
14. H E A T  T R A N S F E R

1. INTRODUCTION

Heat can be transformed from one place to another place by the three processes - conduction, convection and 
radiation. In conduction, the heat flows from a place of higher temperature to a place of lower temperature through 
a stationary medium. The molecules of the medium oscillate about their equilibrium positions more violently at 
a place of higher temperature and collide with the molecules of adjacent position, thus transferring a part of 
their energy to these molecules which now vibrate more violently. Thus heat can be transmitted by collision of 
molecules. In metals, the conduction of heat takes place by the movement of free electrons. In the cases of liquids 
and gases, the heat is transferred not only by collision but also by motion of heated molecules which carry the heat 
in such media. This process is called convection. When a liquid in a vessel is heated, the lighter molecules present 
in the lower layer of the liquid get heated which rise to the surface of the liquid and cold molecules at the surface 
go towards the bottom of vessel. These are convection currents and are the major means of heat transport in fluids. 
Radiation is mode of transfer of heat in which the heat travels directly from one place to another without the role 
of any intervening medium. The heat from the sun propagates mostly through vacuum to reach the earth by the 
process of radiation.

2. CONDUCTION

The figure shows a rod whose ends are in thermal contact with a hot reservoir at 
temperature T1 and a cold reservoir at temperatureT2 . The sides of the rod are insulated, 
hence heat transfer is only along the rod and not through its sides. The molecules at the 
hot reservoir have greater vibrational energy. This energy is transferred by collisions to 
the atoms at the end face of the rod. These atoms in turn transfer the energy to their 
neighbors further along the rod. Such transfer of heat through a substance in which 
heat is transported without direct mass transport is called conduction.

The quantity of heat conducted Q in time t across a slab of length L, area of cross-
section A and steady state temperature θ1 and θ2 at respective hot and cold ends is 

given by 1 1kA( )t
Q

L
θ − θ

=  , where k is the coefficient of thermal conductivity which is equal to the quantity of heat 

flowing per unit time through unit area of cross-section of a material per unit length along the direction of flow of 

heat.

Units of k are kilocalorie/meter second degree centigrade or J.m-1sec-1 K-1. In C.G.S. units,

k is expressed in calcm-1 (℃)-1 sec-1

The temperature Gradient ⁄ (unit distance) = d
dx
θ

−
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∴	 dQ kA t
dx

 



θ
− 


= ;	 Q dT kA 

t dx
∆

= −
∆

The quantity dT/dx is called the temperature gradient. The minus sign indicates that dT/dx is negative along the 
direction of the heat flow, i.e., heat flows from a higher temperature to a lower one.

 dT t TH
dx L / kA R

∆ ∆
= = =

Here ∆T = temperature difference (TD) and R= L
kA

= Thermal resistance of the rod. 

This relation is mathematically equivalent to Ohm’s Law and can be used very effectively in solving 
problems effectively by considering temperature analogous to potential and heat transferred per unit 
time as current.

Nivvedan (JEE 2009, AIR 113)

Heat flow through a conducting rod Current flow through a resistance

Heat current dQH
dt

= =Rate of heat flow 

T(temp diff)TH
R R
∆

= =

where R=
L

kA
 and k = Thermal conductivity

Electric current dqi
dt

= = Rate of charge flow 

PD(potential diff)Vi
R R
∆

= = ;	 iR
A

=
σ

 σ = Electrical conductivity.

3. GROWTH OF ICE ON PONDS

When temperature of the atmosphere falls below 0°C, the water in the pond starts freezing. Let at time t thickness 
of ice in the pond is y and atmospheric temperature is -T°C. The temperature of water in contact with the lower 
surface of ice will be 0°C. 

Using dQ dmL
dt dt

 
=  

 
 ; 		   { }TD dL A y

R dt
= ρ 			   (A = Area of pond)

( )
( )
0 T dy

LA .
dty kA

 − − ∴ = ρ

 

( )
( )
0 T dy

LA .
dty kA

 − − ∴ = ρ

 
 dy kT 1.

dt Ly
∴− =

ρ
 where L -> Latent heat of fusion

And hence time taken by ice to grow a thickness y	
y

0

Lt ydy
kT
ρ

= ∫  or 21 Lt y
2 kT
ρ

=  

Time does not depend on the area of pond.

