion F ma=


 . The direction of acceleration is calculated as
y

x

a
tan

a
θ = . 

(a) Acceleration,

x y
U UF ,F
x y

δ δ
= = −

δ δ
 x y x yF 7N, F 24N; a 7 / 5, a 24 / 5⇒ = = − ⇒ = = −

(b) Direction of acceleration y1

x

a
tan

a
−

 
 θ =
 
 

; 

(c) x
7v u a t ; v 14.4 4 20
5

= + = + × =
  

; ( )y
24v 4.2 4 15
5

= − × = −

Illustration 8: The potential energy of a particle in a certain field has the form U= a/r2 – b/r, where a and b are 
positive constants and r is the distance from the center of the field. Find the value of r0 corresponding to equilibrium 
position of the particles and hence examine whether this position is stable.  (JEE ADVANCED)

Sol: Conservative force acting on the particle is dUF
dr

= − . Under stable equilibrium particle has minimum potential 
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energy while potential energy is maximum in case of unstable equilibrium. 

2U(r) a / r b / r= −

3 2

dU 2a bForce F
dr r r

 −
= = − = − + 

 
;  

( )
3

br 2a
F

r

−
= −

dUAt equilibrium, then F 0
dr

= =

Hence, br – 2a = 0 at equilibrium.

Further, r = r0 = 2a/b corresponds to equilibrium.

At stable equilibrium, the potential energy of a particle is at its minimum, whereas at unstable equilibrium, it is the 
maximum. From the principles of calculus, we know that for minimum value around a point r = r0, the first derivative 
should be zero and the second derivative should be invariably positive.

For minimum potential energy, the applicable conditions are

dU 0 and
dr

=  
2

02

d U 0 at r r
dr

> =

However, we have already used dU/dr = 0 to obtain r = r0 = 2a/b.

Now, in a similar way let us investigate the second derivative.

2

2

d U d dU
dr drdr

 
=  

 
 

3 2 4 3

d 2a b 6a 2b
dr r r r r

 
= − + = − 

 

0At r r 2a / b,= =  
2

0
2 4 4

0 0

6a 2brd U 2a 0.
dr r r

−
= = >

Based on our calculations, the potential energy function U(r) has a minimum value only when 0r 2a / b= . Therefore, 
we conclude that the system has stable equilibrium only at the minimum potential energy state.

9. WORK ENERGY THEOREM

Suppose that a particle is acted upon by various forces and consequently undergoes a displacement. Then there is 
a change in its kinetic energy by an amount equal to the total (net) work (Wnet) done on the particle by all the forces.

i.e.,  net f iW K K K= − = ∆   … (i)

We call the above expression as the work-energy theorem.

Expression (i) is valid irrespective of the fact that whether the forces are constant or varying and whether the path 
followed by the particle is straight or curved.

We further elaborate expression (i) as follows:

c NC OthW W W K+ + = ∆   … (ii)

where  Wc is the work done by conservative forces

Wsc is the work done by nonconservative forces

Woth is the work done by all other forces which are not included in the category of conservative, nonconservative, 
and pseudo forces.

‘Since Wc = U∆ ’ (based on definition of potential energy), therefore, expression (ii) can be accordingly modified as 

( )NC othW W K U K U E+ = ∆ + ∆ = ∆ + = ∆   … (iii)

In expression (iii), the term K + U = E is known as the mechanical energy of the system.
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Illustration 9: Find how much will mass “m” rise if 4 m falls away. Block are at rest and in equilibrium  (JEE MAIN)

Sol: Initially the block is at rest. When the block rises to the maximum height, it again comes to rest momentarily. 
So, by work energy theorem the total work done on the block by force of gravity and spring force is zero.

Applying work energy theorem (WET) on a block of mass m  

k

4m

m

Figure 5.11

g sp f iW W K.E. K.E.+ = −  

Let the final displacement of the block from the initial equilibrium is x. Then 

2 2 2 2
2 2

2

5mg 25m g 15m g 3mg1 1 1mg X k kx 0; kx mgx 0 ; x
k 2 2 2 2k kk

  
− + + − = + − = =       

Whenever there is frictional force, energy is dissipated which is equal to work done by frictional force 
and the dissipated energy converts into heat. Practically, machine handlers do a lot of things to minimize 
friction and reduce energy losses by applying lubricants and rollers in their parts.

