
11. W A V E S  O N  A  S T R I N G

1. INTRODUCTION

We come across numerous phenomena in nature based on the properties of wave motion. This chapter describes 
the equations and properties of wave motion. The study of waves on a string forms the basis of understanding the 
phenomena associated with sound waves and other mechanical and non-mechanical waves. Wave transmits both 
energy and momentum from one region to other. Mechanical waves require a medium to travel, whereas non-
mechanical waves don’t. Wave on a string is a mechanical wave but the properties and concepts studied here will 
be useful in studying non-mechanical waves as well.

2. WAVE MOTION

A wave is a disturbance or variation traveling through space and matter. It is the undulating movement of energy 
from one point to another. The medium through which the wave passes may experience some oscillations, but 
the particles in the medium do not travel with the wave. The wave equation, which is a differential equation, 
expresses the properties of motion in waves. Waves come in all shapes and sizes, and accordingly, the mathematical 
expression of the wave equation also varies.

2.1 Types of Waves 
Waves can, broadly, be classified into two types:

(a)	 Mechanical waves: Waves that require a medium/matter for their propagation are called mechanical waves. 
These waves are generated due a disturbance in the medium (particles in the matter) and while the wave 
travels through the medium, the movement of the medium (particles) is minimal. Therefore mechanical waves 
propagate only energy, not matter. Both the wave and the energy propagate in the same direction. All waves 
(mechanical or electromagnetic) have a certain energy. Only a medium possessing elasticity and inertia can 
propagate a mechanical wave.

(b)	 Non-mechanical waves/Electromagnetic waves: Waves that do not require a medium/matter for their 
propagation are called electromagnetic waves. These waves are formed by the coupling of electric and 
magnetic fields due to acceleration of electric charge and can travel through vacuum. Depending on the 
wavelength of the electromagnetic wave, they are classified as radio waves, microwaves, infrared radiation, 
visible light, ultraviolet radiation, X-rays, and gamma rays.

3. WAVE PULSE ON A STRING

A wave pulse is a single, sudden, and short-duration disturbance that moves from point A to point B through a 
medium, e.g., a string. We know that waves originate when a disturbance at the source point moves through one 
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particle to its adjacent particles from one end of the medium to the other. Now, when a disturbance-producing 
source active for a short time, a wave pulse passes through the medium. Conversely, when the source remains 
active for an extended time, creating a series of motions, it results in a wave train or a wave packet. Thus, a wave 
train is a group of waves traveling in the same direction.

For example, if the person in figure decides to move his hand up and down 10 times and then stop, a wave train 
consisting of 10 loops will move on the string.

4. EQUATION OF A TRAVELING WAVE

In the figure, let us assume that the man starts moving his hand at t = 0 and finished his job at  
t = ∆t. The vertical displacement of the left end of the string, denoted as y, is a function of time. It is zero for 
t 0and t> t< ∆ . This function can be represented by f (t). Let us take the left end of the string as the source of the 
wave and take the X axis along the string toward right. The function f (t) represents the displacement y of the 
particle at x=0 as a function of time:	 y(x=0, t) =f (t). 

The disturbance on the string travels towards right at a constant speed. 
Thus, the displacement produced at the left end at time t reaches the point 

x at time xt
v

 
+  
 

 Similarly, the displacement of the particle at point x at 

time t was generated at the left end at the time t-x/. But the displacement 
of the left end at time t-x/v is f (t-x/v). Hence, y (x, t) = y(x=0, t-x/v) =  
f(t-x/v). 

The displacement of the particle at x at time t, i.e., y(x, t) is generally 
abbreviated as y and the wave equation is written as y = f (t-x/v).�  … (i)

Equation (i) represents a wave traveling in the positive direction x at a constant speed. Such a wave is called a 
traveling wave or a progressive wave. The function f is dependent on the movement of the source, and therefore, 
arbitrary. The time t and the position x must be represented in the wave equation in the form t-x/ only. For example,

(t x/ v)y Asin
T

−
=  , and 

(t x/v)
Ty Ae

−
−

=  are valid wave equations.

Both these equations represent the movement of the wave in the positive direction x at constant speed v. 

In contrast, the equation 
2 2 2

2

(x v t )y Asin
L
−

=  does not represent the movement of the wave in the direction x at 

a constant speed . If a wave travels in the negative direction at a speed , its general equation may be written as 

y = f(t + x/v) � ... (ii)

Equation (i) can also be written as 
v t x

y f or y g(x v t),
v

 −
= = − 

 
�  ....(iii) 

where g is some other function having the following meaning: Let us assume that t = 0 in the wave 
equation. Then, we get the displacement of various particle at t = 0, i.e., y (x,t 0) g(x)= = = . Thus, the function 
g(x) represents the shape of the string at t = 0. Assuming that the displacement of the different particles at 
t = 0 is represented by the function g(x), the displacement of the particle at x at time t will be  
y = g(x - vt). Similarly, if the wave is traveling along the negative direction x and the displacement of a different 
particle at t = 0 is g(x), the displacement of the particle at x at time t will be y = g(x + t)� …(iv)

Illustration 1: The wave equation of a wave propagating on a stretched string along its length taken as the positive 

x axis is given as 
2

0
t xy y exp
T

   = − −  λ  
where y0 = 4 mm, T = 1.0 s and λ = 4 cm.

(a)

(b)

(  )c

Figure 11.1
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(a) Find the velocity of the wave. 

(b) Find the function f(t) giving the displacement of the particle at x = 0. 

(c) Find the function g(x) giving the shape of the string at t = 0.

(d) Plot the shape g(x) of the sting at t = 0. 

(e) Plot the shape of the string at t = 5s.� (JEE MAIN) 

Sol: The wave moves having natural frequency of ν  and wavelength λ has velocity V = νλ . 

As the frequency is 1
T

ν =  the velocity of the wave is then V
T
λ

= .

(a) The wave equation can be written as 

21 xt
2 /TT

0y y e
 

− − λ =

On comparison with the general equation y = f (t – x/), we can infer that, 14cm
4cms

T 1.0s
−λ

υ = = =

(b) Putting x =0 in the given equation 
2(t/T)

0f(t) y e −= � … (i)

(c) Putting t = 0 in the given equation 
2(x/ )

0g(t) y e − λ= � … (ii)

(d)

		  x=0

x=0 x=0 cm

(e)

4.1 Sine Wave Traveling on a String 
Consider the scenario where the person in the �

y

a

Wave

length

c
e

Hand moves

up and down

Fixed

point

x

b d Directionamplitude

The rope vibrates at rights angles

to the direction of the wave.

Figure 11.3

Fig. 11.3 keeps moving his hand up and down 
continuously. As energy is being constantly supplied 
by the person, the wave generated at the source 
keeps oscillating the any part of the string through 
which it passes. Thus energy passes from the left (the 
source) to the right continuously till the person gets 
tired. The nature of the vibration of any particle in the 
string is similar to that of the left end (the source), 
the only difference is that there is an interval of  
x/ between two motions.

When the person in the Fig 11.3 oscillates the  
left end x = 0 in a simple harmonic motion, the 
equation of motion of this end may be written as  
f(t) = Asin ω t �  … (i)

where A is the amplitude and ω is the angular 
frequency. The time period of oscillation is given 
by T=2π/ω and the frequency of oscillation is  

Figure 11.2
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v = 1/T = ω /2π. The wave produced by such an oscillation source is called a sine wave or sinusoidal wave.

The displacement of the particle at x at time t will be

y f(t x/ ) or y Asinw(t x/ )= − υ = − υ � … (ii)

The velocity of the particle at x at time t is given by		 y A cos(t x/ )
t

∂
= ω − υ

∂
		�  … (iii)

•• While differentiating with respect to t, we should treat x as constant – it is the same particle whose 

displacement should be considered as a function of time. Therefore, the symbol 
t
∂
∂

is used in place 

of d
dt

.

•• In the event that the waves travel along negative x direction, the direction of Vp will change.

Particle velocity is the same as wave velocity. The two are totally different. While the wave moves 
on the string at a constant velocity along the x axis, the particle moves up and down with velocity 

y
t
∂
∂

, which changes with x and t.