Time taken by ice to grow on ponds is independent of area of the pond and it is only dependent only 
the thickness of ice sheet.

Vaibhav Krishnan (JEE 2009, AIR 22)
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4. SERIES AND PARALLEL CONNECTION OF RODS

4.1 Series Connection
Consider two rods of thermal resistances 
R1 and R2 joined one after the other as 
shown in figure. The free ends are kept 
at temperatures T1 and T2 with T1>T2. In 
steady state, any heat that goes through 
the first rod also goes through the second 
rod. Thus, the same heat current passes through the two rods. Such a connection of rods is called a series connection.

Suppose, the temperature of the junction is T, the heat current through the first rod is, 

1

1

T TQi
t R

−∆
= =

∆
 or 1 1T T R i− =  �  ... (i)

 and that through the second rod is 2

2

T TQi
t R

−∆
= =

∆
 or 2 2T T R i− =  �  … (ii) 

Adding (i) and (ii)	 ( )1 2 1 2T T R R i− = +  or 1 2

1 2

T T
i

R R
−

=
+

 

Thus, the two rods together is equivalent to a single rod of thermal resistance R1+R2.

If more than two rods are joined in series, the equivalent thermal resistance is given by, 1 2 3R R R R ...= + + +

4.2 Parallel Connection
Now, suppose the two rods are joined at their ends as shown in figure. 
The left end of both the rods are kept at temperature T1 and the right 
ends are kept at temperature T2.

So the same temperature difference is maintained between the ends of 
each rod. Such a connection of rods is called a parallel connection. The 

heat current going through the first rod is 1 1 2
1

1

Q T T
i

t R
∆ −

= =
∆

and that through the second rod is 2 1 2
2

2

Q T T
i

t R
∆ −

= =
∆

The total heat current going through the left end is 1 2 1 2
1 2

1 1i i i (T T )
R R
 

= + = − +  
 

 

or 1 2T T
i

R
−

=

Where 
1 2

1 1 1
R R R
= + �  … (i)

5. RADIAL FLOW OF HEAT THROUGH A CYLINDRICAL TUBE

Consider a cylindrical tube of length l and respective inner and outer radii as r1 and r2. If the heat flows radially i.e., 
perpendicular to the axis of the tube from the steady state temperatures θ1 at the inner surface to the temperature 
θ2 at the outer surface, then the rate of heat flowing through an element of shell lying between radius r and r+ dr 

is given by ( )dQ k 2 r
dr
θ

∆ = − π 
 
where dθ  is temperature difference across the shell. 

It can be integrated for total heat flow per second.
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∴Total heat flowing per second, 

( )1 2
r2

r1

2 k
Q

dr
r

π θ − θ
=

∫



;	  
( )1 2

2

1

2 k
Q

r
ln

r

π θ − θ
=

 
  
 



No mass movement of matter occurs in conduction. Solids are better 
conductors than liquids, liquids are better conductors than gases. 

Consider a section ab of a rod as shown in figure. Suppose Q1 heat 
enters into the section at ‘a’ and Q2 leaves at ‘b’, then Q2 < Q1. 

Part of the energy Q2 - Q1 is utilized in raising the temperature of 
section ab and the remaining is lost to the atmosphere through ab. If heat is continuously supplied from 
the left end of the rod, a stage comes when temperature of the section becomes constant. In that case 
Q1=Q2  if rod is insulated from the surroundings (or loss through ab is zero). This is called the steady state 
condition. Thus, in steady state temperature of different sections of the rod becomes constant (but not 
same). 

Nitin Chandrol (JEE 2012, AIR 134)

Illustration 1: One face of a copper cube of edge 10 cm is maintained at 100℃ and the opposite face is maintained 
at 0℃. All other surfaces are covered with an insulating material. Find the amount of heat flowing per second 
through the cube. Thermal conductivity of copper is 385 Wm-1 ℃-1.	� (JEE MAIN)

Sol: Always consider the A which perpendicular to the flow of heat.

