MASTERJEE ELECTROMAGNETIC INDUCTION

MAP

CLASS XII

Magnetic Energy

- · Energy stored in an inductor, $U_B = \frac{1}{2}LI^2$
- Energy stored in the solenoid, $U_B = \frac{1}{2\mu_0} B^2 A l$
 - $u_B = \frac{U_B}{V} = \frac{B^2}{2u_B}$

Lenz's Law

- · The direction of the induced current is such that it opposes the change that has produced it.
- · If a current is induced by an increasing(decreasing) flux, it will weaken (strengthen) the original flux.
- · It is a consequence of the law of conservation of energy.

Energy Consideration in Motional emf

- Emf in the wire, $\varepsilon = Bvl$
- Induced current, *I* =
- Force exerted on the wire,

 Power required to move the wire, $P = \frac{B^2 l^2 v^2}{r^2}$

It is dissipated as Joule's heat.

Combination of Inductors

- Inductors in series, $L_S = L_1 + L_2 \pm 2M$
- Inductors in parallel, $L_P = \frac{L_1 L_2 M^2}{L_1 + L_2 + 2M}$ If coils are far away, then M = 0.

So,
$$L_S = L_1 + L_2$$
 and $L_P = \frac{L_1 L_2}{L_1 + L_2}$

Inductance

- Emf induced in the coil/conductor, $\varepsilon = -L \frac{dI}{dt}$
- Coefficient of self induction, $L = \frac{N}{I} \phi_B = \frac{-\varepsilon}{dI I dt}$
- Self inductance of a long solenoid, $L = \mu_0 \mu_r n^2 A l = \frac{\mu_0 \mu_r N^2 A}{l}$
- Mutual inductance, $M = \frac{N_2 \phi_2}{I_1} = \frac{-\varepsilon_2}{(dI_1/dt)} = \frac{-\varepsilon_1}{(dI_2/dt)}$
- Mutual inductance of two long coaxial solenoids,

$$M = \mu_0 \mu_r \pi r_1^2 n_1 n_2 l = \frac{\mu_0 \mu_r N_1 N_2 A_1}{I}$$

Coefficient of coupling, $k = \frac{M}{\sqrt{I_n I_n}}$

For perfect coupling, k = 1 so, $M = \sqrt{L_1 L_2}$

Magnetic Flux and Faraday's Law

- Magnetic flux $\phi_R = \overrightarrow{B} \cdot \overrightarrow{A} = BA \cos \theta$
- Faraday's law: Whenever magnetic flux linked with a coil changes, an emf is induced in the coil.
 - Induced emf, $\varepsilon = -N \frac{d\phi_B}{d\phi_B}$
 - Induced current, $I = \frac{\varepsilon}{R} = N \frac{(-d\phi_B / dt)}{R}$
 - Induced charge flow, $\Delta Q = I\Delta t = -N \frac{\Delta \phi_B}{R}$

Motional emf

- On a straight conducting wire, $\varepsilon = Bvl$
- On a rotating conducting wire about one end, $\varepsilon = \frac{B\omega t^2}{2}$ Here, $\vec{B}, \vec{v} = \omega r \hat{v}$) and \vec{l} are perpendicular to each other.

L-R Circuit

- Current growth in L-R circuit $I = I_0(1 - e^{-t/\tau_L})$
- Current decay in L-R circuit,

$$I = I_0(e^{-t/\tau_L})$$
Here, $\tau_L = \text{Time constant} = \frac{L}{R}$

$$I_0 = \frac{\varepsilon}{R}$$

Induced Electric Field

• It is produced by change in magnetic field in a region. This is non-conservative in nature.

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\phi_B}{dt} = -A\frac{dB}{dt} \neq 0$$

• This is also known as integral form of Faradav's law.

Electric Generator

- · Mechanical energy is converted into electrical energy by virtue of electromagnetic induction.
- Induced emf.
- $\varepsilon = NAB\omega \sin \omega t = \varepsilon_0 \sin \omega t$
- · Induced current,

