

MOVING CHARGES

BRAIN CLASS XII

HANS CHRISTIAN OERSTED (1777-1851)

For arbitrary angle θ (< 90°) $F = qvB \sin\theta$ and charge will attain helical path

Magnetic field at the centre of a circular coil

$$B = \frac{\mu_0 I}{2a}$$

Magnetic field at a point on the axis of the circular current carrying coil

$$B = \frac{\mu_0}{4\pi} \frac{2\pi N I a^2}{(a^2 + x^2)^{3/2}}$$

Biot Savart's Law

Magnetic field varies directly with current and length element and inversely with square of the distance. $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Idl \sin \theta}{r^2}$

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Idl \sin \theta}{r^2}$$

Torque on a current carrying coil placed in a uniform magnetic field $\tau = NIAB \sin \theta = MB \sin \theta$

Moving Coil Galvanometer

Current I passing through the galvanometer is directly proportional to its deflection (θ). $I \propto \theta$ or $I = G\theta$.

where
$$G = \frac{k}{NAB} = \text{galvanometer constant}$$

Magnetic Force on a charge particle in a uniform magnetic field $\vec{F} = q(\vec{v} \times \vec{B}), F = qvB\sin\theta$

For $v \perp B$, $\theta = 90^{\circ}$, $F_{\text{max}} = qvB$ charge will attain circular path

For $v \mid\mid B, \theta = 0^{\circ} (F = 0)$ no force is experienced

Cyclotron

A device use to accelerate positively charged particles.

Radius of circular path

$$R = \frac{mv}{Bq} = \frac{\sqrt{2mK}}{qB}$$

Time period of revolution

$$T = \frac{2\pi R}{v} = \frac{2\pi m}{qB}$$
• Cyclotron frequency

$$\upsilon = \frac{1}{T} = \frac{qB}{2\pi m}$$

Parallel currents attract while antiparallel currents repel

The force of attraction or repulsion acting on each conductor of length l due to currents in two parallel conductor is $F = \frac{\mu_0}{2I_1I_2} \frac{2I_1I_2}{I}$

Force on a current carrying conductor in a uniform magnetic field $\vec{F} = I(\vec{l} \times \vec{B}), F = IlB \sin \theta$

MAGNETIC EFFECT OF CURRENT

Galvanometer into Ammeter

$$S = \left(\frac{I_g}{I - I_g}\right)G \xrightarrow{(I - I_g)}$$

Galvanometer into Voltmeter
$$R = \frac{V}{I_g} - G$$

$$I_g$$

$$R$$

Current sensitivity: $I_s = \frac{\theta}{I} = \frac{NAB}{L}$ Voltage sensitivity: $V_s = \frac{\theta}{IR} = \frac{NAB}{kR}$

Ampere's Circuital Law

The line integral of magnetic field is equal to μ_0 times the current passing through area bounded by closed path.

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I$$

Magnetic field due to an infinitely long $\frac{\mu_0 I}{2\pi a}$ straight wire of B =radius a, carrying current I at a point $\mu_0 I$

Magnetic field due to a current carrying solenoid and toroid

$$B_S = \mu_0 nI = (\mu_0 NI)/l$$

$$B_T = \mu_0 nI = \frac{\mu_0 NI}{2\pi R_m}$$