The heat flows from the hotter face towards the colder face. The area of cross section perpendicular to the heat 
flow is ( )2A 10cm=

The amount of heat flowing per second is 1 2T TQ KA
t X

−∆
=

∆ ( ) ( ) ( )21 1 100 C 0 C
385Wm C 0.1m

0.1m
− − ° − °

= ° × ×  3850W.=

Illustration 2: A cylindrical block of length 0.4 m and area of cross-section 0.04m2 is placed coaxially on a thin 
metallic disc of mass 0.4 kg and of the same cross-section. The upper face of the cylinder is maintained at the 
constant temperature of 400 K and initial temperature of the disc is 300 K. If the thermal conductivity of the 
material of the cylinder is 100 watt/m-K and the specific heat of the material of the disc is 600 J/kg-K, how long 
will it take for the temperature of the disc to increase to 350 K? Assume, for the purpose of calculation, the thermal 

Q2Q1

a b

Figure 14.6
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conductivity of the disc to be very high and the system to be thermally insulated except for the upper face of the 
cylinder. �
� (JEE ADVANCED)

400 K

0.4n

300 K

Figure 14.7

Sol: Write the equation rate of heat transfer at any temperature ‘T’ for the disc. Rate of heat transfer proportional 
to rate of change in temperature.

As heat is conducted from the cylinder to the disc, the temperature of the disc increases. If the temperature of the 

disc at some instant is T, then rate of flow of heat through the cylinder at that instant is 
( )KA 400 TdQ

dt L

−
=  � … (i)

If dT is the further increase in the temperature of the disc in the infinitesimal time interval dt, 

then dQ dTms
dt dt

=  � … (ii)

Where m is the mass of the disc and c is its specific heat.

From equations (i) and (ii)

 
( )KA 400 T dTms ;

L dt

−
=

msL dTdt
KA 400 T

 
=  − 

Integrating we get,	  
350

10
300

msL dT msL 400 300t 2.303log
KA 400 T KA 400 350

 −
= = ×  − − 

∫ 	 

	  	  	  0.4 600 0.4 2.303 0.3010 166s.
10 0.04
× ×

= × × =
×

6. CONVECTION

In this process, actual motion of heated material results in transfer of heat from one place to another. For example, 
in a hot air blower, air is heated by a heating element and is blown by a fan. The air carries the heat wherever it 
goes. When water is kept in a vessel and heated on a stove, the water at the bottom gets heated due to conduction 
through the vessel’s bottom. Its density decreases and consequently it rises. Thus, the heat is carried from bottom 
to the top by the actual movement of the parts of the water. If the heated material is forced to move, say by 
a blower or by a pump, the process of heat transfer is called forced convection. If the material moves due to 
difference in density, it is called natural or free convection.
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The convection currents created in a room by a radiator means that the warm air is circulated around and 
the warming is more uniform than just being the air around the radiator. When heating water on a stove, 
the convection currents created by the rising hot water means that all the water gets heated instead of 
just the water at the very bottom of the pan. Some rainfall is also caused by moist air being heated and 
rising, then cooling quickly and allowing the water vapor to condense into rain. 

Anand K (JEE 2011, AIR 47)

7. RADIATION

The third means of energy transfer is radiation which does not require a medium. The best known example of this 
process is the radiation from Sun. All objects radiate energy continuously in the form of electromagnetic waves. 
The rate at which an object radiates energy is proportional to the fourth power of its absolute temperature. This is 
known as the Stefan’s law and is expressed in equation form as 4P AeT= σ

Here P is the power in watts(J/s) radiated by object, A is the surface area in 2m ,e lies between 0 and 1 and 
is called emissivity of the object and σ is universal constant called Stefan’s constant, which has the value, 

8 2 45.67 10 W / m K−σ = × − .

8. PERFECTLY BLACK BODY

A body that absorbs all the radiation incident upon it and has as emissivity equal 
to 1 is called a perfectly black body. A black body is also an ideal radiator. It implies 
that if a black body and an identical another body is kept at the same temperature, 
then the black body will radiate maximum power as is obvious from equation 	

4P AeT= σ

This is also because e=1 for a perfectly black body while for any other body, 
e<1.	

Always remember that black body is a perfect absorber and emitter of light. At temperatures higher than 
the surrounding, it is the most shining thing and at lower temperatures it is the darkest thing.

There is no perfect black body. Materials like black velvet or lamp black come close to being ideal black 
bodies, but the best practical realization of an ideal black body is a small hole leading into a cavity, as 
this absorbs 98% of the radiation incident on them. 