WP
QR

x x + vT x + 2vT x + 3vT x + 4vT

t

t+T/4

t+T/2

t+3T/4

t+T

Figure 11.4

Above figure shows change in shape of string with time

Vaibhav Krishan (JEE 2009 AIR 22)

4.1.1 Some Important Terms

(a)	 Amplitude: In a wave, the crest represents highest point the wave rises to and equilibrium represents the 
default position from which a wave arises. Therefore, the distance between the crest and the equilibrium point 
in a single wave cycle is referred to as the equilibrium.

MASTERJEE CONCEPTS
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(b)	 Wavelength: The distance between any two points with the same phase, such as between crests or troughs 
is referred to as the wavelength λ. It is generally measured in meters.

(c)	 Wave Number: Wave number is a measurement of a certain number of wavelengths for some given distance. 
In a sense, the wave number is like a spatial analogue of frequency. Typically, wave number is taken to be 2π 
times the number of wavelengths per unit of distance, which is the number of radians for each unit of distance 

as well. 2k π
=

λ
 

(d)	 Time Period: A period T is the time needed for one complete cycle of vibration of a wave to pass a given 
point.

(e)	 Frequency: Frequency describes the number of waves that pass a fixed place in a given amount of time and 

is typically measured in hertz. These are related by f = 1
T

 

(f)	 Angular Frequency: The angular frequency ω gives the frequency with which phase changes. It is expressed 

in radians per second. It is related to the frequency or period by 	 22 f
T
π

ω= π =  � ….(i)

Illustration 2: Consider the wave y = (5 mm) sin [(1 cm -1) x – (60s -1) t]. Find (a) the amplitude, (b) the wave number, 
(c) the wavelength, (d) the frequency, (e) the time period and (f) the wave velocity.	� (JEE MAIN)

Sol: Comparing the given equation with y A sin (kx t)= − ω  we get the values of wave number k, amplitude A and 
angular frequency. The frequency ω =2πυ=2π/T. The velocity of wave is v = νλ  and the wave number of wave is 

2K π
=
λ

.

On comparing the given equation with standard equation of a traveling wave, we find

(a) Amplitude 	 A = 5mm,	(b) wave number k = 1 cm-1, 	 (c) wavelength 	 2 2 cm
k
π

λ= = π

(d) Frequency 	 60 30Hz Hz
2 2
ω

ν= = =
π π π

		  (e) Time period 1T s
30
π

= =
ν

(f) Wave velocity v = νλ  = 60 cms-1 

4.2 Velocity of Waves on a String
The wave speed depends on the properties of the medium. For a string, the speed of a transverse wave traveling 
along a vibrating string (v) is directly proportional to the square root of the tension of the string (T) over the linear 
mass density (μ): 

Tv =
µ ’ where the linear density μ is the mass per unit length of the string � ….(i)

4.3 Phase Difference
The amount by which two cyclical motions of the same frequency, 
are out of step with each other. It can be measured in degrees 
from 0° to 360°, radians from 0 to 2π, or seconds of time.. If two 
oscillators have the same frequency and no phase difference, they 
are said to be in phase. Conversely, if they have the same frequency 
and different phases, then they have a phase difference and they 
are said to be out of phase with each other. If the phase difference 
is 180° (π radians), then the two oscillators are said to be in anti-
phase.

Crest

Trough

Cycle

Figure 11.5
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4.4 Crest and Trough
In a wave, the crest represents highest point the wave rises within a cycle. A trough is the opposite of a crest, hence 
the minimum or lowest point in a cycle.

5. ALTERNATIVE FORMS OF WAVE EQUATION

As seen earlier, the wave equation of a wave traveling in x direction is y Asin (t x / ),= ω − υ

This can also be written in several other forms such as	 y Asin( t kx),= ω − �  … (i)

	

t xy Asin2
T

 
= π − λ 

	�   … (ii)

	 y Asin[k (vt x)]= − �  … (iii)

Please bear in mind our choice of t = 0 in writing equation (v) from which the wave equation has been derived. Also, 
the point at which the left end x = 0 crosses its mean position y = 0 and goes up has been chosen as the origin of 
time. For a general choice of the origin of time, a phase constant will have to be added to give the equation

	 y=A sin [ω (t-x/v) + φ]� … (iv)

The constant ϕ will be π/2 If we choose t = 0 at an instant when the left end reaches its extreme position y=A, then 
the constant ϕ will be π/2. The equation will then be

	 y Acos (t x / v),= ω − 	� … (v)

If on the other hand, t = 0 is taken at the point when the left end is crossing the mean position from an upward to 
downward direction, ϕ will be π and the equation will be 

	 y xAsin t
v

 
= ω − 

 
 or y = A sin (kx - ωt)�  … (vi)

Both sin(kx – ωt) and sin(ωt – kx) differ just by a phase of “π”. If a particle at t = 0, x = 0 in its mean 
position is moving upwards (in first wave), then the same particle would be in mean position and the 
particle would be moving down!

B Rajiv Reddy (JEE 2012, AIR 11)

Illustration 3: Fig 11.6 shows a string of linear mass density 1.0 Kg m-1 and a length of 50 cm. Find the time taken 
by a wave pulse to travel through the length of the string. Take g = 10 ms-2. � (JEE MAIN)

Sol: The wave velocity on stretched string under tension F = mg is given by 

Fv =
µ

 where µ is mass per unit length of the string.

The tension in the string is F = mg = 10N. Given that the mass per unit 

length is μ = 1.0 Kg m-1, the wave velocity is, 1
1

10NFv 10ms
0.1kgm

−
−

= = =
µ

. 

Therefore, to travel through 50 cm, the wave pulse will take 0.05 s.

1 kg

Figure 11.6

MASTERJEE CONCEPTS
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Illustration 4: A rubber tube that is 12.0 m long and that has a total mass of 0.9 kg is fastened to 
fixed base. At the other end of the tube, a cord is attached that passes over a pulley and supports 
an object with a mass of 5.0 kg. If the tube is struck at one end, find the time required for the 
transverse pulse to reach the other end. (g = 9.8 m/s2)� (JEE MAIN)

Sol:  For the string under the tension T =mg where m is mass of the block. When the rod is struck 

at lower rod, the wave thus originated travels at speed Tv =
µ

 where µ is the mass per unit length 
of the string.

Tension in the rubber tube AB, T = mg or T = (5.0) (9.8) = 49 N

Mass per unit length of rubber tube,	 0.9 0.075kg / m
12

µ= =

∴ 	 Speed of wave on the tube, T 49v 25.56m / s
0.075

= = =
µ

∴	 The required time is 	 AB 12t 0.47s
v 25.56

= = = .

Illustration 5: Prove that the equation y = a sin (ωt – kx) satisfies the wave equation
2 2

2
2 2

y y

t x

∂ ∂
=ν

∂ ∂
and find speed 

of the wave and the direction in which it is traveling.�  (JEE ADVANCED)

Sol: To prove the above relation, we need to take the ratio of second order time derivative of wave equation and 
second order displacement derivative of wave equation.

2
2

2

y
asin( t kx)

t

∂
=−ω ω −

∂
 and  

2
2

2

y
k asin( t kx)

x

∂
= ω −

∂
. We can write these two equation as,

2 22

2 2 2

y y
.

t k x

∂ ∂ω
=

∂ ∂
. Comparing this with, 

2 2
2

2 2

y y

t x

∂ ∂
=ν

∂ ∂

We get, wave speed 
k
ω

ν=

The negative sign between ωt and kx implies that wave is traveling along positive direction.

Illustration 6: The Fig 11.8 shows a snapshot of a sinusoidal traveling wave which 
was taken at t = 0.3 s. The wavelength is 7.5 cm and the amplitude is 2 cm. Assuming 
the crest was at x = 0 at t = 0, write the equation of traveling wave.�
� (JEE ADVANCED)

Sol: The equation of travelling wave is y Asin(kx t)= − ω . The wave number is given 

by 2k π
=

λ
and angular frequency of wave is ω=vk.