Yashwanth Sandupatla (JEE 2012, AIR 821)

Illustration 10: A body of mass m was slowly hauled up the hill as shown in the Fig. 5.12 provided by a force F 
which at each point was directed along a tangent to the trajectory. Find the work done due to this force if the 
height of the hill is h, the length of its base is l, and the coefficient of friction is µ.  (JEE ADVANCED)

Sol: As block hauls slowly, the kinetic energy will not change throughout the motion. 

F
i

m
h

l
Figure 5.12

B

dl

ds

A

F

f

Figure 5.13

And the sum of the work done by applied force, gravitational force, normal reaction 
and frictional force will be zero as per work energy theorem.

The four forces that are acting on the body are listed hereunder.

(a) Weight (mg),

(b) Normal reaction (N),

(c) Friction (f), and

(d) The applied force (F)

According to the principle of work-energy theorem 

Wnet= ∆ KE  or  Wmg+WN+Wf+WF = 0  … (i)

Here,  KE 0,∆ =  because i fK 0 K= =  ∴ Wmg = - mgh; WN = 0

(This is because the normal reaction is perpendicular to displacement at all the points.)

Wf can be calculated as f mgcos=µ θ

( ) ( )AB f
dW f ds mg cos ds mg(dl) (as ds cos dl)

f mg dl mgl

∴ = − = − µ θ = −µ θ =

∴ = −µ = − µ∑
Substituting these values in Eq. (i), we obtain the expression FW mgh mgl= +µ .

Note: Here again, if we desire to solve this problem without using the concept of work-energy theorem, then we 
will first evaluate magnitude of applied force F



 at different locations following which we will then integrate ( )F.dr=
 

with proper limits.
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10. KINETIC ENERGY

Now, let us attempt to develop a relationship between the work F

d
r
�

P
2

P
1

Figure 5.14

done and the change in speed of a particle. Based on the Fig. 5.14 
provided, we observe that the particle moves from point 1 2P to P  

under the action of a net force F


 
P2

P1

W F.dr= ∫
 

 ; x y zF F i F j F k
∧ ∧ ∧

= + +


; ydr dx i d j dzk
∧ ∧ ∧

= + +


( )
P2

x Y y z z
P2

W F dx F d F d= + +∫

It is very clear for us now that a particle moves along a curved path from point P1 to P2, only when acted upon by 

a force F that varies in both magnitude and direction. x
x x

md
F ma

dt
ν

= = ; 
P P2 2

x
x

P P1 1

dV
F dx m dx

dt
=∫ ∫

Treating now xν  as a function of position, we obtain:

x x x x
x x

d d d ddx .
dt dx dt dx dx
ν ν ν ν 

= = ν = ν 
 

;   
P P P2 2 2

x x
x x x

P P P1 1 1

d d
F d m dx m dx

dt dx
ν ν

∴ = = ν∫ ∫ ∫
P2 x2

2
x x x

P1 x1

1m d m
2

ν

ν

= ν ν = ν∫ ∫ ( )2 2
x2 x1

1 m
2

= ν − ν

x1ν  = velocity in x-direction at P1;  x2ν  = velocity in x-direction at P2.

We now apply the same principle for terms in y and z.

( ) ( )2 2 2 2 2 2 2 2
x2 y2 z2 x1 y1 z1 2 1

1 1W M M
2 2

 = ν + ν + ν − ν + ν + ν = ν − ν   ; 2 2
2 1

1 1W m m
2 2

= ν − ν

Define: 21K m
2

= ν ≡  Kinetic energy of particle

KE: Potential of a particle to do work by virtue of its velocity.

We know that the work done on the particle by the net force equals the change in KE of the particle.

2 1W K K= −  or ⇒ W K= ∆  Work–Energy Theorem.

For a particle P Mv=


   (linear momentum); 21K P
2m

∴ =

Regarding KE, the following two points are very significant.

(a) Since, both m and v2 are always positive, KE is always positive and hence does not depend on the directional 
parameter of motion of the body.