GV Abhinav (JEE 2012, AIR 329)

Illustration 3: A solid copper sphere of density ρ, specific heat c and radius r is at temperature T1. It is suspended 
inside a chamber whose walls are at temperature 0K. What is the time required for the temperature of sphere to 
drop to T2? Take the emissivity of the sphere to be equal to e.� (JEE MAIN)

Sol: Heat lost by radiation cause temperature to fall.

Figure 14.8
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The rate of loss of energy due to radiation, 4P AeT= σ . This rate must be equal to dTmc
dt

 Hence, 4dTmc AeT
dt

− = σ

Negative sign is used as temperature decreases with time. In this equation,

34m r
3

 
= π ρ 
 

 and 2A 4 r= π  4dT 3e T
dt cr

σ
∴− =

ρ
 or 

T1 2

4
0 T1

cr dTdt
3e T
ρ

− =
σ∫ ∫ ;	

3 3
2 1

cr 1 1t
9e T T

 ρ  = −
 σ  

9. ABSORPTIVE POWER ‘a’

 “It is defined as the ratio of the radiant energy absorbed by a body in a given time to the total radiant energy 
incident on it in the same interval of time.” 

			 
Energy absorbeda
Energy incident

=

As a perfectly black body absorbs all radiations incident on it, the absorptive power of perfectly black body is 
maximum and unity.

10. SPECTRAL ABSORPTIVE ‘aλ’

This absorptive power ‘a’ refers to radiations of all wavelengths (or the total energy) while the spectral absorptive 
power is the ratio of radiant energy absorbed by a surface to the radiant energy incident on it for a particular 
wavelength λ. It may have different values for different wavelengths for a given surface. Let us take an example, 
suppose a = 0.6, aλ = 0.4 for 1000 Å and aλ = 0.7 for 2000 Å for a given surface. Then it means that this surface 
will absorb only 60% of the total radiant energy incident on it. Similarly it absorbs 40% of the energy incident 
on it corresponding to 1000 Å and 70% corresponding to 2000 Å. The spectral absorptive power aλ is related to 

absorptive power a through the relation 
0

a a d
∞

λ= λ∫

11. EMISSIVE POWER ‘e’

(Don’t confuse it with the emissivity e which is different from it, although both have the same symbols e).

“For a given surface it is defined as the radiant energy emitted per second per unit area of the surface.” It has the 
units of 2 2W / m  or J/s-m , for a black body 4e T= σ

Note: Absorptive power is dimensionless quantity where emissive power is not.

12. SPECTRAL EMISSIVE POWER 

 Similar to the definition of the spectral absorptive power, it is emissive power for a particular wavelength λ. 

Thus, 
0

e e d
∞

λ= λ∫

13. KIRCHHOFF’S LAW 

The ratio of emissive power to absorptive power is the same for all bodies at a given temperature and is equal to 
the emissive power E of a blackbody at that temperature. Thus,
E(body) E(blackbody)
a(body)

=  
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Kirchhoff’s law tells that if a body has high emissive power, it should also have high absorptive power to have the 
ratio e/a same. Similarly, a body having low emissive power should have low absorptive power. Kirchhoff’s law may 
be easily proved by a simple argument as described below.

Consider two bodies A and B of similar geometrical shapes placed in an enclosure. Suppose A is any random body 
and B is a blackbody. In thermal equilibrium, both the bodies will have the same temperature as the temperature 
of the enclosure. Suppose an amount ∆U of radiation falls on the body A in a given time ∆t. As A and B have the 
same geometrical shapes, the radiation falling on the blackbody B is also ∆U. The blackbody absorbs all of this ∆U. 
As the temperature of the blackbody remains constant, it also emits an amount ∆U of radiation in that time. If the 
emissive power of the blackbody is e0, we have 0 0U E  or U kE∆ ∝ ∆ =  � ... (i) 

where k is constant.

Let the absorptive power of A be a. Thus, it absorbs an energy of a ∆U of the radiation falling on it in time ∆t. As 
its temperature remains constant, it must also emit the same energy a ∆U in that time. If the emissive power of the 
body A is e, we have a ∆U=ke� ... (ii)

The same proportionality constant k is used in (i) and (ii) because the two bodies have identical geometrical shapes 
and radiation emitted in the same time ∆t is considered.