Given, A = 2 cm, λ = 7.5 cm ∴	 12k 0.84cm−π
= =

λ

The wave has traveled a distance of 1.2 cm in 0.3 s. Hence, speed of the wave 1.2 4cm / s
0.3

ν= =

∴ Angular frequency ω = (v) (k) = 3.36 rad/s

Since the wave is traveling along the positive direction x, and crest (maximum displacement) is at x = 0 at t = 0, we 
can write the wave equation as

Figure 11.7

Figure 11.8

B

A

Y

x

2 cm
t=0.3s

}

1.2 cm
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Y(x, t) = A cos (kx - ωt) 	 or	 y(x, t) = A cos (ωt - kx) 	 as cos(-θ) = cos θ

Therefore, the equation of the traveling wave is

y(x, t) = (2 cm) cos [(0.84 cm-1)x – (3.36 rad/s)t]

Illustration 7: The mass and length of a rope hanging from the ceiling are 0.1 kg and 2.45 m, 
respectively. The rope has a uniform width. 

(a) Determine the speed of transverse wave in the rope at a point 0.5 m away from the lower 
end.

(b) Also, calculate the time taken by the wave to travel the full length of the rope.�
� (JEE ADVANCED)

Sol: As the rope hangs under it’s own weight, the tension in string at a distance x from 

hanging end is xT mg=


 where   is the length of the string and m is mass of the string. 

When a transverse waves are generated to travel along length of rope, they travel with speed 

Tv =
µ

where µ is mass per unit length of string. 

The tension in the string will be different at different points owing to the mass of the string and the fact that it is 
suspended vertically from a ceiling.. The tension at a point which is at a distance x free end will be due to the weight 

of the string below it. Given that m is the mass of string of length l, the mass of length x of the string will be x m
 
 
 

 0.1 x 0.5 T0.04kg / m; Tension mg mg 0.20N v 2.236m / s
2.45 2.45

   
µ = = = = = ⇒ = =    µ   

(b) From the above equation, we see that velocity of the wave is different at different points. Therefore, if at point 

x the wave travels a distance dx in time dt, then dx dxdt
v gx

= =

1 1

0 0

dxdt
gx

∴ =∫ ∫ ;	 2.45t 2 2 1.0s
g 9.8

= = =


Illustration 8: The mass and length of a rope hanging vertically from a rigid support are 12 m and 6 kg, respectively. 
A stone of mass 2 kg is attached to the free end of the rope. The rope has a uniform width. If a transverse pulse 
of wavelength 0.06 m is produced at the lower end of the rope, what will be the wavelength of the pulse when it 
reaches the top of the rope? �  (JEE ADVANCED)

Sol: The wave velocity will be FV = νλ =
µ

 where F is the tension in rope at a point and µ is mass 

per unit length of the string. As F is varying along the length of the rope so the velocity will vary 
along the length of the rope. As source frequency is constant λ will vary.

Owing to the fact that a stone is attached to the lower end of the rope, the tension in the rope will 
be different at the different points. The tension at the lower end will be 20 N and at the upper end 
it will be 80 N.

We have, 	 V = νλ  	 or, 	 F        or,F .λ = ν µ
λ

= ν
µ

x

l

Figure 11.9

Figure 11.10

6 kg

2 kg
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The frequency of the wave pulse is affected only by the frequency of the source, and hence the wave pulse 
frequency will be the same across the length of the rope as it depends only on the frequency of the source. As the 
rope has a uniform width, the mass per unit length will also be consistent across the length of the rope. 

Thus, by (i) F
λ

is constant.

Hence,	  
1

(2kg)g (8kg)g
0.06m

=
λ

	 where λ1 is the wavelength at the top of the rope. This gives λ1 = 0.12m

6. POWER TRANSMITTED ALONG THE STRING BY A SINE WAVE

The direction of a traveling wave on a string and the direction of the 
energy transmitted by it is the same. Consider a sine wave traveling along 
a stretched string in the direction x. The equation for the displacement in 
the direction y is y = A sin ω (t -x/v)�  … (i)

The Fig 11.11 the portion of the string to the left of the point x exerts a 
force F on the portion of the string to the right of the point x at time t. The 
direction of this force is along the tangent to the string at position x. The 

component of the force along the axis y is y
yF Fsin Ftan F
x
∂

= − θ≈− θ=−
∂

The power delivered by the force F to the string on the right of position x is, therefore, y yP F
x t

 ∂ ∂
= − ∂ ∂ 

By (i), it is	
2 2

2A F
F Acos ( t x / v) [ Acos (t x / v)] cos (t x / v)

v v
   ωω

− − ω − ω ω − = ω −  
  

This is the rate at which energy is being transferred from left portion of the string to the right portion across the 
point at x. The cos2 term oscillates between 0 and 1 during cycle and its average value is 1/2, therefore, the average 
power transmitted across any point is

2 2
2 2 2

av
1 A FP 2 cA v
2 v
ω

= = π µ 				�     … (ii)

The power passing along the length of the string is proportional to the square of the amplitude and square of the 
frequency of the wave.

Illustration 9: For a sine wave with an amplitude of 2.0 mm, the average power transmitted through a given point 
on a string is 0.20 W. What will be the power that will be transmitted through this point were the amplitude to be 
increased to 3.0 mm?.�  (JEE ADVANCED)

Sol: The power transmitted by the sine wave is 2P A∝  where A is the amplitude of the wave.

Other things being equal, the power transmitted is proportional to the square of the amplitude.

Thus,	
2

2 2 2
22

1 1

P A P 9or 2.25 P 2.25 0.20 W 0.45 W
P 0.20W 4A

= = = = × =

Figure 11.11

Y

F

XX
�
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7. ENERGY IN WAVE MOTION

Every wave motion involves transfer of energy and momentum.. Waves are produced when force is applied to a 
portion of the wave medium. When force is applied to a portion of the wave medium, the disturbance thus caused 
in that portion of the medium generates a wave that exerts a force on the adjoining portions. This, in turn, disturbs 
those portions, thereby propagating the wave further to the adjacent portions. In this way, a wave can transport 
energy from one region of space to other.

The energy in wave motion is manifested in three forms, namely, energy density (u), power (P), and intensity (l). We 
shall discuss them one by one.

7.1 Energy Density (µ )
The energy density of a progressive wave is the total mechanical energy (kinetic + potential) per unit volume of 
the medium through which the wave is propagated. This can be illustrated through an example. Let us imagine a 
string attached to a tuning fork. When the tuning fork is struck, the vibration transmits energy to the segment of 
the string attached to it, or in other words, as the vibrating fork moves through its equilibrium position, it stretches 
a segment of the string, increasing its potential energy, while also imparting transverse speed to the segment, 
increasing its kinetic energy. Thus, as the wave moves along the string, energy is transferred to the other segments 
of the string.

7.2 Kinetic Energy Per Unit Volume
The kinetic energy of a unit volume of the string can be calculated from the wave function. Mass of unit volume is 
the density ρ. Its displacement from equilibrium is the wave function

y = A sin (k x – ω t).

Its speed is dy
dt

, where x is considered to be fixed. The kinetic energy of unit volume ΔK is then

 
2

2
y

dy1 1K ( m)v
2 2 dt

 
∆ = ∆ = ρ 

 
;	 Using y = A sin (k x – w t), we obtain dy w Acos(kx wt)

dt
= − −

So the kinetic energy per unit volume is 2 2 2 21K A cos (kx t)
2

∆ = ρ ω −ω �  … (i)

7.3 Potential Energy Per Unit Volume
The work done by the vibrating fork by stretching the segment of the string is the potential energy of the segment. 

It depends on the slope dy
dx

. The potential energy per unit volume of the string is related to the slope and tension 

T and is given by (for small slopes)
2

2 dy1U p
2 dx

 
∆ = ν  

 
�  … (ii) 

where 		   v = wave speed = 
k
ω

Using dy
dx

= k A cos (k x – ω t), we obtain for the potential energy 22 21U A cos (kx t)
2

∆ = ρω −ω  � … (iii) 

which is the same as the kinetic energy. The total energy per unit volume is 2 2 2E K U A cos (kx t)∆ =∆ +∆ =ρω −ω � … (iv)

The total energy per unit volume (ΔE) varies with time. As the average value of 2cos (kx t)−ω  at any point is 1
2

, the 

average energy per unit volume (also called the energy density μ) is 2 21 A
2
ρωµ =  � … (v)
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In the case of a spring with mass ρ attached to it and 
oscillating in a simple harmonic wave, the energy 
density is the same as in equation (v). However, its 
potential energy is maximum when the displacement is 
maximum. In the case of a string segment, it is the slope 
of the spring that determines the potential energy and it 
is maximum when the slope is maximum, which is at the 
equilibrium position of the segment – the same position 
for which the kinetic energy is maximum. 