(b) KE depends on the frame of reference. For example, the KE of a person of mass m in a train moving with speed 

v is zero in the frame of train, whereas in the frame of earth the KE is 21 mv
2

for the same person.

Energy can never be negative.

No! Only kinetic energy can’t be negative. If anyone generally speaks about energy, it means the sum 
of potential and kinetic energies. However, we can always choose such a reference in which this sum is 
negative. Hence, total energy can be negative.

Anurag Saraf (JEE 2011, AIR 226)
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Illustration 11: A uniform chain of length ℓ and mass m overhangs a smooth table with its two-third parts lying on 
the table. Find the kinetic energy of the chain as it completely slips off the table. (JEE MAIN)

Sol: The initial kinetic energy of the chain is zero. When chain start slipping off table the loss in its potential energy 
is equal to the gain in its kinetic energy.

Let us take the potential energy at the table as zero. Now, consider a part dx of the chain at a depth x below the 

surface of the table. The mass of this part is mdm dx=
  

and hence its potential energy is ( )m / dx gx.− 

The potential energy of the one-third of the chain that overhangs is given by 
/3

1
0

mU gx dx= −∫




 

/3
2

0

m x 1g mg
2 18

  
= − = −      







However, this is also the potential energy of the full chain in the initial position; this is because the part lying on the 
table has zero potential energy. Now, we can calculate the potential energy of the chain when it completely slips 
off the table as

dx

x

Figure 5.15

2
0

m 1U gx dx mg
2

= − = −∫






 The loss in potential energy is 1 1 4mg mg mg
18 2 9

   
= − − − =   

   
  

.

Basically, this should be equal to the gain in the KE in this case. However, the initial KE is zero. Hence, the KE of the 

chain as it completely slips off the table is 4 mg
9

 .

Illustration 12: A block of mass m is pushed against a spring of spring constant k fixed at one end to a wall. The 
block can slide on a frictionless table as shown in the Fig. 5.16. The natural length of the spring is taken as 0L  and 
it is compressed to half its natural length when the block is released. Now, based on the above find the velocity of 
the block as a function of its distance x from the wall. (JEE ADVANCED)

Sol: The block will move under action of restoring force of spring when spring is released. The block will have 
constant kinetic energy when it looses contact with the spring. In this process the energy of system will be conserved 
as there are no external forces acting on the system. (Spring + block system)

k
m

v

L /2
o

x

Figure 5.16

When the block is released, naturally the spring pushes it toward right. The velocity of the block keep on inreasing 
till the block loses contact with the spring and thereafter moves with constant velocity.
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Initially, the compression of the spring is 0L / 2 . But when the distance of the block from the wall becomes x, where

0x L< , the compression is ( )0L x− . Applying the principle of conservation of energy

( )
2

2 20
0

L1 1 1k k L x mv
2 2 2 2

 
= − +  

 
. ( )

 
 =
  

− −
2

0

1/2
20L

L xkSolving this,
4

v
m

Thus, when the spring acquires its natural length, then 0x L=  and = 0kv
m

L
2

. Thereafter, the velocity of the block 
remains constant.

11. MOTION IN A VERTICAL CIRCLE

Let us consider a particle of mass m attached to one end of a string and 

Figure 5.17: Motion in vertical circle

h
r

A

ED

C

B

O

T

F

mg sin
mg

mg cos

rotated in a vertical circle of radius r with centre O. The speed of the 
particle will decrease as the particle travels from the lowest point to the 
highest point but increases in the reverse direction due to acceleration 
due to gravity.

Thus, if the particle is moving with velocity v at any instant at A, (where the 
string is subtending an angle θ with the vertical), then the forces acting 
on the particle are tension T in the string directed toward AO and weight 
mg acting downward.

