BRAIN CLASS XI

MASTERJEE CLASSES **NEWTON'S LAWS** OF MOTION

Problem Solving Strategies

- Identify the unknown forces and accelerations.
- Draw FBD of bodies in the system.
- Resolve forces into their components.
- Apply $\sum \vec{F} = M\vec{a}$ in the direction of motion.
- Apply $\Sigma \vec{F} = 0$ in the direction of equilibrium.
- Write constraint relation if exists.
- Solve equations $\Sigma \vec{F} = M\vec{a}$ and $\Sigma \vec{F} = 0$.

▶ Inertia of rest ► Inertia of motion ▶ Inertia of direction

For non-inertial

frame of reference

Newton's 1st Law

A body continues its state of rest or motion until unless an external force is acted on it.

Rocket Propulsion Acceleration $\vec{F}_{ext} + \vec{F}_{Pseudo} = M\vec{a}$ $\vec{F}_{pseudo} = -M\vec{a}_{frame}$ Thrust

Newton's 2nd Law

The rate of change of linear momentum of a body is directly proportional to the external force applied on the body in the direction of force. $F = \frac{dp}{dt} = ma$

LAWS OF MOTION CONSEQUENCES

Newton's 3rd Law

To every action there is always an equal and opposite reaction. $\vec{F}_{AB} = -\vec{F}_{BA}$

Pseudo Force

Angle of Friction (θ) and Angle of Repose (α)

The motion resisted by a bonding between the body and the surface in contact represented by single force called

Maximum Length of Hanging Chain

Length of a chain hanging in air

· When there is no friction

- $a_A = F/m; a_R = 0$
- A will fall from B after time

$$t = \sqrt{\frac{2L}{a}} = \sqrt{\frac{2mL}{F}}$$

· Friction present between A and $B(F < f_i)$

- → Combined system will move
 → together with a = F/(M + m)
- · Friction present between A and $B(F>f_i)$
- Relative acceleration

$$a = a_A - a_B = \frac{MF - \mu_k mg(m+M)}{mM}$$

A will fall from B after time

$$t = \sqrt{\frac{2L}{a}} = \sqrt{\frac{2mML}{MF - \mu_k mg(m+M)}}$$

Motion of Two Bodies One Resting on the Other

Force F applied Force F applied to upper body to lower body A

- · When there is no friction
- $a_B = F / M$ and $a_A = 0$
- A will fall from B (backward) after time t
- Friction present between A and B $(F < f_i)$
- Both the bodies will move together $a = \frac{F}{M+m} \text{ and } f_l = \mu_s mg$
- Pseudo force on the body A, $F' = ma = \frac{mF}{m+M}$
- Friction present between A and $B(F>f_1)$
 - Relative acceleration

$$a = a_A - a_B = -\left[\frac{F - \mu_k g(m+M)}{M}\right]$$

→ A will fall from B (backward) after time