From ( i ) and ( ii ),

0

Ea
E

=  or 0
E E
a
=  or E(body) E(blackbody)

a(body)
=

It can be thought like, good absorber is a good emitter because at some point of time, it might have 
stored energy because it is a good absorber. Now as soon as the temperature of the surrounding 
becomes low than that of the body, this energy starts decreasing until the steady state is reached. Hence, 
it must be a good emitter too.

Good absorbers for a particular wavelength are also good emitters of the same wavelength.

Anurag Saraf (JEE 2011, AIR 226)

14. STEFANS-BOLTZMANN LAW

The energy of thermal radiation emitted per unit time by a blackbody of surface area A is given by 4u AT= σ � … (i)

Where is a universal constant known as Stefan Boltzmann constant and T is its temperature on absolute scale. 
The measured value of σ is 5.67×1-8 Wm-2 K-4. Equation (i) itself is called the Stefan-Boltzmann law. Stefan had 
suggested this law based on his experimental data on radiation and Boltzmann derived it from thermo dynamical 
analysis. The law is also quoted as Stefan’s law and the constant σ as Stefan constant.

A body which is not a blackbody, emits less radiation than given by equation (i). It is, however, proportional to 4T . 
The energy emitted by such a body per unit time is written as 4u e AT= σ  � … (ii)

Where e is a constant for the given surface having a value between 0 and 1. This constant is called the emissivity 
of the surface. It is zero for completely reflecting surface and is unity for a blackbody.

Using Kirchhoff’s law	 E(body) a
E(blackbody)

=  � … (i)

Where a is the absorptive power of the body. The emissive power E is proportional to the energy radiated per unit 

time, that is, proportional to u. Using above equations, 
4

4

AT ae
AT
σ

σ
=  or e=a.

MASTERJEE CONCEPTS
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Thus, emissivity and absorptive power have the same value. 

Consider a body of emissivity e kept in thermal equilibrium in a room at temperature 0T .

The energy of radiation absorbed by it per unit time should be equal to the energy emitted by it per unit time. This 
is because the temperature remains constant. Thus, the energy of the radiation absorbed per unit time is 4

0u e AT= σ .

Now suppose the temperature of the body is changed to T but room temperature remains 0T .  The energy of the 
thermal radiation emitted by the body per unit time is 4u e AT .= σ

The energy absorbed per unit time by the body is 4
0 0u e AT .= σ

Thus, the net loss of thermal energy per unit time is 0u u u∆ = −  4 4
0 )e A(T T= −σ �  … (iii)

Illustration 4: A blackbody of surface area 10cm2 is heated to 127℃ and is suspended in a room at temperature 
27℃. Calculate the initial rate of loss of heat from the body to the room. � (JEE MAIN)

Sol: Heat lost by radiation and gained by absorption.

For a blackbody at temperature T, the rate of emission is 4u AT= σ . When it is kept in a room at temperature 0T , 
the rate of absorption is 4

0 0u AT .= σ

The net rate of loss of heat is 4 4
0 0u u A(T T )σ −− =

Here 4 2A 10 10 m−= × T 400K= 0T 300K=

Thus, 8 2 4 4 2 4 4 4
0u u (5.67 10 Wm K )(10 10 m )(400 300 )K− − − −− = × × −  0.99W=

Illustration 5: Energy falling on 1.0 area placed at right angles to a sun beam just outside the earth’s atmosphere 
is 1.35 K joule in one second. Find sun’s surface temperature. Mean distance of earth from sun is 81.50 10 km ,×  
mean distance of sun= 61.39 10 km×  and Stefan’s constant= 8 2 45.67 10 watt m K− − −× . � (JEE MAIN)

Sol: 4
sun earthA T S Aσ = ×

The temperature of the sun is given by

 
2

4 S RT
r

 
=  σ  

2 3 2
10 4

8 2 2 8 2 4

1.35kJ m sec 135 10 watt mS 2.38 10 K
5.67 10 watt m K 5.67 10 watt m K− −

− ×
= = = ×

σ × − × −

 
8

6

R 1.50 10 km 215.8
r 0.695 10 km

×
= =

×
4 10 4 2T (2.38 10 K )(215.8)∴ = × 12 41108 10 K= ×

 3T 5.770 10 K= ×  or T 5770K=

15. NEWTON’S LAW OF COOLING

The rate of cooling of a body is directly proportional to the difference of temperature of the body over its 
surroundings.

