ALTERNATING CURRENT **ELECTROMAGNETIC WAVES**

BRAIN

CLASS XII

Applied across capacitor

Purely capacitive circuit

Current leads the voltage by a phase angle of $\pi/2$.

$$I = I_0 \sin(\omega t + \pi/2); I_0 = \frac{\varepsilon_0}{X_C} = \omega C \varepsilon_0$$
 where $X_C = 1/\omega C$

Alternating Current

Current which changes continuously in magnitude and periodically in direction.

Alternating voltage

 $\varepsilon = \varepsilon_0 \sin \omega t$

Applied across resistor

Purely resistive circuit

Alternating voltage is in phase with current.

$$I = \varepsilon / R = I_0 \sin \omega t$$

Applied across inductor

Purely inductive circuit

Current lags behind the voltage by a phase angle of $\pi/2$.

$$I = I_0 \sin(\omega t - \pi/2); I_0 = \varepsilon_0 / X_L = \varepsilon_0 / \omega L$$

where $X_L = \omega L$

Transformer

Transformer ratios

$$\frac{\varepsilon_S}{\varepsilon_P} = \frac{I_P}{I_S} = \frac{N_S}{N_P} = k$$

Efficiency of a transformer,

$$\eta = \frac{\text{output power}}{\text{input power}} = \frac{\varepsilon_S I_S}{\varepsilon_P I_P}$$

Step-up transformer,

 $\varepsilon_S > \varepsilon_P$, $I_S < I_P$ and $N_S > N_P$.

Step-down transformer, $\varepsilon_S < \varepsilon_P$, $I_S > I_P$ and $N_S < N_P$.

Combining LCR in series

Power in ac circuit

Average power (P_{av})

$$P_{av} = \varepsilon_{rms} I_{rms} \cos \phi$$
$$= \frac{\varepsilon_0 I_0}{2} \cos \phi$$

Power factor

- Power factor: $\cos \phi =$
- In pure resistive circuit, $\phi = 0^{\circ}; \cos \phi = 1$
- In purely inductive or capacitive circuit

$$\phi = \pm \frac{\pi}{2}; \cos \phi = 0$$

In series LCR circuit, At resonance, $X_L = X_C$

Z = R and $\phi = 0^{\circ}$, $\cos \phi = 1$

Series LCR circuit

 $\varepsilon = \varepsilon_0 \sin \omega t$, $I = I_0 \sin(\omega t - \phi)$ Impedance of the circuit: $Z = \sqrt{R^2 + (X_L - X_C)^2}$

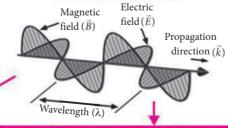
Phase difference between current and voltage is ϕ $\tan \phi = \frac{X_L - X_C}{D}$

- For $X_L > X_C$, ϕ is +ve. (Predominantly inductive)
- For $X_L < X_C$, ϕ is –ve. (Predominantly capacitive)

Resonant series LCR circuit

When $X_L = X_C$, Z = R, current becomes maximum.

Resonant frequency $\omega_r = -$


Quality factor

It is a measure of sharpness of resonance.

$$\therefore Q = \frac{1}{R} \sqrt{\frac{L}{C}}$$

Electromagnetic Waves

electric and magnetic field at right angles to each other and perpendicular

Energy density of electromagnetic waves

Average energy density

$$< u> = \frac{1}{2} \varepsilon_0 E_0^2 = \frac{1}{2} \frac{B_0^2}{\mu_0}$$

Intensity of electromagnetic

wave = $\frac{1}{2} \varepsilon_0 E_0^2 c$

Waves having sinusoidal variation of to direction of waves propagation.

Production of electromagnetic waves

- Through accelerating charge
- By harmonically oscillating electric charges.
- Through oscillating electric dipoles.

Displacement current

Displacement current arises wherever the electric flux is changing with time.

$$I_D = \varepsilon_0 d\phi_E/dt$$

Maxwell's equations

 $\int \vec{E} \cdot d\vec{S} = \frac{q}{}$ (Gauss's law for electrostatics)

 $\int \vec{B} \cdot d\vec{S} = 0 \quad \text{(Gauss's law for magnetism)}$

 $\int \vec{E} \cdot d\vec{l} = -\frac{d\phi_B}{dt}$ (Faraday's law of electromagnetic induction)

 $\int \vec{B} \cdot d\vec{l} = \mu_0 \left(I + \varepsilon_0 \frac{d\phi_E}{dt} \right) \text{(Maxwell-Ampere's circuital law)}$