In the Fig 11.12, the kinetic energy and potential energy 
both are zero at point A, whereas at point B, both the kinetic energy and potential energy are maximum.

Aman Gour (JEE 2012, AIR 230)

7.4 Intensity (I)
The intensity of a wave is defined as the flow of energy per unit area of a cross-section of the string in unit time. 

Thus, 2 2power P 1I or I A V
area of cross section s 2

= = = ρω
−

This is, however, the average intensity transmitted through the string. The instantaneous intensity 
2 2 2 2 2 2A v sin (kx t) or A v cos (kx t)ρω −ω ρω −ω  depends on x and t.

•• The relation for power and intensity discussed above are for transverse waves on a string. However, 
they hold good for other waves also.

•• Intensity due to a point source: Assuming that waves are propagated uniformly in all directions, the 
energy at a distance r from a point source is distributed uniformly on a spherical surface of radius 
r and area S= 4πr2. If P is the power per unit area that is incident perpendicular to the direction of 

propagation, then intensity 
2

PI 
4 r

=
π

	 or 	 I ∝
2

P
r

Since amplitude A ∝ √I, a spherical harmonic wave emanating from a point source can therefore, 

be written as		  Ay(r,t) sin (kr t)
r

= − ω  

T P Varun (JEE 2012, AIR 64)

Illustration 10: An oscillator attached to stretched string with a diameter of 4 mm transmits transverse waves 
through the length of the string. The amplitude and frequency of the oscillation are 10−4 m and 10 Hz, respectively. 
Tension in the string is 100 N, mass density of wire is 4.2 × 103 kg/m3. 

Find: (a) The wave equation along the string

(b) The energy per unit volume of the wave

A

B
x

y

Figure 11.12

MASTERJEE CONCEPTS
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(c) The average energy flow per unit time across any section of the string 

(d) The power required to drive the oscillator.� (JEE ADVANCED)

Sol: The wave equation of string is y Asin(kx t)= − ω  where the wave number 2k π
=

λ
, the angular frequency

22
T
π

ω = πν =  . λ is the wavelength and T is the time period of wave. As the string is under tension of 100 N, the 

wave velocity on string is given by TV = νλ =
µ

. Use the formula for wave energy in the string .

(a) Speed of transverse wave on the string is, TV
S

=
ρ

 	 (∵ µ = ρS)

Substituting the values, we have

3 3 2
 43.100 rad radv 2 f 20 62.83

s s
(4.2 10 ) (4.0 10 )

4

53 m / s; 
−

= ω= π = π =
 π

 

=
× ×

Wave number is 1k 1.44 m
V

−ω
= =  

∴ The wave equation is 4 1 rady (x,t) Asin(kx t) (10 m)sin (1.44m )x 62.83 t
s

− −  
= − ω = −  

  
 

(b) Energy per unit volume of the string, u = energy density = 2 21 A
2
ρ ω  

Substituting the values, we have 3 2 4 21u (4.2 10 )(62.83) (10 )
2

− 
= × 
 

 = 8.29×10-2 J/m3

(c) Average energy flow per unit time, 2 21P  power A (sv) (u)(sv)
2

 
= = ρω = 

 
 

Substituting the values, we have 2 3 2 5P (8.29 10 ) (4.0 10 ) (43.53) 4.53 10 J / s
4

− − − π
= × × = × 

 
 

(d) Power required to drive the oscillator is obviously 4.53 × 10-5 W.

8. INTERFERENCE
Interference is a phenomenon that occurs 
when two waves superimpose while 
traveling in the same medium. This results 
in the formation of a wave of greater or 
lower amplitude. Interference happens 
with waves that emerge from the same 
source or have the similar frequencies.

8.1 Principle of Superposition
The principle of superposition of waves states that when two or more waves of same type come together at a 
single point in space, the total displacement at that point is equal to the sum of the displacements of the individual 
waves. Constructive interference is the meeting of two waves of equal frequency and phase, i.e., if the crest of a 
wave meets a crest of another wave of the same frequency at the same point, then the total displacement is the 
sum of the individual displacements. Destructive interference is the meeting of two waves of equal frequency and 
opposite phase, i.e., if the crest of one wave meets a trough of another wave then the total displacement is equal 
to the difference in the individual displacements.

Resultant wave

Wave 1

Wave 2

Constructive interference Destructive interference

Figure 11.13
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In constructive interference, the phase difference between the waves is a multiple of 2π, whereas in a destructive 
interference the difference is an odd multiple of π. If the phase difference is between these two extremes, then 
the total displacement of the summed waves lies between the minimum and maximum values. If the first wave 
alone were traveling, the displacement of particles may be written as y1=f1 (t – x / v). If the second wave alone were 
traveling, the displacement may be written as y2=f2 (t + x / v)

If both the waves are traveling on the string, the displacement of its different particles will be given by

y = y1 + y2 = f1 (t – x / v) + f2 (t + x / v).

If the two individual displacements are in opposite directions, the magnitude of the resulting displacement may be 
smaller than the magnitudes of the individual displacements. In a nutshell, when two or more waves pass through 
a point at the same time, the disturbance at the point is the sum of the disturbances each wave would produce in 
absence of the other wave(s). 

8.2 Interference of Wave Going in Same Direction 
Let us assume that two identical sources send sinusoidal waves of same angular 
frequency ω in the positive direction x. It is also assumed that the wave velocity 
and consequentially, the wave number k is same for the two waves. One source 
may send the wave a little later than the other or the two sources may be located 
at different points. Here, the phases of the two waves at the point of interference 
will be different. If we assume the amplitudes of the two waves to be A1 and A2 
and the phase difference of the two waves to be an angle δ, their equations may 
be written as

1 1y A sin(kx t)= −ω 	 And 	 2 2y A sin(kx t )= −ω +δ

According to the principle of superposition, the resultant wave is represented by

1 2 1 2y y y A sin(kx t ) A sin(kx t )= + = −ω + −ω +δ

= 1 2 2A sin(kx t) A sin(kx t) cos A cos(kx t) sin−ω + −ω δ+ −ω δ

= 1 2 2sin(kx t)(A A cos ) cos(kx t)(A sin )−ω + δ + −ω δ

We can evaluate it using the method to combine two simple harmonic motions. If we write

A1 + A2 cosδ = A cos ε					�       … (i) 

And		  A2 sinδ = A sin ε						�       … (ii)

We get,	 y A[sin(kx t)cos cos(kx t)sin ] Asin(kx t )= −ω ε+ −ω ε = −ω +ε

Thus, the resultant is indeed a sine wave of amplitude A with a phase difference ε with the first wave. By (i) and (ii), 

( ) ( )2 22 2 2 2 2 2 2
2 2 2 1 2 1 2A A cos A sin    A A cos  A sin A A 2A A cos= ε+ ε = + δ + δ = + + δ

Or	  2 2
1 2 1 2A A A 2A A cos= + + δ 					�       … (iii)

Also	 2

1 2

A sinAsintan
Acos A A cos

δε
ε = =

ε + δ
					�       … (iv)

These relations may be remembered by using the following geometrical model can be used to remember these 
relations: draw a vector of length A1 to represent y1 = A1sin (kx - ωt) and another vector of length A2 at an angle δ 
with the first one to represent y2 = A2 sin (kx – ωt + δ). The resultant vector then represents the resultant wave y=A 
sin (kx – ωt + ε). The given Fig 11.14 shows the construction.