If a body at temperature θ1 is placed in surroundings at lower temperature θ2, the rate of cooling is given by 

( )1 2
dQ
dt

∝ θ − θ  where dQ is the quantity of heat lost in time dt.
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Newton’s law of cooling gives ( )1 2
dQ k
dt

= − θ − θ  where k is constant.

If a body of mass m and specific heat s loses a temperature dθ in time dt, then 1 2
dQ dms k( )
dt dt

θ
= = − θ − θ

Illustration 6: A liquid cools from 70℃ to 60℃ in 5 minutes. Calculate the time taken by the liquid to cool from 
60℃ to 50℃, if the temperature of the surrounding is constant at 30℃. � (JEE MAIN)

Sol: Use newton’s law cooling and taking temperature of the body is average of initial and final value.

The average temperature of the liquid in the first case is 1
70 C 60 C 65 C

2
° + °

θ = = °

The average temperature difference from the surrounding is 1 0 65 C 30 C 35 Cθ − θ = ° − ° = ° .

The rate of fall of temperature is 11d 70 C 60 C 2 Cmin
dt 5mins

−θ ° − °
− = = ° .

From Newton’s law of cooling, 12 Cmin bA(35 C)−° = ° 	 Or	  2bA
35min

=  � … (i)

In the second case, the average temperature of the liquid is 2
60 C 50 C 55 C

2
° + °

θ = = °

So that,	 2 0 55 C 30 C 25 Cθ − θ = ° − ° = °

If it takes a time t to cool down from 60℃ to 50℃, the rate of fall in temperature is 2d 60 C 50 C 10 C
dt t t
θ ° − ° °

− = = .

From Newton’s law of cooling and (i), 10 C 2 25 C
t 35min
°

= × ° 	 Or	  t 7min.=

Illustration 7: At midnight, with the temperature inside your house at 70℉ and the temperature outside at 20℉, 
your furnace breaks down. Two hours later, the temperature in your house has fallen to 50℉. Assume that the 
outside temperature remains constant at 20℉. At what time will the inside temperature of your house reach 40℉?
� (JEE ADVANCED)

Sol: Newton’s law of cooling, follow logarithm curve in cooling.

The boundary value problem that models this situation is

	 dT k(20 T)
dt

= − 		
T(0) 70
T(2) 50

=
=

Where time 0 is midnight. The solution of this boundary value problem is
t 2

3T 20 50
5
 

= +  
 

This is obtained by solving above differential equation. 

Note (for the purpose of a reasonableness check) that this formula given us
0 2

3T(0) 20 50 70.
5
 

= + = 
 

 and 
2 2

3T(2) 20 50 50.
5
 

= + = 
 

To find when the temperature in the house will reach 40℉, we must solve equation 
t 2

320 50 40
5
 

+ = 
 

The solution of this equation is ln(2 5)
t 2 3.6

ln(3 5)
 

= ≈ 
 

Thus, the temperature in the house will reach 40℉ a little after 3.30 a.m.
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Newton’s law of cooling can also be thought in the context of Stefan-Boltzmann law by considering 
the temperature difference between the body and the surroundings very close to zero, i.e. it can be 
considered as a special case of the latter. 

Vijay Senapathi (JEE 2011, AIR 71)

16. WIEN’S DISPLACEMENT LAW

At ordinary temperatures (below about 600℃), the thermal radiation emitted by bodies is invisible, most of them 
lie in wavelengths longer than visible light. The figure shows how the energy of a black body radiation varies 
with temperature and wavelength. As the temperature of the black body increases, two different behaviors are 
observed. The first effect is that the peak of the distribution shifts to shorter wavelengths. This shift is found to 
satisfy the following relationship called Wien’s displacement law.

λmaxT=b . Here b is a constant called Wien’s constant. The value of this constant in SI unit is 32.898 10−×  m-K. Thus, 
max 1/ Tλ α

Here λmax is the wavelength corresponding to the maximum spectral emissive power eλ.