Further, the net force T–mg cos θ is directed toward the cenetr and hence 
provides the centripetal force

2 2mv vT mg cos ;T m gcos
r r

 
− θ = = θ +  

 

If v0 is the speed of the particle at the highest point, then the velocity increases as the particle falls through any 
height h. However, if it falls from C to A, then the vertical distance h is given by

( )h CF CO OF CO OAcos r r cos ;h r 1 cos= = + = + θ = + θ = + θ

( )2 2 2
0 0v v 2gh v 2gr 1 cos= + = + + θ  (Because there is no actual work done due to the influence of tension)

(i) At the highest point C, 0180θ=

2 2
0 0

c
v v

Tension at C T m gcos(180) m g
r r

   
   = = + = −
      

  ... (i)

The particle will now fall because the string will slacken if Tc is negative. Therefore, the minimum velocity at the 

highest point is corresponding to the situation where Tc is just zero, i.e., when 
2
0

0
v

m g 0, or v rg
r

 
 − = =
  

(ii) At the lowest point B, 0θ= , tension BT  is given by
2
B

B
v

T m g
r

 
 = +
  

( )2 2 2 2
B B 0 Bwhere v is velocity at B. v v 4rg rg 4rg 5rg; using v u 2gh ; v 5rg= + = + = = + =

 ... (ii)

Minimum tension at B when the particle completes the circle is given by B
5rgT m g 6mg
r

 
= + = 

 
At the point E, when 

2
0 E

E
mv

90 , T
r

θ= =

2
E c EWhere velocity at E is given by V V 2rg rg 2rg 3rg; V 3rg= + = + = =
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E E
3rgTension at E corresponding to speed  V is T m 3mg
r

 
= = 

 
  N

mg

r

Figure 5.18

(iii) In another case the particle of mass m is not tied to the string but is moving along a 

circular track of radius r and has normal reaction N. However, it is moving with a velocity v 

and its radius vector is subtending an angle θ with the vertical, then 
2mvmg cos N

r
θ − = . 

At the highest point, 
2mvmg N

r
− = ; when  ... (iii)

N 0, V rg= = Therefore, V rg=  is the minimum speed with which the particle can move at the highest point 

without losing contact.

Condition of Looping the Loop (u 5gR )≥   V =  gR
min

P
T=0

O

R

A

u U =  5gR
min

T= 6mg

Figure 5.19

The particle will complete the circle only if the string does not slack even 
at the highest point (θ=π). Thus, tension in the string should be obviously 
greater than or equal to zero (T ≥ 0) at θ=π. In the critical case, however, by 
substituting T = 0 and θ=π in Eq. (iii), we obtain

mg=
2
minmv

R
 or 2

minv =gR or minv gR=  (at the highest point)

Further, by substituting θ = π  in Eq. (i), h = 2R

Therefore, from Eq. (ii) 2 2
min minu v 2gh= +  or 2

minu gR 2g(2R)= +  or minu 5gR=

Thus, if u 5gR≥ , then the particle will complete the circle.

At u = 5gR , the velocity at the highest point is v gR=  and the tension in the string is zero. 

By substituting θ = 0°  and v 5gR=  in Eq. (iii), we get T = 6mg or in the critical condition tension in the string at 

the lowest position is 6mg as shown in the Fig. 5.19. If u 5gR< , then the following two cases are possible.

Condition of Leaving the Circle ( 2gR u 5gR )< <

If u 5gR< , then the tension in the string will be zero before reaching the highest point. From Eq. (iii), tension in 

the string is zero (T=0) where, 
2vcos

Rg
−

θ =  or 
22gh ucos

Rg
−

θ =

Now, by substituting, this value of cosθ in Eq. (i), we obtain 
22gh u h1

Rg R
−

= −  or 
2

1
u Rgh h

3g
+

= =  (say)  … (iv)

v

O

R

P

�

A
u

T = 0

h R�

v 0�

Figure 5.20

Or, in other words, we can say that at height h1 tension in the string becomes zero. Further, if u 5gR< , then the 
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velocity of the particle becomes zero when 20 u 2gh= −  or 
2

2
uh h
2g

= =  (say)    ... (v)

i.e., at height 2h velocity of the particle becomes zero. Now, the particle will move out from the circle if tension 

alone in the string becomes zero but not the velocity or T=0 but v 0≠ . This is possible only when 1 2h h<  or 
2 2u Rg u
3g 2g
+

<  or 2 22u 2Rg 3u+ <  or 2u 2Rg>  or u 2Rg> . 