Illustration 11:  The equations of two waves passing simultaneously through a string are given by y1 = A1sin k  
(x – vt) and y2 = A2 sin k (x – vt + x0), where the wave number k = 6.28 cm-1 and x0 = 1.50 cm. The amplitudes for 
A1 and A2 are 5.0 mm and 4.0 mm, respectively. Find the phase difference between the waves and the amplitude of 
the resulting wave. � (JEE ADVANCED)

Figure 11.14

A

��
A2

A1
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Sol: As there are two waves passing through the string simultaneously, the phase difference between the two 

waves will be δ = kx0. And the resulting amplitude of the waves will be 2 2
1 2 1 2A A A 2A A cos= + + δ  .

The phase of the first wave is k (x -vt) and of the second is k (x- vt + x0).

The phase difference is, therefore,	 δ = kx0 = (6.28cm-1) (1.50 cm) = 2π × 1.5 = 3π

We can thus infer that this is a destructive interference. The amplitude of the resulting wave is given by |A1 – A2| = 
(5.0 − 4.0) mm = 1.0mm.

9. BOUNDARY BEHAVIOUR

When a propagating wave reaches the end of the medium it encounters an obstacle or, maybe, another medium 
through which it could travel. Here, the interface of the two media is referred to as the boundary and the behavior 
of a wave/pulse at that boundary is described as its boundary behavior.

9.1 Fixed End Reflection
Let us consider an elastic string which is attached at one end to a pole on 
a lab bench while the other end is will be held in the hand and stretched 
in order to introduce pulses into the medium. The end of the elastic string 
that is attached to the pole is immovable when a wave or pulse reaches 
it. If a pulse is introduced at the hand-held end of the rope, it will travel 
through the string towards the fixed immovable end of the medium. This 
is called the incident pulse since it is incident (i.e., approaching toward) the 
boundary with the pole. With the incident pulse reaches the boundary, two 
things occur:

(a)	 Some of the energy transmitted by the pulse is reflected back towards the hand-held end of the rope. This is 
known as the reflected pulse.

(b)	 That part of the energy that is transmitted to the pole causes the pole to vibrate.

As the vibrations of the pole are not 
obvious, the energy transmitted to it is 
not typically discussed. The emphasis 
here will be on the reflected pulse. What 
are the characteristics/properties of its 
motion?

When seen from the fixed immovable 
end, the reflected pulse is a mirror image 
of incident pulse. That is, an upward 
displaced pulse will be reflected and 
returned as a downward displacement 
pulse and vice-versa.

9.2 Free End Reflection
Continuing with the above example, let us consider the situation 
where instead of being securely attached to a lab pole, the elastic 
string is attached to a ring that is fixed loosely around the pole. 
Since the string is no longer attached firmly to the pole, the last 
particle of the rope will be able to move when a pulse reaches it. 

Now, if a pulse is introduced at the hand-held end of the string, 
it will travel through the string towards the pole at the right end 
of the medium. However, the string is no longer fixed tightly to 

Incident Pulse

Inverted reflected pulse

Fixed end reflection

Figure 11.16

Figure 11.17

if the end of an elastic roe not fastened to the pole

then it will be free move up and down. This

provides for the study of waves behavior at free ends.

Figure 11.15

Fixed end reflection

An elastic rope security to a can be used

to study the behavior waves at a fixed end.
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the pole and, therefore, the string and 
the pole will slide past each other. There 
will be no interaction between the string 
particle and the pole particle. In other 
words, when the last particle in the string 
is displaced upwards, there will be no 
adjoining pole particle to pull it down. As 
a result, the upward displacement of the 
incident pulse is not reversed the in the 
reflected pulse. Similarly, if the incident 
pulse has a downward displacement the reflected pulse will also demonstrate a downward displacement. . Inversion 
is not observed in free end reflection. 

10. REFLECTION AND TRANSMISSION OF A PULSE ACROSS A BOUNDARY

10.1 Reflection and Transmission of a Pulse across a Boundary from Less to More 
Dense
A pulse exhibits two behaviors upon reaching the boundary. 

(a)	 A part of the energy transmitted by the incident 
pulse is reflected and returns towards the hand-
held end of a thin string. The pulse that returns 
to the hand-held end after bouncing off the 
boundary is known as the reflected pulse.

(b)	 A part of the energy transmitted by the incident 
pulse is transmitted into the thick string. The 
disturbance that continues moving to the right 
is known as the transmitted pulse.

In a wave traveling from a less dense to a 
denser medium a part of the incident pulse 
will be reflected off the boundary of the less dense string while another part will be transmitted across the 
boundary of the thin string into the new medium (thick string). The pulse that moves into the new medium is 
the transmitted pulse and is not inverted. The pulse that is reflected off the boundary of the thinner string is 
called the reflected pulse is inverted.

10.2 Reflection and Transmission of a Pulse across a Boundary from More to Less 
Dense
Here, the transmitted pulse moves through the less 
dense string/medium, while the reflected pulse travels 
through the denser string/medium. The transmitted 
pulse travels faster and has larger wavelength than the 
reflected pulse. However, the speed and wavelength 
of the reflected pulse are same as the that of the 
incident pulse.

Here, a part of the incident pulse will be reflected 
off the boundary of the denser string/medium and a 
part will transmitted across the boundary of the denser 
string/medium into the less dense string/medium. 
There is no inversion, whatsoever.

Figure 11.19

Figure 11.20

Figure 11.18

Incident Pulse Reflection Pulse

More dense

More dense
Less dense

Reflected pulse Transmitted pulse

A wave travelling from a more dense to a less dense medium

More dense

Less dense

More dense
Less dense

Incident pulse

Reflected pulse Transmitted pulse
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•• The wave speed and the wavelength are always greatest in the least dense string/medium.

•• The wave frequency remains constant even when crosses the boundary.

•• When moving from less dense string/medium to denser string/medium, the reflected pulse gets 
inverted.

•• The amplitude of the incident pulse is always greater than that of the reflected pulse.

Anand K (JEE 2011, AIR 47)

11. STANDING WAVES

Standing wave, also called a stationary wave, is �
L

�1

�3

�4

L

�2

Figure 11.21

combination of two waves moving in opposite directions, 
each having the same amplitude and frequency. . The 
manner of this interference makes it appear as if some 
points along the medium are standing still. For this 
reason, this wave pattern is referred to as the standing 
wave pattern. Let us assume that two waves of equal 
amplitude and frequency propagate towards each other 
along a string. The equation of two waves are given by

1y Asin( t kx)= ω −  and  2y Asin( t kx )= ω + +δ . 

To understand these waves, let us discuss the special 
case when δ = 0.

The displacements of the particles of the string 
consequent to the interference are given by the principle 
of superposition as y = y1 + y2 = A [sin (ωt-kx) + sin 
(ωt+kx)= 2A sinωt cos kx or y = (2A cos kx) sin ωt … (xix)

11.1 Nodes and Antinodes
As discussed earlier, the manner of interference of standing �

Figure 11.22

Nodes

Antinodes

wave patterns is such that there are points along the medium 
that appear to be stationary. These points are referred to as 
nodes or points of no displacement. There are other points 
along the medium that undergo v the maximum displacement 
during each vibrational cycle of the standing wave. These points 
along the medium are called antinodes, as they represent the 
other extreme in the standing wave pattern. A standing wave 
pattern always has nodes and antinodes appearing alternatively 
in them

MASTERJEE CONCEPTS
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Nodes and antinodes are quite different from crests and troughs. In a traveling wave, there points of 
large upward and downward displacements, referred to as the crest and trough of the wave. However, an 
antinode refers to a point of the string that remains stationary or appear to be stationary.

GV Abhinav (JEE 2012, AIR 329)

11.2 Differences Between Standing Waves and Traveling Waves

Standing Wave Traveling Wave

The disturbance produced in a region appears stationary. The disturbance produced in a region is transmitted with a 
definite velocity

Different particles move with different amplitudes The motion of all particles are similar in nature

The particles at node always remain at rest There is no particle which always remains at rest

All particles cross their mean positions together At no point all the particles are at mean positions together

All the particles between two successive nodes reach their ex-
treme positions together, thus moving in phase.

The phases of nearby particles are always different

The energy of one region is always confined to that region Energy is transmitted from one region of space to other

Node

t=0

t=T/8

t=T/4

t=3T/8

t=T/2

t=5T/8

t=3T/4

t=7T/8

t=T

Antinode

Figure 11.23

Illustration 12: The interference of two waves with equal amplitudes and frequencies traveling in opposite 
directions produces a standing wave having the equation Y = A cos kx sin ωt in which 

A = 1.0 mm, k = 1.57 cm-1 and ω = 78.5 s-1	

(a) Find the velocity of the component traveling waves.