The second effect is that the total amount of energy the black body emits per unit area per unit time (=σT4) 
increases with fourth power of absolute temperature T.

This is also known as emissive power. We know

0
e e d

∞
λ= λ =∫ 4Area under graph, e Vs Tλ λ = σ

4Area T∝  4
2 1A (2) 16A= =

Thus, if the temperature of the black body is made two fold, maxλ  remains half while the area becomes 16 times.

Have you ever wondered how do scientists calculate the temperature of sun and other stars? It is through 
this law.

Ankit Rathore (JEE Advanced 2013, AIR 158)

Illustration 8: The light from the sun is found to have a maximum intensity near the wavelength of 470 nm. 
Assuming that the surface of the sun emits as a blackbody, calculate the temperature of the surface of the sun.�
�  (JEE MAIN)

Sol: Formula of Wien’s displacement law.

For a blackbody, λm T=0.288 cmK.	 Thus, 0.288cmK
T 6130K

470nm
= =

Illustration 9: What is the wavelength of the brightest part of the light from our next closest star, Proxima Centauri? 
Proxima Centauri is a red dwarf star about 4.2 light years away from us with an average surface temperature of 
3,042 Kelvin? �  (JEE MAIN)

Sol: max T bλ =

MASTERJEE CONCEPTS

MASTERJEE CONCEPTS
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We don’t really need the distance to solve this. All we need is the surface temperature to plug into our Wien’s law 
equation

Wavelength maxλ  in meters = 0.0029meters K
3.042K

− which is 0.000000953 meters. 

We can convert this to nanometers and we get a peak wavelength of 953 nm.

Illustration 10: Two bodies A and B have thermal emissivity of 0.1 and 0.81 respectively. The outer surface areas 
of the two bodies are identical. These two bodies emit total radiative power at the same rate. The wavelength Bλ  
corresponding to the maximum spectral radiancy in the radiation from B is 1.0 µm larger than the wavelength Aλ  
corresponding to the maximum spectral radiancy in the radiation from A. If the temperature of body A is 5802 K, 
find (a) temperature of (B) and (b) Bλ . � (JEE MAIN)

e�

A1

�m

T

�

e�

�
2T

�m

2

A2

Figure 14.9

Sol: By equating their emissive power, ratio of temperatures (a) could be calculated.
4

A A A A(a) Power radiated from A P E A e T A= = = σ
4

B A B BPower radiated from B  P E A e T A= = = σ

Where A is surface area of both the bodies as 1 2P P= , 4 4
A A B Be T e T=

4
4 4 B B
A B

A A

T T0.01 1 10.01T 0.81T ;
T 0.81 81 T 3
       

∴ = ∴ = = =       
        

	 B A
1 1or T T 5802 1934K
3 3

= × = × =  

(b) mTλ  = constant as per Wien’s law

A A B BT T∴λ = λ  or B A

A B

T
3

T
λ

= =
λ

 ; B
A 3

λ
λ = ;	 B B

B A B
2

1 m, 1 m
3 3
λ λ

λ − λ = µ λ − = = µ

B
1 3 1.5 m

2
×

∴λ = = µ

17. SOLAR CONSTANT AND TEMPERATURE OF SUN

Solar constant is defined as the amount of radiation received from the sun at the earth per minute per cm2 of a 
surface placed at right angle to the solar radiation at a mean distance of the earth from the sun. Assuming that the 
absorption of solar radiation by the atmosphere near the earth is negligible, the value of solar constant, S, is equal 
to 1.94 2 1cal.cm min .− −

The temperature of the sun, T, is given as follows 
2

4 S RT
r

 
=  σ  

Where S is solar constant, σ is Stefan’s constant, R is mean distance of earth from sun and r is radius of sun.
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PROBLEM-SOLVING TACTICS
 1.	 Problems of conduction can be easily solved by making analogy with current electricity (Problems like 

calculation of net conductance of series and parallel connection. Actually, the way in which steady state is 
achieved in heat transfer and current electricity is very similar. At steady state considering a cylindrical rod, 
potential at each point becomes constant in current electricity and so does temperature in heat transfer. 
The amount of charge transferred per unit time is related in same way to potential as that of heat energy 
transferred relates to temperature difference and the constant of proportionality have similar properties.)

