Common normal:

Common tangent:

common normal direction.

Force is exerted in common normal

direction only. Momentum changes in

Neither momentum nor velocity

Oblique collision

Perfectly Inelastic Collision

moving in the same direction:

When the colliding bodies are

changes in common tangent direction.

COLLISION

Velocity after collision:

$$\begin{aligned} v_1 &= \left(\frac{m_1 - e m_2}{m_1 + m_2}\right) u_1 + \left(\frac{(1 + e) m_2}{m_1 + m_2}\right) u_2 \\ v_2 &= \left(\frac{(1 + e) m_1}{m_1 + m_2}\right) u_1 + \left(\frac{m_2 - e m_1}{m_1 + m_2}\right) u_2 \end{aligned}$$

Loss in kinetic energy:

$$(\Delta K) = \frac{1}{2} \left(\frac{m_1 m_2}{m_1 + m_2} \right) (1 - e^2) (u_1 - u_2)^2$$

Velocities after inelastic collision:

 $\frac{v_1}{v_2} = \frac{1-e}{1+e}$

Coefficient of Restitution (e)

Velocity of separation along line of impact Velocity of approach along line of impact

Rebounding of Ball After Collision

- After first rebound
 - **Speed**: $v_1 = ev_0 = e\sqrt{2gh_0}$
 - Height: $h_1 = e^2 h_0$
- After nth rebound:
- Speed: $v_n = e^n v_0$ Height: $h_n = e^{2n} h_0$
- Total distance travelled by the ball before it stops bouncing:

$H = h_0[(1+e^2)/(1-e^2)]$

Perfectly Elastic Oblique Collison

After perfectly elastic oblique collision of two bodies of equal masses, the scattering angle $(\theta + \phi)$ would be 90°.

CLASSIFICATION OF COLLISON

On the

basis of

line of

impact

HEAD-ON COLLISION

The velocities of the particles are along the same line before and after the collision.

lead on Inelastic Collision

OBLIQUE COLLISION

The velocities of the particles are along different lines before and after the collision.

INELASTIC COLLISION

If the kinetic energy after and before collision are not equal, the collision is

On the basis of kinetic energy

PERFECTLY INELASTIC COLLISION

If velocity of separation just after collision becomes zero, then the collision is

ELASTIC COLLISION

If the kinetic energy after and before collision is same, the collision is said to be perfectly elastic.

By substituting e = 1, we get $\Delta K = 0$

said to be

inelastic.

Elastic or Perfectly Elastic Head on Collison

Velocity after collision:

$$v_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) u_1 + \frac{2m_2 u_2}{m_1 + m_2}$$

$$v_2 = \left(\frac{m_2 - m_1}{m_1 + m_2}\right) u_2 + \frac{2m_1 u_1}{m_1 + m_2}$$

inelastic.

Line of motion of ball B

Line of

impact

F = 0

Case of

perfectly

 $m_1u_1 + m_2u_2$

Before collision

Line of

motion

of ball A

Common

normal

Loss in kinetic energy

When the colliding bodies are moving in the opposite direction:

$$v_{com} = \frac{m_1 u_1 - m_2 u_2}{m_1 + m_2}$$

Loss in kinetic energy

$$\Delta K = \frac{1}{2} \left(\frac{m_1 m_2}{m_1 + m_2} \right) (u_1 - u_2)^2$$

If projectile and target are of same mass

For $m_1 = m_2 \Longrightarrow v_1 = u_1$ and $v_2 = u_1$ i.e., their velocities get interchanged.

If massive projectile collides with a light target

For $m_1 >> m_2 \Rightarrow v_1 = u_1$ and $v_2 = 2u_1 - u_2$ **Sub case:** For $u_2 = 0$, *i.e.*, target is at rest $v_1 = u_1$ and $v_2 = 2u_1$

If light projectile collides with a heavy target

For $m_1 << m_2 \Rightarrow v_1 = -u_1 + 2u_2$ and $v_2 = u_2$ **Sub case:** For $u_2 = 0$, *i.e.*, target is at rest $v_1 = -u_1$ and $v_2 = 0$, the ball rebounds with same speed.

If $m_2 = nm_1$ and $u_2 = 0$

The fractional kinetic energy transferred by projectile

$$\frac{\Delta K}{K} = \frac{4n}{(1+n)}$$

Fractional kinetic energy retained by the projectile

$$\left(\frac{\Delta K}{K}\right)_{\text{Retaine}}$$

Special Cases

= 1- fractional kinetic energy transferred by projectile