(b) Find the node closest to the origin in the region x > 0.

(c) Find the antinode closest to the origin in the region x > 0.

(d) Find the amplitude of the particle at x = 2.33 cm.�  (JEE ADVANCED)

MASTERJEE CONCEPTS
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Sol: Here the two waves of same amplitude and frequency interfere with each other to form the standing waves, 

the velocity of the resultant wave will be v V
k
ω

=  where ω is the angular frequency of the wave and k is the wave 

number. The distance of the node from the origin is given by nkx
2
π

= . And distance of antinode from origin is 
given by kx = nπ.

(a) The standing wave is formed by the superposition of the waves

21 
A Asin( t kx) and sin(y y t kx)
2 2

ω − ω + . The wave velocity (magnitude) of the waves is v 
1

1
1

78.5 s
V 50 cms

k 1.57 cm

−
−

−

ω
= = =

(b) For a node, cos kx = 0

The smallest position x satisfying this relation is given by	kx
2
π

= 	  or, 	 x 1cm
2k
π

= =

(c) For an antinode, |cos kx| = 1 or cos kx = ± 1

Kx = 0, min
3.14,2 ,........n x 0,x 2cm

k 1.57
π

π π π⇒ ≠ = = =

(d) The amplitude of vibration of the particle at x is given by |A cos kx|

Antinode Antinode Antinode Antinode

Node Node Node Node Node

(b)Figure 11.24

For the given point, ( )( )1 7kx  1.57cm 2.33cm  
6 6

− π
= = π=π+

Thus, the amplitude will be ( ) 3| ( / 6) |1.0 mm  m m 0.86mm
2

cos π+ π = =

11.3 Standing Waves on a String Fixed at Both Ends (Qualitative Discussion)

Let us take the example of string fixed at both the ends –- one �

Figure 11.25

end to a wall and the other end tied to a tuning fork. The tuning 
fork vibrates longitudinally with a small amplitude producing sine 
waves of amplitude A which travel along the string towards the 
wall. The said wave then gets reflected and travels toward the fork. 
This wave, being reflected from a fixed end, will be an inverted 
wave.. These waves are again hit the fork back and as the fork is 
heavy and vibrates longitudinally with a small amplitude, it acts like a fixed end and the waves reflected from the 
fork get inverted again. Therefore, the wave produced directly by the fork initially and the twice-reflected wave 
have same shape, though the twice-reflected wave has already travelled a length 2L.

Let us assume that the length of the string is 2L=λ. The wave moving from the tuning fork to the wall and the 
wave reflected back from the wall to the tuning fork interfere constructively and the resultant wave that proceeds 
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towards the wall has an amplitude 2A. This wave of amplitude 2A is again reflected back by the wall and then again 
reflected by the fork. Now, this twice-reflected wave again interfaces constructively with the new incident wave 
and a wave of amplitude 3A is produced. Thus, the amplitude keeps progressing. The string gets energy from the 
vibrating and the amplitude builds up. Same arguments hold if 2L is any integral multiple of λ that is L=n λ/2, where 
n is an integer.

However, in the above discussion, we have not factored in any loss of energy due to air viscosity or due to the 
inflexibility of the string. In the steady state, waves of invariable amplitude will be present on the string from left 
to right as well as from right to left. These opposing waves will produce standing waves on the string. Nodes and 
antinodes will be formed along the string and there will be large amplitudes of vibration at the antinodes. We can 
then say that the string is in resonance with the fork. The condition, L=n λ/2, for such a resonance may be stated 
in a different way. We have from equation (9),     υ = ν λ  or /λ = υ ν

The condition for resonance is, therefore,

 
n n n

L n or L or F /
2 2 2L 2L

υ υλ
= = ν = = µ

ν
				�     … (i)

The lowest frequency with which a standing wave can be set up in a string fixed at both the ends is thus	
1

F /
2Lον = µ 								�          … (ii)

This is called the fundamental frequency of the string. All other possible frequencies of standing waves are integral 
multiples of this fundamental frequency. Equation (xx) gives the natural frequencies, normal frequencies, or 
resonant frequencies.

Illustration 13: Shown in the Fig 11.26 is a wire with a length of �

Figure 11.26

40 cm

1.6 kg

10 cm

50 cm and a mass of 20 g. It supports a mass of 1.6 kg. Find the 
fundamental frequency of the portion of the string between the 
wall and the pulley.

Take g=10ms-2.	�  (JEE ADVANCED)

Sol: The string is subjected to uniform tension due to weight 
of the block of mass 1.6 kg. The fundamental frequency of 

the string between the fixed support and pulley is given by 

o
1 F
2L

ν =
µ

 where µ is the mass per unit length of string.

The tension in the string is F = (1.6kg) (10ms-2) = 16N.

The linear mass density is 120g
0.04kgm

50cm
−µ= =

The fundamental frequency is 1 F
2Lον =

µ
 = 

1

16N1 25hz
2 (0.4m) 0.04kgm−

=
×

 
= 25 Hz

11.4 Analytical Treatment of Vibration of a String Fixed at Both Ends
Let us assume a string of length L which is kept fixed at the ends x= 0 and x= L. For certain wave frequencies, 
standing waves are set up in the string. Due to the repeated reflection of the wave at the ends and the damping 
effects, waves going in the positive direction x interfere to give a resultant wave 1y Asin(kx t)= −ω . Similarly, the 
waves going in the negative direction x interfere to give the resultant wave 2y Asin(kx t )= + ω +δ . As a result, the 
displacement of the particle of the string at position x and at time t is given by the principle of superposition as 

1 2y y y Asin(kx t) sin(kx t )= + = −ω + +ω +δ
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2Asin(kx ) cos( t )
2 2
δ δ

= − ω + 				�      … (i)

If standing waves are formed, the ends x = 0 and x = L must be nodes because they are kept fixed. Thus, we have 
the boundary conditions y= 0 at x=0 for all t	 and 	y=0 at x=l for all t.

The first boundary condition is satisfied by equation (i)	  if 	 sin
2
δ =0,	 or 	 δ = 0.

Equation (i) then becomes y 2Asinkx cos t= ω 						       � … (ii) 

The second boundary condition will be satisfied if

sinkL 0 or kL n , where n 1, 2, 3, 4, 5,.......
2 L nor n or L

2

= = π =
π λ

= π =
λ

		�    … (iii)

If the length of the string is an integral multiple of λ /2, standing waves are produced. 

Again writing T
v
υ

λ=υ = , equation (xxv) becomes	
n n F /
2L 2L
υ

ν = = µ

Which is same as equation (xx). The lowest possible frequency is 1 F /
2L 2Lο
υ

ν = = µ  � … (iv)

This is the fundamental frequency of the string. The other natural frequencies with which standing wave can be 
formed on the string are

Harmonic Pattern
No. of

Loops

Length-Wavelength

relationship

1st

2nd

3rd

4rd

5th

6th

1

2

3

4

5

6

L = 1/2 �

L = 2/2 �

L = 3/2 �

L = 4/2 �

L = 5/2 �

L = 6/2 �

Figure 11.27

1 0

2 0

3 0

22 F / 1stovertone, or2rd harmonic,
2L
33 F / 2nd overtone, or3rd harmonic,
2L
44 F / 3rd overtone, or 4rd harmonic,etc.

2L

ν = ν = µ

ν = ν = µ

ν = ν = µ

 

In general, any integral multiple of the fundamental frequency is a valid frequency. These higher frequencies are 
called overtones. Thus, 1 02ν = ν  is the first overtone, 2 03ν = ν  is the second overtone, etc. An integral multiple of 
a frequency is called its harmonic. Thus, for a string fixed at both the ends, all the overtones are harmonics of the 
fundamental frequency and vice-versa.
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11.5 Vibration of a String Fixed at One End
If a string is set up in such a way that one end of it remains fixed while the other end is free to move in a transverse 
direction, standing waves can be produced. The free end can be created by connecting the string to a very light 
thread. If the vibrations of the “correct” frequency are produced by the source, standing waves are produced. 
Assuming end x=0 is fixed and x = L is free, the equation is again given by y 2Asinkxcos t= ω  which is the same as 
equation (xxii), with the boundary condition that x = L is an antinode. The boundary condition that x = 0 is a node 
is automatically satisfied by the above equation as it is fixed. For x = L to be an antinode, Sin kL 1=±

