PROBLEM-SOLVING TACTICS

- (a) One should always isolate the known and unknown quantities and write equations and solve them.
- (b) The next step would be to find out a way from unknown to known quantities and write equations and solve them.
- (c) One should always be very careful in doing so to avoid silly mistakes such as unit change of parameter.
- (d) Energy is scalar in nature. However, get a clear idea of what is being gained or lost by which entity.
- (e) Physical visualization of any problem will always help in increase aing confidence in solving equations pertaining to the same.
- (f) Further, problems involving integration would be easy to understand if you go event by event and then solve.
- (g) Special cases and boundary conditions of circular motion are definitely recommended to be mastered because many problems break down to these special cases just after few manipulations.

S. NO.	DESCRIPTION	FORMULA
1	Kinetic energy of the particle	$K(v) = \frac{1}{2}mv^2 = \frac{1}{2}m\vec{v}.\vec{v}$
2	Work done by force F	$W = \vec{F} \cdot \vec{r}$ (here \vec{r} is total displacement)
3	Work done by variable force	$w = \int \vec{F} \cdot d\vec{r}$
4	Power generated by force F acting on body	$P = \frac{dW}{dt} = \vec{F} \cdot \frac{d\vec{r}}{dt} = \vec{F} \cdot \vec{v}$
5	Increase in Kinetic Energy = Decrease in Potential Energy	$KE = -\Delta U$
6	Energy conservation principle	$\Delta K + \Delta U = 0; \ \frac{1}{2}mv^2 = mgh \ or, \ v = \sqrt{2gh}$
7	For a Spring work done W	$W = \int_{x_1}^{x_2} -kx dx = \frac{1}{2} k \left(x_1^2 - x_2^2 \right)$
8	Work-Energy principle	$W_{net} = \Delta KE = K_f - K_i$
9	Work done by variable forces in short range	For $\vec{F} = \vec{F}_1 + \vec{F}_2 + \dots$ W = $\int \vec{F} \cdot \vec{dr} = \int (\vec{F}_1 + \vec{F}_2 + \dots) \cdot \vec{dr}$
10	For conservative forces, change in potential energy	$U_{f} - U_{i} = -\int_{r_{i}}^{r_{f}} \vec{F} \cdot \vec{d}r$
11	Elastic Potential Energy	$U = \frac{1}{2}kx^2$

FORMULAE SHEET