Therefore, if 2gR u 5gR< < , the particle moves out from the circle.

From Eq.(iv), we observe that h >R if 2u 2Rg> . Thus, the particle, will move out of the circle when h>R or 
90 180° < θ < ° . This situation is shown in the Fig. 4.75.

2gR u 5gR< <  or 90 180° < θ < °

Note, however, that after leaving the circle, the particle will follow a parabolic path.

Condition of Oscillation (0 u 2gR )< <

The particle will oscillate, however, only if velocity of the particle becomes zero but not tension in the string. Or, in 
other words, v = 0, but T 0≠ . This is possible only when 2 1h h< .

u

v = 0

N 0�
h R�u

Figure 5.21

Or  
22 u Rgu

2g 3g
+

<   or 2 23u 2u 2Rg< +  or 2u 2Rg<  or u 2Rg<

Moreover, if 1 2h h= , u 2Rg=  then both tension and velocity becomes zero simultaneously.

Further, from Eq (iv), we observe that h R≤ if u 2Rg≤ . Thus, for 0 u 2gR< ≤ , the particle oscillates in the lower 

half of the circle (0 90 )° < θ ≤ ° . This situation is shown in the Fig. 5.21.  (0 u 2gR )< <  or (0 90 )° < θ ≤ °

Note: The above three conditions have been derived for a particle that is moving only in a vertical circle and 
attached to a string. The same conditions apply, however, if a particle moves inside a smooth spherical shell also of 
radius R. The only difference here is that the tension is replaced by the normal reaction N.

Condition of Looping the Loop is (u 5gR )≥

u

v

u= 5gR, N=6mg

v= gR, N=0

Figure 5.22
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Condition of Leaving the Circle ( 2gR u 5gR )< <

u

v

�

N = 0

v 0�

h R�

Figure 5.23

Condition of Oscillation (0 u 2gR )< <
O

R

A
u

P

v = 0

T 0�

h R�

Figure 5.24

Illustration 31: A heavy particle hanging from a fixed point by a light inextensible string of length l is projected 

horizontally with speed gl . Now, find the speed of the particle and the inclination of the string to the vertical at 
the instant of the motion when the tension in the string is equal to the weight of the particle.   (JEE ADVANCED)

Sol: Loss in the kinetic energy of the particle is equal to the gain in the potential energy. Apply Newton’s second 
law along the direction of the string.

T
B

A

�

h
mg sin �

mg cos �

u= gl

Figure 5.25

Let T = mg at angle θ  as shown in the Fig. 5.25.

H = l (1–cos θ )  … (i) 

Applying the principle of conservation of mechanical energy between points A and B, we obtain 2 21 m(u v ) mgh
2

− =  

Here, 2u gl=    ... (ii)

and v = speed of particle in position B 2 2v u 2gh∴ = −   … (iii)

Further, 
2mvT mgcos

l
− θ =  or 

2mvmg mgcos
l

− θ =  (T = mg)

Or 2v gl(1 cos )= − θ    … (iv)

Now, by substituting the values of 2v , 2u  and h from Eqs. (iv), (ii) and (i) in Eq. (iii), we obtain

gl(1 cos ) gl 2gl(1 cos )− θ = − − θ  or 2cos
3

θ =  or 1 2cos
3

−  
θ =  

 

Further, by substituting 2cos
3

θ =  in Eq. (iv), we obtain gl
v

3
=
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If a particle of mass m is connected to a light rod and whirled in a vertical circle of radius R, then 

to complete the circle, the minimum velocity of the particle at the bottommost point is not 5gR . 
Because, in this case, velocity of the particle at the topmost point can be zero also. Using conservation 
of mechanical energy between points A and B as shown in Fig. 5.26(a) we get 

 v=0

O

R

B

A
u 2 gR�

h=2R

R

d

u

u 2 gR�
d R��

       (a)        (b)
Figure 5.26

2 21 m(u v ) mgh
2

− =  or 21 mu mg(2R)
2

=  (as v = 0)  ∴ u 2 gR=

Therefore, the minimum value of u in the case is 2 gR .

Same is the case when a particle is compelled to move inside a smooth vertical tube as shown in  
Fig 5.26(b).