1or kL n
2

 
= + π 
 

	
2L v2 1or n

2
L 1or n

2
 π

π = +
υ

= + λ  
 

1n
F /1 2or v n

2 2L 2L

+  υ
= + = 
 

µ  � … (i)

These are the normal frequencies of vibration. The �

N
A

Fundamental

N
A

N
A

First

Overtone

N N
A

N A A

Second

Overtone

Figure 11.28

fundamental frequency is obtained when n = 0,

i. e.,	 / 4Lον = υ

The overtone frequency are 	 1
3 3
4L ο
υ

ν = = ν

2 3
5 75 , 7 , etc
4L 4Lο ο
υ υ

ν = = ν ν = = ν

It can be seen that all the harmonics of the 
fundamental frequency are not the valid frequencies 
for the standing waves. Only the odd harmonics are 
the overtones. The string shapes for some of the 
normal modes are shown in Fig 11.28.

Illustration 14: A string is vibrating up and down as the fifth harmonic and completes�

Figure 11.29

8.2 m  
21 vibrational cycles in 5 seconds. The length of the string is 8.2 meters. Determine the 
frequency, period, wavelength and speed for this wave.�  (JEE MAIN)

Sol: The frequency of the wave is 
number of cycles produced

f
total time

= . The time period of 

wave 1T
f

= . When string is vibrating in fifth harmonics, then 2L = 5λ. The wave velocity 

is v = f λ.

Given: L = 8.2 m and 21 cycles in 5 seconds. The frequency here refers to the number of back-and-forth movements 
of a point on the string and is measured as the number of cycles per unit of time. In this case, it is f = (21 cycles)/ 
(5 seconds) = 4.2 Hz

The period is the reciprocal of the frequency. T = 1/ (4.2 Hz) = 0.238 s.

The wavelength of the wave is correlated to the length of the rope. For the fifth harmonic as shown in the picture, 

the length of the rope is equivalent to five halves of a wavelength. That is, 5L
2

= λ  where λ is the wavelength. 
Rearranging and substituting the equation gives the following results: 

( ) ( ) 2 / 5 L 2 (8.2 m) 3.28 m/ 5× × =λ = =

The wavelength and frequency wave can be used to calculate the speed of a wave using the wave equation

V f (4.2Hz).(3.28m) 13.8m / s= λ= =
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12. LAWS OF TRANSVERSE VIBRATIONS OF A STRING

For a string fixed at both ends, the fundamental frequency of vibration is given by equation (ix). The statements 
known as “Laws of transverse vibrations of a strings” can be derived from equation (ix).

12.1 Law of Length 
Tension and mass per unit length of the string remaining the same, the fundamental frequency of vibration of a 
string (fixed at both ends) is inversely proportional to the length of the string. 

ν ∝ 1/L if F and µ are constants.

12.2 Law of Tension 
The length and the mass per unit length of the string remaining the same, the fundamental frequency of a string 
is proportional to the square root of its tension. F if L and areconstants.ν ∝ µ L if F and µ are constants.

12.3 Law of mass
The length and the tension remain the same, the fundamental frequency of a string is inversely proportional to the 
square root of the linear mass density, i.e., mass per unit length.

 1 if L and F areconstants.
µ

∝ν

These above laws can be experimentally studied with an apparatus called sonometer.

12.4 Sonometer
A sonometer is an apparatus that is used to study �

A C1 C

D1

B

D D2

C2

H

Figure 11.30

the transverse vibrations of strings. It is also called 
the monochord because it often has only one 
string. It consists of a rectangular wooden box 
with two fixed bridges near the ends, with a pulley 
fixed at one end. A string is fixed at one end, which 
is then run over the bridges and the pulley, and 
then attached to a weight holder hanging below 
the pulley. Additional weights can be added to the 
holder to increase the tension in the wire. A third, 
movable bridge, can be placed under the string to 
change the length of the vibrating section of the 
string. This device demonstrates the relationship 
between the frequency of the sound produced 
when a string is plucked and the tension, length, 
and mass per unit length of the string. These 
relationships are referred to as Mersenne’s law after Marin Mersenne (1588–1648), who studied and formulated 
them. For small amplitude vibration, the frequency is proportional to:

(a)	 The square root of the tension of the string

(b)	 The reciprocal of the square root of the linear density of the string,

(c)	 The reciprocal of the length of wire of sonometer



Physics  |   11.23

Illustration 15: Resonance is obtained in a sonometer experiment when the experimental wire with a length of 
21 cm between the bridges is excited by a tuning fork of frequency 256 Hz. If a tuning fork of frequency 384 Hz is 
used, what should be the length of the experimental wire to get the resonance?� (JEE MAIN)

Sol: For sonometer wire the ratio of lengths of vibrating string is 1 2

2 1

ν
=
ν





.

By the law of length, 1 1 2 2ν = ν  	 or	 1
2 1

2

256 21cm 14cm
384

ν
= = × =
ν

 

13. TRANSVERSE AND LONGITUDINAL WAVES

When there is a disturbance at the source in a string, it causes displacement of the particles of the string. The 
direction of such displacements is perpendicular to the direction of the propagation of the wave. Such waves are 
called transverse waves. The wave on a string is a transverse wave.. Light waves are also an example of transverse 
waves. Here, the value of the electric field changes with space and time and the changes are propagated in space. 
The direction of the electric field is perpendicular to the direction of propagation of light when light travels in free 
space.

Sound waves are an example of non-transverse waves. The particles of the medium are carried along the direction 
of propagation of sound. We shall study in some detail the mechanism of sound waves in the next chapter. If the 
displacement produced by the passing wave is along the direction of the wave propagation, the wave is called a 
longitudinal wave. Sound waves are longitudinal.

13.1 Compression and Rarefaction
A longitudinal wave consists of compressions and rarefactions. Those regions in a longitudinal wave where particles 
are clustered together are compressions. Conversely, those regions where the particles are furthest apart are called 
rarefactions.

Compressions

Figure 11.31

Illustration 16: A sonometer wire has a length of 100 cm and a fundamental frequency of 330 Hz. Find 

(a)	 The velocity of propagation of transverse waves along the wire and 

(b)	 The wavelength of the resulting sound in air if velocity of sound in air is 330 m/s.�  (JEE ADVANCED)

Sol: When sonometer wire is set to vibrate in its fundamental frequency, then wavelength is λ=2L, the wave velocity 
is v f= λ  where f is the frequency of oscillation.

(a) In case of transverse vibration of string for fundamental mode:

L ( / 2), i.e., 2L 2 l 2m= λ λ = = × =

i.e., the wavelength of transverse wave propagation on string is 2 m. Since the frequency of the wire is given to be 
330 Hz, so from fυ= λ , the velocity of transverse waves along the wire will be

wireV 330 2 660m / s= × =

i.e., for transverse mechanical waves propagation along the wire, Hz,m and m/s

(b) Here vibration wire will act as source and produce sound, i.e., longitudinal waves in air. Now as frequency 
does not change with change in medium so Hz and as velocity in air is given to be = 330 m/s so from fυ= λ ; 
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air air(V / f ) (330 / 330) 1mλ = = =

i. e., for sound (longitudinal mechanical waves) in air produced by vibration of wire (body),

