

ATOMS AND NUCLEI

BRAIN MAP

Line Spectra of Hydrogen

- While transition between different atomic levels, light radiated in various discrete frequencies are called spectral series of hydrogen atom.
- Rydberg formula:

Wave number
$$\overline{v} = \frac{1}{\lambda} = R \left[\frac{1}{n_f^2} - \frac{1}{n_i^2} \right]$$

R = Rydberg's constant= 1.097 × 10⁷ m⁻¹

Radioactivity

• Law of radioactive decay

$$\frac{dN}{dt} = -\lambda N(t) \text{ or } N(t) = N_0 e^{-\lambda t}$$

Half-life

$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$

• Mean life or Average life

$$\tau = \frac{1}{\lambda} = \frac{T_{1/2}}{0.693} = 1.44 \ T_{1/2}$$

• Fraction of nuclei left undecayed after *n* half lives is

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^{t/T_{1/2}}$$
 where $t = nT_{1/2}$

Decay Schemes

• α-Decay:

$${}_{Z}^{A}X \xrightarrow{\alpha-\text{decay}} {}_{Z-2}^{A-4}Y + {}_{2}^{4}\text{He} + Q$$

(Energy release

• β-Decay

$${}^{A}_{Z}X \xrightarrow{\beta^{+}} {}^{A}_{Z-1}Y + {}^{0}_{+1}e + \upsilon$$

$$_{Z}^{A}X \xrightarrow{\beta^{-}} _{Z+1}^{A}Y + _{-1}^{0}e + \overline{\upsilon}$$

• γ-Decay:

$$\begin{array}{c} {}^{A}_{Z}X^{*} & \xrightarrow{\Upsilon-\mathrm{decay}} & {}^{A}_{Z}X & + & {}^{0}_{0}\,\Upsilon \\ \text{(Excited state)} & & \text{(Ground state)} \\ & & + & \text{Energy} \end{array}$$

Rutherford's Model of Atom

- K.E. of α -particles, $K = \frac{1}{2}mv^2$
- Distance of closest approach,

$$r_0 = \frac{1}{4\pi\epsilon_0} \cdot \frac{2Ze^2}{K} = \frac{1}{4\pi\epsilon_0} \cdot \frac{4Ze^2}{mv^2}$$

• Impact parameter,

$$b = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Ze^2 \cot\frac{\theta}{2}}{K} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Ze^2 \cot\frac{\theta}{2}}{\frac{1}{2}mv^2}$$

- Conclusion: An atom consists of a small and massive central core in which entire positive charge and whole mass of atom is concentrated.
- **Drawback**: The revolving electron continuously loses its energy due to centripetal acceleration and finally it should collapse into the nucleus.

Composition and Size of Nucleus

- Nucleus of an atom consists of protons and neutrons collectively called nucleons.
- Radius of a nucleus is proportional to its mass number as $R = R_0 A^{(1/3)}$. $(R_0 = 1.2 \text{ fm})$

Concept of Binding Energy

 The binding energy is defined as the surplus energy which the nucleons give up by virtue of their attractions when they bound together to form a nucleus,

$$\Delta E_b = [Zm_p + (A - Z)m_n - M_N]c^2$$

• Binding energy per nucleon: $E_{bn} = \frac{E_b}{A}$

Bohr's Atomic Model

Electron orbits and their energy

• Radius of permitted *n*th orbits,

$$r_n = \frac{n^2 h^2}{4\pi^2 m k Z e^2} \Longrightarrow r_n \propto n^2$$

• Velocity of electron in *n*th orbit,

$$v_n = \frac{2\pi k Z e^2}{nh} \Longrightarrow v_n \propto \frac{1}{n}$$

• Energy of electron in *n*th orbit

$$E_n = \frac{-2\pi^2 m k^2 Z^2 e^4}{n^2 h^2} \Longrightarrow E_n \propto \frac{1}{n^2}$$

where the symbols have their usual meanings.

Nuclear Reactions

- Nuclear fission: It is the phenomenon of splitting a heavy nucleus into two or more smaller nuclei of nearly comparable masses.
- Nuclear fusion: It is the phenomenon of fusing two or more lighter nuclei to form a single heavy nucleus.

Application of Nuclear Reactions

A. Fission

- Uncontrolled chain reaction: Principle of atomic bombs.
- Controlled chain reaction: Principle of nuclear reactors.

R Fusion

Nuclear fusion is the source of energy in the Sun and stars.

