CAPACITOR AND CAPACITANCE

RRAIN

CLASS XII

Energy Stored

$$U = \frac{1}{2}CV^2 = \frac{Q^2}{2C} = \frac{1}{2}QV$$

Energy Density

$$u = \frac{1}{2} \varepsilon_0 E^2$$

Polar dielectric

Permanent dipole moment exist in absence of electric field also.

Dielectric Constant

Non-polar dielectric

Each molecule has zero dipole moment in its normal state.

Types of Dielectric

Dielectric is an insulator which transmits electric effect without conducting. If field exceeds the dielectric strength, the dielectric begins to conduct.

For linear isotropic dielectric

 $\vec{P} = \chi_e \vec{E} (\chi_e = \text{electrical})$ succeptibility)

$$\bullet$$
 $U = KU_0$

$$Q = KQ_0$$

$$\bullet$$
 $E = E_0$

$$\circ$$
 $V = V_0$

$$Q = Q_0 \quad V = \frac{V_0}{K}$$

$$\bullet \ U = \frac{U_0}{K} \bullet \ E = \frac{E_0}{K}$$

Energy Stored

$$U = \frac{1}{2}QV = \frac{Q^2}{8\pi\varepsilon_0 a}$$

Energy Density

$$u = \frac{Q^2}{32\pi^2 \varepsilon_0 r^4}$$

Spherical Conductor Energy of Radius a **Storage**

capacitor $C_{eq} = C/n$ and

Parallel Plate

Capacitor

in a Capacitor

Dielectric and its Properties

CAPACITOR

Capacitor is a passive electronic component that stores energy in the form of an electrostatic field. The ratio of charge and the potential it raised is called capacitance.

Battery Disonnected Capacitors

Battery

Connected

with **Dielectrics**

Charge

Sharing

Between

 Partially filled dielectric

$$C' = \frac{\varepsilon_0 A}{d - t + \frac{t}{K}}$$

Parallel Combination

- $Q = Q_1 + Q_2 + Q_3$
 - For n identical capacitor $C_{eq} = nC_1$ and Q' = Q/n
 - Used when high capacity is required at low potential

Combination **Capacitors**

Types of Capacitors and their Capacitances

Conductors After connecting through conducting wire

Parallel Plate Capacitor

It consists of two large plates placed parallel to each other with a separation

Spherical Capacitor

It consists of two concentric spherical conducting shells of radii a and b, say b > a. The outer shell

is earthed.

$$C = \frac{4\pi \varepsilon_0 a t}{b - a}$$

For a single isolated spherical conductor of radius R, $C = 4\pi \varepsilon_0 R$

Cylindrical Capacitor

It consists of two coaxial cylinders of radii a and b, say b > a and length L. The outer one is earthed.

Capacitance:

$$C = \frac{2\pi\varepsilon_0 L}{\ln\left(\frac{b}{a}\right)}$$

