

KINETIC THEORY

Relation between

$$\begin{aligned} v_{rms} &: v_{av} : v_{mp} \\ &= \sqrt{\frac{3RT}{M}} : \sqrt{\frac{8RT}{\pi M}} : \sqrt{\frac{2RT}{M}} \\ &= \sqrt{3} : \sqrt{\frac{8}{\pi}} : \sqrt{2} : (v_{rms} > v_{av} > v_{mp}) \end{aligned}$$

Maxwell's Law of v_{rms} , v_{av} and v_{mp} **Distribution of Velocities**

The distribution of molecules at different speed is given as,

$$dN = 4\pi N \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 e^{-\frac{mv^2}{2kT}} dv$$

Mean Free Path

The average distance travelled between successive collisions of molecules of a gas is called mean free path (λ) .

$$\lambda = \frac{1}{\sqrt{2}n\pi d^2}$$
; where *n* is the number density

and d is the diameter of the molecule.

Kinetic Interpretation of Temperature

$$KE_{avg} = E = \frac{1}{2}mv_{rms}^2 = \frac{3}{2}kT$$

$$KE / \text{mole} = \left(\frac{3}{2}kT\right)N_A = \frac{3}{2}RT$$

Kinetic Theory of Ideal Gases

Pressure Exerted by a Gas

$$P = \frac{1}{3} \frac{mN}{V} v_{rms}^2 = \frac{1}{3} \rho v_{rms}^2 = \frac{2}{3} E'$$

E' = Average KE per unit volume

Specific Heat Capacity

Specific Heat of a Gas

At constant pressure (C_p) :

$$C_p = \frac{(\Delta Q)_p}{n\Delta T} \text{ or } C_p = \left(1 + \frac{f}{2}\right)R$$

At constant volume (C_V) :

$$C_V = \frac{(\Delta Q)_V}{n\Delta T} \text{ or } C_V = \frac{1}{2}fR$$

Mayer's relation : $C_P - C_V = R$ (f = degree of freedom)

KINETIC THEORY

Vander Waal's Equation

For *n* moles of a gas, $\left[[a] = [ML^5T^{-2}] \right]$ $P + \frac{an^2}{V^2} \left| (V - nb) \right| = nRT$

Law of Equipartition of Energy

For any system in thermal equilibrium, the total energy is equally distributed among its various degrees of freedom and each degree of freedom is associated with energy $\frac{1}{k}T$.

Monoatomic Gas (f = 3)

$$U = \frac{3}{2}RT$$
, $C_V = \frac{3}{2}R$, $C_P = \frac{5}{2}R$, $\gamma = \frac{5}{3}$

Diatomic Gas (f = 5)

$$U = \frac{5}{2}RT, C_V = \frac{5}{2}R, C_P = \frac{7}{2}R, \gamma = \frac{7}{5}$$

• Critical Temperature : $T_c = \frac{1}{2}$

• Critical Pressure :
$$P_c = \frac{a}{27b^2}$$

• Critical Volume : $V_c = 3b$

Gas Laws

Boyle's Laws

At constant temperature, volume of a fixed mass of a gas is inversely proportional to its pressure.

$$P \propto \frac{1}{V}$$
 or $PV = \text{constant}$

Charle's Laws

The volume of the gas is directly proportional to its absolute temperature.

$$V \propto T \text{ (at constant } P)$$

$$V_t = V_0 \left(1 + \frac{t}{273} \right)$$

Polyatomic Gas

$$U = (3 + f') RT$$

$$C_V = (3 + f') R$$

$$\boldsymbol{C_P} = (4 + f') R$$

$$\gamma = (4 + f')/(3 + f')$$

f' = a certain number of vibrational mode

Graham's Law of Diffusion

For given temperature and pressure, the rate of diffusion of gas is inversely proportional to the square root of the density of the gas. $r \propto \frac{1}{\sqrt{\rho}} \propto \frac{1}{\sqrt{M}}$

Gay-Lussac's Law

Pressure of the gas varies directly with the temperature at constant volume.

$$P \propto T$$

(at constant volume)

$$P_t = P_0 \left[1 + \frac{t}{273} \right]$$

