DUAL NATURE OF RADIATION AND MATTER

CLASS XII

Photoelectric Cell

- An electrical device which converts light energy into electrical energy, is called as photocell or photoelectric cell.
- It works on the principle of photoelectric emission of electrons.

Particle Nature

of Radiation

Electron Microscope

- Electron microscope is a device designed to study very minute objects.
- Based on principle of de Broglie wave and the fast moving electrons can be focussed by *E* or *B* field in a same way as beam of light is focussed by glass lenses.

Wave Nature

of Matter

de Broglie Wavelength

$$\lambda = \frac{h}{p}$$

• For electron having K.E. (K) is

$$\lambda = \frac{h}{\sqrt{2mK}}$$
, here $p = \sqrt{2mK}$

• For a charged particle accelerated by potential *V* is

$$\lambda = \frac{h}{\sqrt{2qmV}}$$
, here $p = \sqrt{2qmV}$

MASTERJEE

CLASSES

ati

Photoelectric Effect

• The phenomenon of emission of electrons from a metal surface when an electromagnetic wave of suitable frequency is incident on it is called photoelectric effect.

Photoelectric Equation

• $E = K_{\text{max}} + \phi_0$, where $\phi_0 = \text{work function}$,

 $E = \text{energy of incident light}, K_{\text{max}} = \text{maximum K.E. of } e^{-}$

 $\Rightarrow h\upsilon = \frac{1}{2}mv_{\text{max}}^2 + h\upsilon_0 \Rightarrow \frac{1}{2}mv_{\text{max}}^2 = h(\upsilon - \upsilon_0)$

RADIATION AND MATTE

Nature's Love with symmetry arises the matter-wave duality

Photoelectric Effect Davisson-Germer Experiment

de Broglie Hypothesis

• Due to symmetry in nature, the particle in motion also possesess wave-like properties. And these waves are called matter waves.

Experimental Study and Conclusion of Photoelectric Effect

- At constant frequency v and potential V (Photo-current) $i_p \propto I$ (intensity)
- At constant frequency and intensity, the minimum negative potential at which the photocurrent becomes zero is called **stopping potential** (V_0) .
- At stopping potential V_0 , K_{max} of $e^- = eV_0$
- For a given frequency of the incident radiation, the V_0 is independent of I.
- The V_0 varies linearly with v.

Davisson and Germer Experiment

- Study of wave nature of electron.
- At a suitable potential *V*, the fine beam of electrons from electron gun is allowed to strike on the nickel crystal. The electrons are scattered in all directions and following assumptions were made:
 - > Intensity of scattered electrons depends over scattering angle φ.
 - A kink occurs in curve at $\phi = 50^{\circ}$ for 54 eV beam.
 - The intensity is maximum at accelerating voltage 54 V. After this voltage, intensity starts decreasing.
- Here, $\theta = \frac{1}{2} (180^{\circ} \phi) \implies \theta = 65^{\circ}$ at $\phi = 50^{\circ}$ From Bragg's law (particle nature), $\lambda = 2d \sin \theta \implies \lambda = 1.65$ Å.

Also, from wave nature at V = 54 volt, $\lambda = \frac{12.27}{\sqrt{54}} = 1.65 \text{ Å}$