 2.	 Most of the problems involve concepts of integration, so be careful with infinitesimal elements. Basically, try 
to be physically involved in the problem and understand it event by event so that you learn more. Toughness 
in most of the questions is involved only in its mathematical analysis.

 3.	 Problems from radiation and law of cooling also generally involve integration which becomes necessary to 
do at times. However an approximate approach is also available in case of law of cooling useful in solving 
problems without involving integration.

 4.	 Laws must be carefully known because many questions directly focus on understanding of laws rather than 
involving calculations (Example - If temperature of a body is doubled, find the ratio of maximum wavelength 
for final and initial state.)

 5.	 Noting down the known and asked quantities and thinking of a link between them will always prove to be a 
good way.

 6.	 Questions from this topic usually come in a hybrid involving concepts of other topics like thermodynamics, 
gaseous state and calorimetry. So one must be strong in their concepts too!!

FORMULAE SHEET

S. No. Term 			   Descriptions

1. Conduction Due to vibration and collision of medium particles.

2. Steady state In this state heat absorption stops and temperature gradient throughout the rod becomes 

constant i.e. dT constant.
dx

=  

3. Before steady state Temp of rod at any point changes.

Note: If specific heat of any substance is zero, it can be considered always to be in steady 
state.

4. Ohm’s law for thermal 
Conduction in Steady 
state

Let the two ends of rod of length L is maintained 

At temp ( )1 2 1 2T  and T T T>

Thermal Current 	 1 2

Th

T TdQ .
dT R

−
= Where Th

LR
KA

=  

(L is length of material, K is coefficient of thermal conductivity, A is area of cross- section)

5. Differential form of 
Ohm’s law

dQ dTKA
dT dx

=

dT
dx

 = Temperature gradient 

6. Convection Heat transfer due to movement of medium particles.

L

T1 T2

T T-dT

dx
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7. Radiation Every body radiates electromagnetic radiation of all possible wavelength at all temp>0 K

8. Stefan’s Law Rate of heat emitted by a body at temp T K from per unit area 4 2E T J / sec/ m= σ

Radiation power 4dQ P AT watt
dT

= = σ

If body is placed in a surrounding of temperature Ts 
4 4

s
dQ A(T T )
dT

= σ − valid only for 
black body

heat from general bodyEmissivity or emmisive power e
heat from black body

=

If temp of body falls by dT in time dt 

( )4 4
s

dT eA T T
dt ms

σ
= − 	(dT/dt=Rate of cooling)

9. Newton’s law of 
cooling

If temp difference of body with surrounding is small i.e.

sT T= 	 Then, ( )3
s s

dT 4eA T T T
dt ms

σ
= − 	 So	 ( )s

dT T T
dt

∝ −

10. Average form of 
Newton’s law of 
cooling

If a body cools from 1 2T  to T  in time tδ

1 2 1 2
S

T T T TK T
t mS 2

 − +
= −  δ  

(Used generally in objective questions) S
dT K (T T )
dt mS

= −

(For better results use this generally in subjective )

11. Wien’s black body 
radiation

At every temperature (>0K) a body radiates energy radiations of all wavelengths. 
According to Wien’s displacement law if the wavelength 
corresponding to maximum energy is mλ  then mλ  T=b 

where b= is a constant( Wien’s Constant )

T=Temperature of body

I

T
3

T
2

T
2

T
3

T
2

T
1

> >

�m
3

�m
2

�m
3 �

Sol: Recall the formula of heat transfer.

(a) Thermal resistance 

2

1 1R
kA k( r )

= =
π

 or 
2 2

2R 15.9K / W
(401)( )(10 )−

= =
π

(b) Thermal current, T 100H
R R 15.9
∆ ∆θ

= = =  or

H 6.3W=

(c) Temperature gradient

0 100 50K / m 50 C / m
2
−

= = − = − °

JEE Main/Boards

Example 1: A copper rod 2 m long has a circular 
cross section of radius 1 cm. One end is kept at 100℃ 
and other at 0℃, and the surface is insulated so that 
negligible heat is lost through the surface. Find

(a) The thermal resistance of bar

(b) The thermal current H 

(c) The temperature gradient dT
dx

(d) The temperature 25 cm from hot end. Thermal 
conductivity of copper is 401 W/m-K

Solved Examples


