


# MOTION IN A STRAIGHT LIN

## Motion

If a body changes its position as time passes w.r.t. frame of reference, it is said to be in

A system consisting a set of coordinates and with reference to which observer describes any



relative velocity of v and each observer has their own set of coordinates (x, y, z) and (x', y', z').

The actual path length covered by moving particle.

per unit time,

The change in position vector.

differentiating with

respect to time

The rate of change of position

 $\vec{v} = \frac{\text{displacement}}{\text{time}} = \frac{\Delta \vec{x}}{\Delta t}$ 

# Acceleration

velocity, 
$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$$

differentiating with

The rate of distance covered with time is called speed,

$$v = \frac{\text{distance}}{\text{total time}} = \frac{d}{t}$$

Average

Acceleration

 $\vec{a}_{av} = \frac{\Delta \vec{v}}{\Delta t}$ 

The time rate of change of

velocity, 
$$\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$$

respect to time

# Average Speed

total distance total time

# Instantaneous Speed

$$v = \operatorname{Lt}_{\Delta t \to 0} \frac{\Delta d}{\Delta t}$$

# **Average Velocity**

$$\vec{v}_{av} = \frac{\Delta \vec{x}}{\Delta t}$$

### Instantaneous Velocity

$$\vec{v} = \text{Lt}_{\Delta t \to 0} \frac{\Delta \vec{x}}{\Delta t} = \frac{d\vec{x}}{dt}$$

### Uniform Acceleration

Instantaneous

Acceleration

 $\vec{a} = \text{Lt } \frac{\Delta \vec{v}}{d\vec{v}} = \frac{d\vec{v}}{d\vec{v}}$ 

 $\Delta t \rightarrow 0 \ \Delta t$ 

Magnitude of velocity changes by equal amounts in equal intervals of time.

> Non-uniform Acceleration Acceleration changes with time.

### Constant Acceleration

For Uniformly Accelerated Motion

- v = u + at
- $s = ut + \frac{1}{2}at^2$
- $v^2 = u^2 + 2as$
- $S_n = u + \frac{a}{2}(2n-1)$

Variable Acceleration

For Motion with

If  $a = f(t) \rightarrow$  a function of time

# Acceleration changes with time

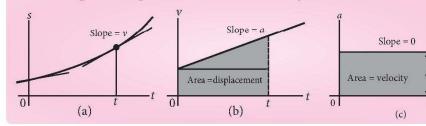
For Motion Under Gravity

Vertically downward motion

(Free fall case) u = 0, a = g

- v = gt
- $h = 1/2 gt^2$
- $v^2 = 2gh$

### Kinematic Equations


A mathematical treatment to describe the motion of a body in 1-dimension.

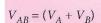
Vertically upward motion

v = 0, acceleration a = -g

- u = gt
- $h = ut 1/2 gt^2$
- $u = \sqrt{2gh}$

# **Graphical Representation of Uniformly Accelerated Motion**




The velocity with which an object moves with respect to another object is called relative velocity

$$V_{AB} = (V_A - V_B)$$



$$V_{AB} = \{V_A - (-V_B)\}$$