Anurag Saraf (JEE 2011, AIR 226)

12. A BODY MOVING INSIDE A HOLLOW TUBE

Our discussion above holds good in this case too, but instead of tension in the string 

mg

O

V
1

Figure 5.27: Block moving 
inside hollow sphere

we have the normal reaction of the surface. If we take N is the normal reaction at the 

lowest point, then 
2 2
1 1mv v

N mg ; N m g
r r

 
 − = = +
 
 

However, at the highest point of the 

circle, 
2
2mv

N mg
r

+ =  

2
2v

N m g ; N 0
r

 
 = − ≥
 
 

  ⇒  Implies the condition  1V 5rg≥

In the same way as shown above, all the other equations similarly can be obtained by 
just replacing tension T by reaction N.

13. BODY MOVING ON A SPHERICAL SURFACE

Consider that the small body of mass m is placed on top of a smooth sphere whose radius is r.

Now, if the body slides down the surface, at what point does it fly off the surface?

MASTERJEE CONCEPTS



5.18  |   Work, Energy and Power

Consider the point C where the mass is, at a certain instant. Now, the acting
C

h�

ground

Figure 5.28: Motion of body on  
spherical surface

 
forces are the normal reaction R and the weight mg. Further, the radial 
component of the weight is mg cosθ acting toward the center. The 

centripetal force in this case is taken as 
2mvmg cos R

r
θ − =

where v is the velocity of the body at O.

2vR m g cos
r

 
= θ−  

 
  … (i)

Now, it is clear that the body flies off the surface at the point where R becomes zero.
2mvi.e..,g cos R

r
φ− =   … (ii)

To find v, we apply the principle of conservation of energy

21i.e., mv mg(BN)
2

= mg (OB ON) mgr (1 cos )= − = − φ

2
2 vv 2rg (1 cos ); 2(1 cos )

rg
= − φ − φ =    … (iii)

From equations (ii) and (iii), we obtain 

cos 2 2cos ; 3cos 2φ = − φ φ=

12 2cos ; cos
3 3

−  
φ = φ=  

 
   … (iv)

This exactly denotes the angle at which the body goes off the surface. The height from the ground of that point is

AN r(1 cos )= = + φ  2 5r 1 r
3 3

 
= + = 

 

Illustration 32: A point mass m starts from rest and slides down the surface of a frinctionless solid sphere of radius 
R as shown in the Fig. 5.29 provided. At what angle will this body break off the surface of the sphere? Also, find the 
velocity with which it will break off.  (JEE MAIN)

Sol: As the block slides down, the loss in potential energy is equal to gain in kinetic 

m

A

N

B

R

O

R

v

m

Figure 5.29

energy and at time of break off, the normal reaction from the sphere on block is 
zero. 

Applying princliple of conservation of energy (COE), at the points A and B

21mgR(1 cos ) mv
2

− θ =    … (i)

Force equation in this equation is 2mg cos N mv / Rθ − =   … (ii)

N = 0 for break off.

v gRcos∴ = θ   … (iii)

Replacing this value in (i) 
2We get cos 2 / 3 Putting this in (iii) we get v gR.
3

θ= =

Illustration 33: A heavy particle is suspended by a string of length  . The horizontal velocity of the particle is 0v . 
However, the string becomes slack at some angle and the particle proceeds on a parabolic path. Find the value of 

0v if the particle passes through the point of suspension.   (JEE ADVANCED)
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Sol: While particle moves in vertical circle, the tension in the string provides the necessary centripetal force. The 
loss in kinetic energy is equal to the gain in potential energy. At point the string become 

O

�

P

Figure 5.30

slack the tension in the string is zero. 