f = 330Hz, 	 λ=2m 	 and	 v =330m/s

14. POLARIZATION OF WAVES

Let us assume that we have a cardboard �

Figure 11.32

Y

Z

X

Y

Z

X

with a slit in it through which a stretched 
string is passed such that the card is 
placed in a perpendicular position to the 
string. (See Fig 11.32). If we take the string 
as the X axis, the cardboard will be in Y-Z 
plane. Now we generate a wave along the 
X axis such that the particles of the string 
are displaced in direction Y as the wave 
passes. If the slit in the cardboard is also aligned along the Y axis, the portion of the string in the slit can vibrate 
freely in the slit and the wave will pass through the slit. Now, if we turn the cardboard by 900 in its plane, the slit 
will be aligned along the Z axis. As the wave reaches the slit, the portion of the string in the slit tries to move along 
the Y axis but the narrow slit on the cardboard becomes an obstruction. Consequentially, the wave is not able to 
pass through the slit. However, if the slit is inclined to the Y axis at a different other angle, only a part of the wave 
is transmitted and in the transmitted wave the disturbance is produced parallel to the slit. The same experiment 
can be conducted with two chairs as shown in the Fig 11.33. If the displacement produced is always along a fixed 
direction, then the wave is said to be linearly polarized in that direction. The examples considered in this chapter 
are linearly polarized in y direction. By the same token, a wave that produces a displacement along the z direction, 
is a linearly polarized wave, polarized in z-direction. Its equation is given by z Asin (t x / )= ω − υ .Linearly polarized 
waves are referred to as plane polarized. In the event that each particle of a string moves in a small circle when 
the wave is propagated, the wave is called circularly polarized. If each particle goes in ellipse, the wave is called 
polarized. If the particles are move randomly in the plane perpendicular to the direction of propagation, the wave 
is called un-polarized.

Figure 11.33
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PROBLEM-SOLVING TACTICS
 1.	 Understanding and remembering all formulae is the key to solving problems in these sections. If the relation 

between the given quantities and the questions asked is known, it will be easy to solve most of the problems. 
All the quantities discussed in this topic are in some sense related to each other.

 2.	 The concept of reflection (of waves) can be encapsulated in a single point: “Inversion- Reflected wave will 
invert only when it encounters a denser medium. And transmitted wave will never invert.” If this much is clear, 
one can easily identify the case in every question.

 3.	 Waves must always be understood in the context of transfer of energy rather than as just some function of x 
and t for better understanding of physics.

 4.	 For questions pertaining to the derivation of the wave equation, one can begin easily with only the x part and 
subsequently add or subtract vt from x depending on the direction of velocity.

 5.	 Most questions related to velocity and energy appear complicated due to the introduction of the usual 
Newton mechanics. This should, however, be treated just as some additional information to calculate tension 
in the string (e.g., Pulley systems).

FORMULAE SHEET

S. No Term Description 

1 Wave It is a disturbance or variation traveling through a medium due to the repeated 
undulating motion of particles of the medium through their equilibrium 
position. Examples are sound waves travelling through an intervening 
medium, water waves etc.

2 Mechanical waves Waves that are propagated through a material medium are called MECHANICAL 
WAVES. These are governed by Newton’s Law of Motion. Sound waves are 
mechanical waves propagated through the atmosphere from a source to the 
listener and it requires a medium for its propagation.

3 Non mechanical 
waves

Waves which are not propagated through a material medium. Eg: light waves, 
EM waves. 

4 Transverse wave These are waves in which the displacements or oscillations are perpendicular 
to the direction of propagation of the wave.

5 Longitudinal wave Longitudinal wave waves in which the displacement or oscillations in medium 
are parallel to the direction of propagation of wave. Example: sound waves

6 Equation of harmonic 
wave

At any time t, displacement y of the particle from its equilibrium position as 
a function of the coordinate x of the particle is y(x, t) Asin( t kx)= ω −  where, 

A is the amplitude of the wave, K- is the wave number 

ω is angular frequency of the wave and (ωt-kx) is the phase

7 Wave number Wavelength λ and wave number k are related by the relation k = 2 π / λ
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8 Frequency Time period T and frequency f of the wave are related to ω by ω/2 π  = f = 1/T

9 Speed of wave Speed of the wave is given by	 v = ω/k = λ/T = λf

10 Speed of a transverse 
wave 

The tension and the linear mass density of a stretched string, and not the 

frequency, determines the speed of a transverse wave i.e., v= T  
µ

T = Tension in the string

μ = Linear mass density of the string.

 11 Speed of longitudinal 
waves

Speed of longitudinal waves in a medium is given by

v = B
ρ

; B = bulk modulus; ρ = Density of the medium speed of longitudinal 

waves in ideal gas is 

v = Pγ
ρ

 P = Pressure of the gas,

ρ = Density of the gas and γ  = CP / CV

12 Principle of 
superposition

It states that when two or more waves of same type come together at a single 
point in space, the total displacement at that point is equal to the sum of the 
displacements of the individual waves. It is given by iy y (x,t)=∑

13 Interference of waves Two sinusoidal waves traveling in the same direction interfere to produce a 
resultant sinusoidal wave traveling in that direction if they have the same 
amplitude and frequency, with resultant wave given by the relation

my'(x,t) [2A cos(u / 2)]sin( t kx u / 2)= ω − + where u is the phase difference 
between two waves.

If u = 0, then interference would be fully constructive.

If u = π , then waves would be out of phase and the interference would be 
destructive.

14 Reflection of waves An incident wave encountering a boundary gets reflected. If an incident wave 
is represented by 

iy (x,t) Asin( t kx)= ω −  then reflected wave at rigid boundary is 

ry (x,t) Asin( t kx ) Asin ( t kx)= ω + + π =− ω +

And for reflections at open boundary, the reflected wave is given by ry (x,t)
Asin( t kx)= ω +

15 Standing waves When two identical waves moving in opposite directions meet, the interference 
produces standing waves. The particle displacement in standing wave is given 
by y(x,t) [2Asin(kx)]sin( t)= ω . The amplitude of standing waves is different 
at different point i.e., at nodes amplitude is zero and at antinodes amplitude 
is maximum or equal to sum of amplitudes of constituting waves.
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16 Normal modes of 
stretched string

Frequency of transverse waves in a stretched string of length L and fixed at 
both the ends is given by 

f = nv /2L where n = 1, 2, 3…….. 

The above relation gives a set of frequencies called normal modes of oscillation 
of the system. Mode n=1 is called the fundamental mode with frequency 	
f1= v/2L. Second harmonic is the oscillation mode with n = 2 and so on.

Thus the string has infinite number of possible frequency of vibration which 
are harmonics of fundamental frequency f1 such that f n =nf1.

(d)

	 x = 0

x = 0 x = 20 cm

(e)	

Example 2: The dimensions of a uniform rope are 
as follows: length 12 m, mass 6 kg. The rope hangs 
vertically from a rigid support with a slab of a mass of 2 
kg is attached to the free end of the rope. If a transverse 
pulse of wavelength 0.06 m is transmitted from the free 
end of the rope, what is the wavelength of the pulse 
when it reaches the top of the rope?

6 kg

2 kg

Sol: The wave velocity will be FV = νλ =
µ

 where F is 

the tension in string at a point and µ is mass per unit 
length of the string. As F is varying along the length of 
the rope so the velocity will vary along the length of the 
rope. As source frequency is constant λ will vary.

We have, V=νλ

Or,	 F For=νλ =ν µ
µ λ

Since the frequency of the wave pulse is dependent 
only on the frequency of the source, it will be consistent 

JEE Main/Boards

Example 1: The length of a wave propagated on a long 
stretched string is taken as the positive x axis. The wave 
equation is given by 

2t x
T

0 0y y e where y 4mm,
T 1.0s and 4cm.

 
− − λ = =

= λ=

(a) Find the velocity of the wave.

(b) Find the function finding the displacement of the 
particle at x = 0.

(c) Find the function giving the shape of the string  
at = 0.

(d) Plot the shape of the string at t =0.

(e) Plot the shape of the string at t=5s.

Sol: The wave moves having natural frequency of ν  
and wavelength λ has velocity V = νλ . As the frequency 

is 1
T

ν =  the velocity of the wave is then V
T
λ

= .

(a) The wave equation may be written as 
2x1 t

/tT
0y y e

 
− − λ =

Comparing with the general equation we see that 

4cm 4cm / sec
1.0s
λ

ν = = =

(b) Putting x = 0 in the given equation 
2(t/T)

0f(t) y e−=

� … (i)

(c) Putting t = 0 in the given equation 
2(x/ )

0g(t) y e− λ=  
� … (ii)

Solved Examples