Let us suppose the string becomes slack when the particle reaches the point P. We now 
assume that the string OP makes an angle θ with the upward vertical. Further, the only force 
acting on the particle at the point P is its weight mg. Further, the radial component of the 
force is mg cos θ . Now, as the particle moves along the circle upto P,

2
2vmg cos m v g cos

 
θ = ⇒ = θ  

 




  … (i)

where v is its speed at the point P. Now, applying the principle of conservation of energy

( )2 2
0

1 1mv mv mg 1 cos
2 2

= + + θ  or ( )2 2
0v v 2g 1 cos= − + θ   … (ii)

( ) ( ) ( )2
0From i  and ii , v 2g 1 cos g cos= + θ = θ  or ( )2

0v g 2 3cos= + θ   … (iii)

From hereon, the particle follows a parabolic path due to acceleration due to gravity. Then as it passes through the 
point of suspension O, the equations for horizontal and vertical motion give

( ) ( ) ( )
2

2 sin sin1 1sin v cos t and cos v sin t gt cos v sin g
2 v cos 2 v cos

   θ θ
θ= θ − θ= θ − ⇒ − θ= θ −   θ θ   

 

 

( ) ( ) ( )
2

2 sin sin1 1sin v cos t and cos v sin t gt cos v sin g
2 v cos 2 v cos

   θ θ
θ= θ − θ= θ − ⇒ − θ= θ −   θ θ   

 

 

2 2
2 2 2 2

2 2

sin g sin1 1or, cos sin g or, cos 1 cos From(i)
2 2v cos g cos

θ θ
 − θ= θ − − θ= − θ −  θ θ

 



2 2
2 2 2 2

2 2

sin g sin1 1or, cos sin g or, cos 1 cos From(i)
2 2v cos g cos

θ θ
 − θ= θ − − θ= − θ −  θ θ

 



( ) 1/22
0

1or, 1 tan or, tan From (iii) , v g 22
2

3√ √ = θ θ= = + 

( ) 1/22
0

1or, 1 tan or, tan From (iii) , v g 22
2

3√ √ = θ θ= = + 

14. VARIOUS FORMS OF ENERGY: THE LAW OF CONSERVATION OF ENERGY

Conservation of Energy 

We observe that in many processes the sum of both the kinetic and potential energies does not remain a constant. 
This may be due to the influence of dissipative forces such as friction.

(a) The more general form of law of conservation of energy was established by taking into account other forms 
of energy such as thermal, electrical, chemical, nuclear, etc.

(b) The charges in all forms of energy is given by: KE U (all other forms  of energy) 0∆ + ∆ + ∆ ≡

This is what we mean by the law of conservation of energy and it is one of the most important principles of 
physics.

“The total energy is neither increased nor decreased in any process. Energy can be transformed from one form 
to another, and transferred from one body to another, but the total amount remains constant.”
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PROBLEM-SOLVING TACTICS

(a) One should always isolate the known and unknown quantities and write equations and solve them.

(b) The next step would be to find out a way from unknown to known quantities and write equations and solve 
them.

(c) One should always be very careful in doing so to avoid silly mistakes such as unit change of parameter.

(d) Energy is scalar in nature. However, get a clear idea of what is being gained or lost by which entity.

(e) Physical visualization of any problem will always help in increaseaing confidence in solving equations 
pertaining to the same.

(f) Further, problems involving integration would be easy to understand if you go event by event and then solve.

(g) Special cases and boundary conditions of circular motion are definitely recommended to be mastered because 
many problems break down to these special cases just after few manipulations.

FORMULAE SHEET

S. NO. DESCRIPTION FORMULA

1 Kinetic energy of the particle
21 1K(v) mv mv. v

2 2
= =

 

2 Work done by force F W F.r=
 

 (here r


is total displacement)

3 Work done by variable force w F.dr= ∫
 

4 Power generated by force F acting on body
dW drP F. F. v
dt dt

= = =



  

5 Increase in Kinetic Energy = Decrease in Potential Energy KE = – U∆

6 Energy conservation principle
21K U 0; mv mgh or, v 2gh

2
∆ + ∆ = = =

7 For a Spring work done W ( )x2 2 2
1 2x1

1W kx dx k x x
2

= − = −∫

8 Work-Energy principle net f iW KE K K= ∆ = −

9 Work done by variable forces in short range ( )
1 2

1 2

F F F .......

W F.dr F F ....

For

. . dr

= + +

= = + +∫ ∫

  

    

10 For conservative forces, change in potential energy
rf

f i ri
U U F.dr− = −∫

 

11 Elastic Potential Energy
21U kx

2
=


